搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

La0.9Pr0.1Fe12B6合金中的磁相变、X射线衍射谱变化和磁热性能研究

陈湘 贺兵

引用本文:
Citation:

La0.9Pr0.1Fe12B6合金中的磁相变、X射线衍射谱变化和磁热性能研究

陈湘, 贺兵

Study on magnetic transition, X-ray diffraction spectrum changes, and magnetocaloric effect in La0.9Pr0.1Fe12B6 Alloy

Chen Xiang, He bin
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 为了明确La0.9Pr0.1Fe12B6合金的变磁相变属性和对应的晶体结构特征,以及伴随的磁热效应,本文研究了该合金在磁场诱导和温度诱导下的变磁相变过程及其对应的X射线衍射图谱(X-ray diffraction spectrum,XRD)变化,并对不同测量模式下磁热性能进行了深入对比。结果表明,La0.9Pr0.1Fe12B6合金主相在低场升温过程中,温度诱导的磁相变顺序为反铁磁态→铁磁态→顺磁态;在等温磁化过程中,在不同温度区间呈现出了三种磁场诱导的变磁相变,即在低温时的两种反铁磁态(Antiferromagnetic,AFM)与铁磁态(ferromagnetic,FM)之间的相变,以及高温的顺磁态(paramagnetic state,PM)与FM态之间的相变,且对应的临界磁场(critical magnetic field,HC)要比LaFe12B6母合金的低得多。零场和加场变温XRD图谱显示La0.9Pr0.1Fe12B6合金的主相在磁无序和有序态间的转变过程中,会伴随磁晶耦合现象,其结果是XRD图谱中除原有主相的衍射峰外,还会出现一些PM态下无法观察到的新衍射峰,并且其强度随着温度的降低或磁场的增加而增强。另外,在基于连续测量模式下的等温磁化数据所计算的磁熵变随温度变化曲线中,可在居里温度附近观察到因磁场诱导PM-FM一级变磁相变而导致的大磁熵变(ΔSM),如在70kOe的磁场下,在50K附近的最大磁熵变可达19J/kg·K,相对制冷量约为589.1J/kg。然而在同样的测量模式下,却没有观察到因AFM-FM变磁相变所期望的大磁熵变。但采用非连续测量模式,则同样观察到AFM-FM变磁相变过程伴随的大磁熵变,如在70kOe的磁场下,8K附近的最大磁熵变可达-12J/kg·K。
    In order to clarify the metamagnetic transition properties and corresponding crystal parameter characteristics of La0.9Pr0.1Fe12B6 alloy, as well as the accompanying magnetocaloric effects, we studied the magnetic phase transition process of the alloy induced by magnetic field and temperature, and the corresponding X-ray diffraction patterns changes, and conducted in-depth comparisons of the magnetocaloric properties under different measurement modes. The results indicate that La0.9Pr0.1Fe12B6 sample mainly consists of about 90 wt.% SrNi12B6 type structural main phase and about 10 wt.% Fe2B and α-Fe,which is consistent with references. During the zero-field increasing temperature process, the magnetic state sequence of the main phase of La0.9Pr0.1Fe12B6 alloy is antiferromagnetic (AFM)→ferromagnetic (FM)→paramagnetic (PM); during the isothermal magnetization process, three types of magnetic field-induced metamagnetic transitions occur in different temperature ranges, namely, two different transitions between AFM and FM states at low temperatures, and a transition between PM and FM states above the Curie temperature(TC). The corresponding critical magnetic field (HC) is much lower than that of the LaFe12B6 parent alloy. On the contrary, the main phase of La0.9Pr0.1Fe12B6 alloy exhibits only PM-FM transition present. This indicates that after the alloy transitions from PM state to FM state during the cooling process, even after the temperature drops to a certain value, it will not transition to AFM state. Similar phenomena also exist in other alloys of LaFe12B6 system. Based on the Néel temperature(TN) and TC obtained the ZFCW modeM-T curves, the magnetic state phase diagram of La0.9Pr0.1Fe12B6 alloy was plotted. The results indicate that as the external magnetic field increases, TC moves linearly towards higher temperatures at a rate of almost 0.48 K/kOe. Conversely, TN1 and TN2 gradually move towards lower temperatures at rates of 0.48 K/kOe and 0.26 K/kOe, respectively. The zero-field and field-variable temperature XRD patterns show that during the magnetic transition between disorder and order states of the main phase in La0.9Pr0.1Fe12B6 alloy, there is a phenomenon of magnetocrystalline coupling. As a result, in addition to the original diffraction peaks of the main phase, some new diffraction peaks that are not observable in the PM state also appear, and their intensity increases with decreasing temperature or increasing magnetic field. Through Retveld refinement XRD patterns under different conditions, it was found that the atomic occupancy of La/Pr and Fe is very stable under different environments, but the atomic occupancy of B varies greatly, which may be the main factor leading to the appearance of new diffraction peaks. In addition, in the temperature dependent magnetic entropy change curve calculated based on isothermal magnetization data in continuous measurement mode, a large magnetic entropy change can be observed near TC due to the magnetic field induced first-order metamagnetic transition of PM-FM. For example, under a magnetic field of 70kOe, the maximum magnetic entropy change near 50K can reach 19J/kg·K, and the relative cooling capacity is about 589.1J/kg. However, under the same measurement mode, the expected large magnetic entropy change due to the AFM-FM metamagnetic transition was not observed. But, when using a discontinuous measurement mode, the large magnetic entropy change accompanying the AFM-FM transition process is also observed. For example, under a magnetic field of 70kOe, the maximum magnetic entropy change near 8K can reach -12J/kg·K.
  • [1]

