-
强激光到靶总能量测量对激光系统性能评价十分重要. 然而, 到靶光斑具有功率密度高、时空分布不均匀及光斑尺寸大等特点, 给总能量准确测量带来极大挑战. 瞄准大面积光斑总能量高精度测量需求, 本文发展了平板量热技术. 首先, 开展了激光加热平板物理过程研究, 得到了温度场变化解析解, 并基于此发现, 均匀排布的阵列温度传感器可显著缩短调整段时间; 然后, 针对传统能量反演算法中需要预热吸收体和可能受非均匀温度影响的问题, 提出了改进方法; 最后, 研制了平板测量装置, 开展了激光标定实验, 得到了系统的重复性2.7%和线性度0.3%, 合成标准不确定度为4%. 本文研究为平板测量技术在到靶总能量测量中的应用奠定了理论基础, 对装置的优化设计、好用易用性提升、能量高精度反演具有重要参考价值.The measurement of total energy on a target is a critical step in evaluating the performances of high-power laser systems. However, the laser spot on the target exhibits characteristics such as high power density, non-uniform spatial distribution and temporal distribution, and large spot size, which present a significant challenge to the accurate measurement of total energy. To meet the requirement for high-precision measurement of the total energy of a large spot, this work focuses on plate-based energy measurement technology. First, we investigate the physical processes of laser-heated plates and obtain analytical solutions, demonstrating that uniformly arranged temperature sensor arrays can shorten the relaxation period. Second, to overcome the limitations of traditional energy inversion algorithms, such as the need to preheat the absorber and potential non-uniform temperature effects, we propose correction methods. The non-preheated calorimetry method eliminates the requirement that the absorber temperature must be higher than the ambient temperature during the initial rating period. It iteratively optimizes the ambient temperature and heat loss coefficients based on corrected temperature invariance. Additionally, a non-uniform temperature correction algorithm is employed to minimize the errors caused by limited sensor sampling rates through reconstructing the temperature curve during the injection and adjustment periods. Finally, we develop a plate measurement device and conduct laser calibration tests, achieving a system repeatability of 2.7%, linearity of 0.3%, and a combined standard uncertainty of 4%. This study lays a theoretical foundation for flat-plate laser energy measurement technology, offering important insights into optimizing the apparatus design, improving usability, and achieving high-precision energy inversion.
-
Keywords:
- laser parameter measurement /
- energy /
- flat-plate calorimetry /
- energy inversion algorithm
[1] Williams P A, Spidell M T, Hadler J A, et al. 2020 Metrologia 57 015001
[2] 魏继锋, 胡晓阳, 张凯, 孙利群 2017 红外与激光工程 46 706004
Wei J F, Hu X Y, Zhang K, Sun L Q 2017 Infrared and Laser Engineering 46 706004
[3] 许晓军 2020 强激光与粒子束 32 30
Google Scholar
Xu X J 2020 High Power Laser and Particle Beams 32 30
Google Scholar
[4] Andrews L C, Phillips R L 2005 Laser Beam Propagation through Random Media (2nd Ed.) (Bellingham: SPIE Press) pp9–26
[5] 杜配冰, 刘钰, 陈志华, 关奇, 夏洪富, 蔡利兵 2021 现代应用物理 12 020301
Google Scholar
