搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于平板量热的大面积激光光斑能量测量方法

方波浪 栾昆鹏 武俊杰 吴勇 杨太旗 张洋 李天植 王大辉 杨鹏翎

引用本文:
Citation:

基于平板量热的大面积激光光斑能量测量方法

方波浪, 栾昆鹏, 武俊杰, 吴勇, 杨太旗, 张洋, 李天植, 王大辉, 杨鹏翎

Large-spot laser energy measurement based on flat-plate calorimetry

FANG Bolang, LUAN Kunpeng, WU Junjie, WU Yong, YANG Taiqi, ZHANG Yang, LI Tianzhi, WANG Dahui, YANG Pengling
cstr: 32037.14.aps.74.20251032
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 强激光到靶总能量测量对激光系统性能评价十分重要. 然而, 到靶光斑具有功率密度高、时空分布不均匀及光斑尺寸大等特点, 给总能量准确测量带来极大挑战. 瞄准大面积光斑总能量高精度测量需求, 本文发展了平板量热技术. 首先, 开展了激光加热平板物理过程研究, 得到了温度场变化解析解, 并基于此发现, 均匀排布的阵列温度传感器可显著缩短调整段时间; 然后, 针对传统能量反演算法中需要预热吸收体和可能受非均匀温度影响的问题, 提出了改进方法; 最后, 研制了平板测量装置, 开展了激光标定实验, 得到了系统的重复性2.7%和线性度0.3%, 合成标准不确定度为4%. 本文研究为平板测量技术在到靶总能量测量中的应用奠定了理论基础, 对装置的优化设计、好用易用性提升、能量高精度反演具有重要参考价值.
    The measurement of total energy on a target is a critical step in evaluating the performances of high-power laser systems. However, the laser spot on the target exhibits characteristics such as high power density, non-uniform spatial distribution and temporal distribution, and large spot size, which present a significant challenge to the accurate measurement of total energy. To meet the requirement for high-precision measurement of the total energy of a large spot, this work focuses on plate-based energy measurement technology. First, we investigate the physical processes of laser-heated plates and obtain analytical solutions, demonstrating that uniformly arranged temperature sensor arrays can shorten the relaxation period. Second, to overcome the limitations of traditional energy inversion algorithms, such as the need to preheat the absorber and potential non-uniform temperature effects, we propose correction methods. The non-preheated calorimetry method eliminates the requirement that the absorber temperature must be higher than the ambient temperature during the initial rating period. It iteratively optimizes the ambient temperature and heat loss coefficients based on corrected temperature invariance. Additionally, a non-uniform temperature correction algorithm is employed to minimize the errors caused by limited sensor sampling rates through reconstructing the temperature curve during the injection and adjustment periods. Finally, we develop a plate measurement device and conduct laser calibration tests, achieving a system repeatability of 2.7%, linearity of 0.3%, and a combined standard uncertainty of 4%. This study lays a theoretical foundation for flat-plate laser energy measurement technology, offering important insights into optimizing the apparatus design, improving usability, and achieving high-precision energy inversion.
      通信作者: 杨鹏翎, yangpengling@nint.ac.cn
    • 基金项目: 激光与物质相互作用全国重点实验室基金(批准号: SKLLIM-KB-2404)资助的课题.
      Corresponding author: YANG Pengling, yangpengling@nint.ac.cn
    • Funds: Project supported by the State Key Laboratory of Laser Interaction with Matter, China (Grant No. SKLLIM-KB-2404).
    [1]

    Williams P A, Spidell M T, Hadler J A, et al. 2020 Metrologia 57 015001

    [2]

    魏继锋, 胡晓阳, 张凯, 孙利群 2017 红外与激光工程 46 706004

    Wei J F, Hu X Y, Zhang K, Sun L Q 2017 Infrared and Laser Engineering 46 706004

    [3]

    许晓军 2020 强激光与粒子束 32 30Google Scholar

    Xu X J 2020 High Power Laser and Particle Beams 32 30Google Scholar

    [4]

    Andrews L C, Phillips R L 2005 Laser Beam Propagation through Random Media (2nd Ed.) (Bellingham: SPIE Press) pp9–26

    [5]

    杜配冰, 刘钰, 陈志华, 关奇, 夏洪富, 蔡利兵 2021 现代应用物理 12 020301Google Scholar

    Du P B, Liu Y, Chen Z H, Guan Q, Xia H F, Cai L B 2021 Modern Applied Physics 12 020301Google Scholar

    [6]

    Lazov L, Karadzhov T 2021 Environment Technologies Resources Proceedings of the International Scientific and Practical Conference 3 173

    [7]

    Sprangle P, Hafizi B, Ting A, Fischer R 2015 Appl. Opt. 54 F201Google Scholar

    [8]