    Pecharsky V K, Jr Gschneidner K A 1997 Phys.Rev.Lett. 78 4494.

    [2]

    Pecharsky V K, Jr Gschneidner K A 1997 J.Magn.Magn.Mater. 167 L179.

    [3]

    Pecharsky V K, Jr Gschneidner K A 1997 Appl.Phys.Lett. 70 3299.

    [4]

    Levin E M, Pecharsky V K, Jr Gschneidner K A 2000 Phys.Rev.B 262 R14625.

    [5]

    Choe W, Pecharsky V K, Pecharsky A O, Jr Gschneidner K A, Young V G, Jr Miller G 2000 J. Phys.Rev.Lett. 84 4617.

    [6]

    Wada H, Matsuo S, Mitsuda A 2009 Phys.Rev.B 79 092407.

    [7]

    Wada H, Tanabe Y 2001 Appl.Phys.Lett. 79 3302.

    [8]

    Yu S Y, Liu Z H, Liu G D, Chen J L, Cao Z X, Wu G H, Zhang B, Zhang X X 2006 Appl.Phys.Lett. 89 162503.

    [9]

    Han Z D, Wand D H, Zhang C L, Tang S L, Gu B X, Du Y W 2006 Appl.Phys.Lett. 89 182507.

    [10]

    Han Z D, Wang D H, Zhang C L, Xuan H C, Fu B X, Du Y W 2007 Appl.Phys.Lett. 90 042507.

    [11]

    Tegus O, Brückl E, Buschow K H, De Boer F R 2002 Nature 415 150.

    [12]

    Fujieda S, Fujita A, Fukamichi K 2002 Appl.Phys.Lett. 81 1276.

    [13]

    Fujita A, Fujieda S, Fukamichi K, Mitamura H, Goto T 2002 Phys.Rev.B 65 014410.

    [14]

    Hu F X, Ilyn Max, Tishin A M, Sun J R, Wang G J, Chen Y F, Wang F, Cheng Z H, Shen B G 2003 J.Appl.Phys. 93 5503.

    [15]

    Pecharsky V K, Jr Gschneidner K A 1997 J.Alloys.Compd. 260 98.

    [16]

    Krenke T, Acet M, Wassermann E F, Moya X, Manosa L, Planes A 2005 Phys.Rev.B 72 014412.