Du P B, Liu Y, Chen Z H, Guan Q, Xia H F, Cai L B 2021 Modern Applied Physics 12 020301
Google Scholar
[6] Lazov L, Karadzhov T 2021 Environment Technologies Resources Proceedings of the International Scientific and Practical Conference 3 173
[7] Sprangle P, Hafizi B, Ting A, Fischer R 2015 Appl. Opt. 54 F201
Google Scholar
[8] Li X, Hadler J, Cromer C, Lehman J, Dowell M 2008 High Power Laser Calibrations at NIST Tech. Rep. NIST SP 250-77
[9] 栾昆鹏, 赵海川, 武俊杰, 王平, 崔萌, 吴勇, 王大辉, 师宇斌, 陈邵武, 杨鹏翎, 吴丽雄 2022 现代应用物理 13 030302
Google Scholar
Luan K P, Zhao H C, Wu J J, Wang P, Cui M, Wu Y, Wang D H, Shi Y B, Chen S W, Yang P L, Wu L X 2022 Modern Applied Physics 13 030302
Google Scholar
[10] 冯国斌 2015 博士学位论文 (西安: 西安电子科技大学)
Feng G B 2015 Ph. D. Dissertation (Xi'an: Xidian University
[11] 管雯璐, 谭逢富, 侯再红, 罗杰, 秦来安, 何枫, 张巳龙, 吴毅 2022 光学学报 42 0214002
Google Scholar
Guan W L, Tan F F, Dou Z H, Luo J, Qin L A, He F, Zhang S L, Wu Y 2022 Acta Optics Sinica 42 0214002
Google Scholar
[12] Higgs C, Grey P C, Mooney J G, Hatch R E, Carlson R R, Murphy D V (edited by Steiner T D, Merritt P H) 1999 AeroSense'99 (Orlando: FL) pp216–226
[13] Yang P, Feng G, Wang Q, Wang J, Cheng J (edited by Zhou L) 2007 International Symposium on Photoelectronic Detection and Imaging: Technology and Applications Beijing, China p66220T
[14] Pang M, Rong J, Zhou S, Wu J, Fan G, Zhang W, Hu X 2014 Rev. Sci. Instrum. 85 013105
[15] Gunn S R 1973 J. Phys. E: Sci. Instrum. 6 105
[16] 雷俊杰, 王亮, 段园园, 谷衡, 刘晓英 2015 电子设计工程 23 138
Google Scholar
Lei J J, Wang Liang, Duan Y Y, Gu Heng, Liu X Y 2015 Electronic Design Engineering 23 138
Google Scholar
[17] 唐菱, 李小群, 党钊, 王超, 陈骥 2010 电子测量技术 33 5
Google Scholar
Tang L, Li X Q, Dang Z, Wang C, Chen J 2010 Electronic Measurement Yechnology 33 5
Google Scholar
[18] 方波浪, 韩静, 王大辉, 冯刚, 陶波, 王振宝, 王建国 2022 现代应用物理 13 040301
Google Scholar
Fang B L, Han J, Wang D H, Feng G, Tao B, Wang Z B, Wang J G 2022 Modern Applied Physics 13 040301
Google Scholar
[19] West E, Case W, Rasmussen A, Schmidt L 1972 Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry 76A 13
Google Scholar
[20] West E D, Churney K L 1970 J. Appl. Phys. 41 2705
Google Scholar
[21] Mejia D, Moreno A, Arbelaiz A, Posada J, Ruiz-Salguero O, Chopitea R 2018 J. Manuf. Sci. Eng. 140 031006
Google Scholar
[22] Jiang H J, Dai H L 2015 Int. J. Heat Mass Transfer 82 98
Google Scholar
[23] Mejia-Parra D, Moreno A, Posada J, Ruiz-Salguero O, Barandiaran I, Poza J C, Chopitea R 2019 Math. Comput. Simul 166 177
Google Scholar
[24] Johnson E G 1977 Appl. Opt. 16 2315
Google Scholar
-
-
[1] Williams P A, Spidell M T, Hadler J A, et al. 2020 Metrologia 57 015001
[2] 魏继锋, 胡晓阳, 张凯, 孙利群 2017 红外与激光工程 46 706004
Wei J F, Hu X Y, Zhang K, Sun L Q 2017 Infrared and Laser Engineering 46 706004
[3] 许晓军 2020 强激光与粒子束 32 30
Google Scholar