    Li X, Hadler J, Cromer C, Lehman J, Dowell M 2008 High Power Laser Calibrations at NIST Tech. Rep. NIST SP 250-77

    [9]

    栾昆鹏, 赵海川, 武俊杰, 王平, 崔萌, 吴勇, 王大辉, 师宇斌, 陈邵武, 杨鹏翎, 吴丽雄 2022 现代应用物理 13 030302Google Scholar

    Luan K P, Zhao H C, Wu J J, Wang P, Cui M, Wu Y, Wang D H, Shi Y B, Chen S W, Yang P L, Wu L X 2022 Modern Applied Physics 13 030302Google Scholar

    [10]

    冯国斌 2015 博士学位论文 (西安: 西安电子科技大学)

    Feng G B 2015 Ph. D. Dissertation (Xi'an: Xidian University

    [11]

    管雯璐, 谭逢富, 侯再红, 罗杰, 秦来安, 何枫, 张巳龙, 吴毅 2022 光学学报 42 0214002Google Scholar

    Guan W L, Tan F F, Dou Z H, Luo J, Qin L A, He F, Zhang S L, Wu Y 2022 Acta Optics Sinica 42 0214002Google Scholar

    [12]

    Higgs C, Grey P C, Mooney J G, Hatch R E, Carlson R R, Murphy D V (edited by Steiner T D, Merritt P H) 1999 AeroSense'99 (Orlando: FL) pp216–226

    [13]

    Yang P, Feng G, Wang Q, Wang J, Cheng J (edited by Zhou L) 2007 International Symposium on Photoelectronic Detection and Imaging: Technology and Applications Beijing, China p66220T

    [14]

    Pang M, Rong J, Zhou S, Wu J, Fan G, Zhang W, Hu X 2014 Rev. Sci. Instrum. 85 013105

    [15]

    Gunn S R 1973 J. Phys. E: Sci. Instrum. 6 105

    [16]

    雷俊杰, 王亮, 段园园, 谷衡, 刘晓英 2015 电子设计工程 23 138Google Scholar

    Lei J J, Wang Liang, Duan Y Y, Gu Heng, Liu X Y 2015 Electronic Design Engineering 23 138Google Scholar

    [17]

    唐菱, 李小群, 党钊, 王超, 陈骥 2010 电子测量技术 33 5Google Scholar

    Tang L, Li X Q, Dang Z, Wang C, Chen J 2010 Electronic Measurement Yechnology 33 5Google Scholar

    [18]

    方波浪, 韩静, 王大辉, 冯刚, 陶波, 王振宝, 王建国 2022 现代应用物理 13 040301Google Scholar

    Fang B L, Han J, Wang D H, Feng G, Tao B, Wang Z B, Wang J G 2022 Modern Applied Physics 13 040301Google Scholar

    [19]

    West E, Case W, Rasmussen A, Schmidt L 1972 Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry 76A 13Google Scholar

    [20]

    West E D, Churney K L 1970 J. Appl. Phys. 41 2705Google Scholar

    [21]

    Mejia D, Moreno A, Arbelaiz A, Posada J, Ruiz-Salguero O, Chopitea R 2018 J. Manuf. Sci. Eng. 140 031006Google Scholar

    [22]

    Jiang H J, Dai H L 2015 Int. J. Heat Mass Transfer 82 98Google Scholar

    [23]

    Mejia-Parra D, Moreno A, Posada J, Ruiz-Salguero O, Barandiaran I, Poza J C, Chopitea R 2019 Math. Comput. Simul 166 177Google Scholar

    [24]

    Johnson E G 1977 Appl. Opt. 16 2315Google Scholar

  • 图 1  物理模型 (a)后视图; (b)侧视图; (c)典型温度变化历程

    Fig. 1.  Physics model: (a) Rear view; (b) side view; (c) temperature changing curve.

    图 2  免预热热量计算法流程图

    Fig. 2.  Flowchat for preheating-free calorimetry method algorithm.

    图 3  机械结构 (a) 前视图; (b) 爆炸图

    Fig. 3.  Mechanical structure: (a) Front view; (b) exploded view

    图 4  标定实验系统

    Fig. 4.  Calibration experimental system

    图 5  测量结果 (a) 监测光强; (b) 温度变化历程

    Fig. 5.  Measurement results: (a) Monitor power; (b) temperature changing curve.