Xu X J 2020 High Power Laser and Particle Beams 32 30
Google Scholar
[4] Andrews L C, Phillips R L 2005 Laser Beam Propagation through Random Media (2nd Ed.) (Bellingham: SPIE Press) pp9–26
[5] 杜配冰, 刘钰, 陈志华, 关奇, 夏洪富, 蔡利兵 2021 现代应用物理 12 020301
Google Scholar
Du P B, Liu Y, Chen Z H, Guan Q, Xia H F, Cai L B 2021 Modern Applied Physics 12 020301
Google Scholar
[6] Lazov L, Karadzhov T 2021 Environment Technologies Resources Proceedings of the International Scientific and Practical Conference 3 173
[7] Sprangle P, Hafizi B, Ting A, Fischer R 2015 Appl. Opt. 54 F201
Google Scholar
[8] Li X, Hadler J, Cromer C, Lehman J, Dowell M 2008 High Power Laser Calibrations at NIST Tech. Rep. NIST SP 250-77
[9] 栾昆鹏, 赵海川, 武俊杰, 王平, 崔萌, 吴勇, 王大辉, 师宇斌, 陈邵武, 杨鹏翎, 吴丽雄 2022 现代应用物理 13 030302
Google Scholar
Luan K P, Zhao H C, Wu J J, Wang P, Cui M, Wu Y, Wang D H, Shi Y B, Chen S W, Yang P L, Wu L X 2022 Modern Applied Physics 13 030302
Google Scholar
[10] 冯国斌 2015 博士学位论文 (西安: 西安电子科技大学)
Feng G B 2015 Ph. D. Dissertation (Xi'an: Xidian University
[11] 管雯璐, 谭逢富, 侯再红, 罗杰, 秦来安, 何枫, 张巳龙, 吴毅 2022 光学学报 42 0214002
Google Scholar
Guan W L, Tan F F, Dou Z H, Luo J, Qin L A, He F, Zhang S L, Wu Y 2022 Acta Optics Sinica 42 0214002
Google Scholar
[12] Higgs C, Grey P C, Mooney J G, Hatch R E, Carlson R R, Murphy D V (edited by Steiner T D, Merritt P H) 1999 AeroSense'99 (Orlando: FL) pp216–226
[13] Yang P, Feng G, Wang Q, Wang J, Cheng J (edited by Zhou L) 2007 International Symposium on Photoelectronic Detection and Imaging: Technology and Applications Beijing, China p66220T
[14] Pang M, Rong J, Zhou S, Wu J, Fan G, Zhang W, Hu X 2014 Rev. Sci. Instrum. 85 013105
[15] Gunn S R 1973 J. Phys. E: Sci. Instrum. 6 105
[16] 雷俊杰, 王亮, 段园园, 谷衡, 刘晓英 2015 电子设计工程 23 138
Google Scholar
Lei J J, Wang Liang, Duan Y Y, Gu Heng, Liu X Y 2015 Electronic Design Engineering 23 138
Google Scholar
[17] 唐菱, 李小群, 党钊, 王超, 陈骥 2010 电子测量技术 33 5
Google Scholar
Tang L, Li X Q, Dang Z, Wang C, Chen J 2010 Electronic Measurement Yechnology 33 5
Google Scholar
[18] 方波浪, 韩静, 王大辉, 冯刚, 陶波, 王振宝, 王建国 2022 现代应用物理 13 040301
Google Scholar
Fang B L, Han J, Wang D H, Feng G, Tao B, Wang Z B, Wang J G 2022 Modern Applied Physics 13 040301
Google Scholar
[19] West E, Case W, Rasmussen A, Schmidt L 1972 Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry 76A 13
Google Scholar
[20] West E D, Churney K L 1970 J. Appl. Phys. 41 2705
Google Scholar
[21] Mejia D, Moreno A, Arbelaiz A, Posada J, Ruiz-Salguero O, Chopitea R 2018 J. Manuf. Sci. Eng. 140 031006
Google Scholar
[22] Jiang H J, Dai H L 2015 Int. J. Heat Mass Transfer 82 98
Google Scholar
[23] Mejia-Parra D, Moreno A, Posada J, Ruiz-Salguero O, Barandiaran I, Poza J C, Chopitea R 2019 Math. Comput. Simul 166 177
Google Scholar
[24] Johnson E G 1977 Appl. Opt. 16 2315
Google Scholar
计量
- 文章访问数: 468
- PDF下载量: 4
- 被引次数: 0