    图 6  标定结果

    Fig. 6.  Calibration results

    Baidu
  • [1]

    Williams P A, Spidell M T, Hadler J A, et al. 2020 Metrologia 57 015001

    [2]

    魏继锋, 胡晓阳, 张凯, 孙利群 2017 红外与激光工程 46 706004

    Wei J F, Hu X Y, Zhang K, Sun L Q 2017 Infrared and Laser Engineering 46 706004

    [3]

    许晓军 2020 强激光与粒子束 32 30Google Scholar

    Xu X J 2020 High Power Laser and Particle Beams 32 30Google Scholar

    [4]

    Andrews L C, Phillips R L 2005 Laser Beam Propagation through Random Media (2nd Ed.) (Bellingham: SPIE Press) pp9–26

    [5]

    杜配冰, 刘钰, 陈志华, 关奇, 夏洪富, 蔡利兵 2021 现代应用物理 12 020301Google Scholar

    Du P B, Liu Y, Chen Z H, Guan Q, Xia H F, Cai L B 2021 Modern Applied Physics 12 020301Google Scholar

    [6]

    Lazov L, Karadzhov T 2021 Environment Technologies Resources Proceedings of the International Scientific and Practical Conference 3 173

    [7]

    Sprangle P, Hafizi B, Ting A, Fischer R 2015 Appl. Opt. 54 F201Google Scholar

    [8]

    Li X, Hadler J, Cromer C, Lehman J, Dowell M 2008 High Power Laser Calibrations at NIST Tech. Rep. NIST SP 250-77

    [9]

    栾昆鹏, 赵海川, 武俊杰, 王平, 崔萌, 吴勇, 王大辉, 师宇斌, 陈邵武, 杨鹏翎, 吴丽雄 2022 现代应用物理 13 030302Google Scholar

    Luan K P, Zhao H C, Wu J J, Wang P, Cui M, Wu Y, Wang D H, Shi Y B, Chen S W, Yang P L, Wu L X 2022 Modern Applied Physics 13 030302Google Scholar

    [10]

    冯国斌 2015 博士学位论文 (西安: 西安电子科技大学)

    Feng G B 2015 Ph. D. Dissertation (Xi'an: Xidian University

    [11]

    管雯璐, 谭逢富, 侯再红, 罗杰, 秦来安, 何枫, 张巳龙, 吴毅 2022 光学学报 42 0214002Google Scholar

    Guan W L, Tan F F, Dou Z H, Luo J, Qin L A, He F, Zhang S L, Wu Y 2022 Acta Optics Sinica 42 0214002Google Scholar

    [12]

    Higgs C, Grey P C, Mooney J G, Hatch R E, Carlson R R, Murphy D V (edited by Steiner T D, Merritt P H) 1999 AeroSense'99 (Orlando: FL) pp216–226

    [13]

    Yang P, Feng G, Wang Q, Wang J, Cheng J (edited by Zhou L) 2007 International Symposium on Photoelectronic Detection and Imaging: Technology and Applications Beijing, China p66220T

    [14]

    Pang M, Rong J, Zhou S, Wu J, Fan G, Zhang W, Hu X 2014 Rev. Sci. Instrum. 85 013105

    [15]

    Gunn S R 1973 J. Phys. E: Sci. Instrum. 6 105

    [16]

    雷俊杰, 王亮, 段园园, 谷衡, 刘晓英 2015 电子设计工程 23 138Google Scholar

    Lei J J, Wang Liang, Duan Y Y, Gu Heng, Liu X Y 2015 Electronic Design Engineering 23 138Google Scholar

    [17]

    唐菱, 李小群, 党钊, 王超, 陈骥 2010 电子测量技术 33 5Google Scholar

    Tang L, Li X Q, Dang Z, Wang C, Chen J 2010 Electronic Measurement Yechnology 33 5Google Scholar

    [18]

    方波浪, 韩静, 王大辉, 冯刚, 陶波, 王振宝, 王建国 2022 现代应用物理 13 040301Google Scholar

    Fang B L, Han J, Wang D H, Feng G, Tao B, Wang Z B, Wang J G 2022 Modern Applied Physics 13 040301Google Scholar

    [19]

    West E, Case W, Rasmussen A, Schmidt L 1972 Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry 76A 13Google Scholar

    [20]

    West E D, Churney K L 1970 J. Appl. Phys. 41 2705Google Scholar

    [21]

    Mejia D, Moreno A, Arbelaiz A, Posada J, Ruiz-Salguero O, Chopitea R 2018 J. Manuf. Sci. Eng. 140 031006Google Scholar

    [22]

    Jiang H J, Dai H L 2015 Int. J. Heat Mass Transfer 82 98Google Scholar

    [23]

    Mejia-Parra D, Moreno A, Posada J, Ruiz-Salguero O, Barandiaran I, Poza J C, Chopitea R 2019 Math. Comput. Simul 166 177Google Scholar

    [24]

    Johnson E G 1977 Appl. Opt. 16 2315Google Scholar

  • [1] 刘小娟, 李占琪, 金志刚, 黄智, 魏加争, 赵存陆, 王战涛. 电驱动引发液滴弹跳过程中的能量转换.  , 2022, 71(11): 114702. doi: 10.7498/aps.71.20212133
    [2] 刘昊华, 王少华, 李波波, 李桦林. 缺陷致非线性电路孤子非对称传输.  , 2017, 66(10): 100502. doi: 10.7498/aps.66.100502
    [3] 闫欢欢, 李晓静, 张兴赢, 王维和, 陈良富, 张美根, 徐晋. 大气SO2柱总量遥感反演算法比较分析及验证.  , 2016, 65(8): 084204. doi: 10.7498/aps.65.084204
    [4] 刘广东, 张开银. 二维电磁逆散射问题的时域高斯-牛顿反演算法.  , 2014, 63(3): 034102. doi: 10.7498/aps.63.034102
    [5] 王锋, 陈天江, 雒仲祥, 鲁燕华, 万敏, 彭博, 尹新启. 基于长脉冲光源的钠信标回光特性实验研究.  , 2014, 63(1): 014208. doi: 10.7498/aps.63.014208
    [6] 夏静, 张溪超, 赵国平. 易轴取向对Nd2Fe14B/α-Fe双层膜退磁过程影响的微磁学分析.  , 2013, 62(22): 227502. doi: 10.7498/aps.62.227502
    [7] 王雪娟, 袁萍, 岑建勇, 张廷龙, 薛思敏, 赵金翠, 许鹤. 依据光谱研究闪电放电通道的半径及能量传输特性.  , 2013, 62(10): 109201. doi: 10.7498/aps.62.109201
    [8] 梁善勇, 王江安, 张峰, 石晟玮, 马治国, 刘涛, 王雨虹. 基于尾流激光雷达的能量对消式大动态接收技术.  , 2012, 61(11): 110701. doi: 10.7498/aps.61.110701
    [9] 袁强, 魏晓峰, 张小民, 张鑫, 赵军普, 黄文会, 胡东霞. 基于受激布里渊散射能量转移的冲击点火激光技术研究.  , 2012, 61(11): 114207. doi: 10.7498/aps.61.114207
    [10] 陶锋, 陈伟中, 许文, 都思丹. 基于非线性超传导的能流不对称传输现象的研究.  , 2012, 61(13): 134103. doi: 10.7498/aps.61.134103
    [11] 刘超, 岑兆丰, 李晓彤, 许伟才, 尚红波, 能芬, 陈立. 关于部分偏振光能量传递和偏振态的光线椭圆分析方法.  , 2012, 61(13): 134201. doi: 10.7498/aps.61.134201
    [12] 贺平逆, 吕晓丹, 赵成利, 宁建平, 秦尤敏, 苟富均. F原子与SiC(100)表面相互作用的分子动力学模拟.  , 2011, 60(9): 095203. doi: 10.7498/aps.60.095203
    [13] 马文, 祝文军, 张亚林, 陈开果, 邓小良, 经福谦. 纳米多晶金属样本构建的分子动力学模拟研究.  , 2010, 59(7): 4781-4787. doi: 10.7498/aps.59.4781
    [14] 姜明, 苟富均, 闫安英, 张传武, 苗峰. BeO分子在不同方向外电场中的能量和光谱.  , 2010, 59(11): 7743-7748. doi: 10.7498/aps.59.7743
    [15] 张涛. 光与电子之间能量交换的一个诱因.  , 2009, 58(1): 234-237. doi: 10.7498/aps.58.234
    [16] 黄时中, 马 堃, 吴长义, 倪秀波. 氦原子1sns组态能量及其相对论修正.  , 2008, 57(9): 5469-5475. doi: 10.7498/aps.57.5469
    [17] 郑瑞伦. 圆柱状量子点量子导线复合系统的激子能量和电子概率分布.  , 2007, 56(8): 4901-4907. doi: 10.7498/aps.56.4901
    [18] 舒 瑜, 张建民, 徐可为. Pt(110)表面自吸附原子能量和力的改进分析型嵌入原子法分析.  , 2006, 55(8): 4103-4110. doi: 10.7498/aps.55.4103
    [19] 祝家清. 自由电子激光的能量转换.  , 1996, 45(1): 52-57. doi: 10.7498/aps.45.52
    [20] 谭作武. 变参数系统能量近似计算法.  , 1963, 19(4): 259-267. doi: 10.7498/aps.19.259
计量
  • 文章访问数:  468
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-01
  • 修回日期:  2025-08-28
  • 上网日期:  2025-09-02
  • 刊出日期:  2025-10-20

/

返回文章
返回
Baidu
map