    [17]

    Hu F X, Shen B G, Sun J R, Wang G J, Chen Z H 2002 Appl.Phys.Lett. 90 826.

    [18]

    Hu W J, Du J, Li B, Zhang Q, Zhang Z D 2008 Appl.Phys.Lett. 92 192505.

    [19]

    Samanta T, Das I, Banerjee S 2007 Appl.Phys.Lett. 91 152506.

    [20]

    Chen J, Shen B G, Dong Q Y, Hu F X, Sun J R 2010 Appl.Phys.Lett. 96 152501.

    [21]

    Diop L V B, Isnard O, Rodríguez-Carvajal J 2016 Phys.Rev.B 93 014440.

    [22]

    Diop L V B, Isnard O 2016 Appl.Phys.Lett. 108 132401.

    [23]

    Diop L V B, Isnard O 2016 J.Appl.Phys. 119 213904.

    [24]

    Diop L V B, Isnard O 2022 Solid State Commun. 341 114568.

    [25]

    Diop L V B, Isnard O 2021 J.Appl.Phys. 129 243902.

    [26]

    Diop L V B, Isnard O 2021 Appl. Phys. Lett. 119 032403.

    [27]

    Ma Z P, Dong X S, Zhang Z Q, Li L W 2021 J.Mater.Sci.Technol. 92138.

    [28]

    Chen X, Mudryk Y, Pathak A K, Pecharsky V K 2021 J.Alloys.Compd. 884 161115.

    [29]

    Fujieda S, Fujita A, Fukamichi K, Hirano N, Nagaya S 2006 J.Alloys.Compd. 408 1165.

    [30]

    Shen J, Gao B, Yan L Q, Li Y X, Zhang H W, Hu F X Sun J R 2007 Chinese Physics 16 3848.

    [31]

    Shen J, Li Y X, Sun J R, Shen B G 2009 Chin.Phys.B 18 2058.

    [32]

    Fujieda S, Fujita A, Fukamichi K 2005 IEEE Trans.Magn. 41 2787.

    [33]

    Fujieda S, Fujita A, Fukamichi K 2007 J.Magn.Magn.Mater. 310 e1006.

    [34]

    Fujieda S, Fujita A, Fukamichi K 2011 J.Phys.D Appl.Phys. 44 064013.

    [35]

    Chen X, Chen Y G, Tang Y B 2011 RARE METALS 309 343.

    [36]

    Zhang C L, Wang D H, Han Z D, Tang S L, Gu B X, Du Y W 2006 Appl.Phys.Lett. 89 122503.

    [37]

    Wang F, Shen B G, Zhang J, Sun J R, Meng F B, Li Y X 2010 Chin.Phys.B 19 513.

    [38]

    Diop L V B, Isnard O 2018 Phys.Rev.B 97 014436.

    [39]

    Wu W X, Xue Z Y, H X, Li X M, Guo Y Q 2009 Sci.China-Phys.Mech.Astron. 39 372 (in Chinese) [吴文霞,薛志勇,洪兴,李岫梅,郭永权 2009中国科学:物理学 力学 天文学 39 372]

    [40]

    Zhao X, Li L, Bao K, Zhu P, Rao Q, Ma S, Liu B, Ge Y, Li D, Cui T 2020 Phys.Chem.Chem.Phys. 22 27425.

    [41]

    Chen X, Chen Y G, Tang Y B 2011 J.Alloys.Compd. 509 8534.

    [42]

    Chen X, Chen Y G, Tang Y B 2011 RARE METALS 309 343.

    [43]

    Chen X, Chen Y G, Tang Y B 2011 J.Magn.Magn.Mater. 323 3177.

    [44]

    Gigüe A, Foldeaki M, Ravi Gopal B, Chahine R, Bose T K, Frydman A, Barclay J A 1999 Phys.Rev.Lett. 83 2262.

    [45]

    Pecharsky V K, Jr Gschneidner K A 1999 J.Appl.Phys. 86 565.

  • [1] 苏浩斌, 郑世芸, 王宁, 朱国锋, 居学尉, 黄峰, 曹义明, 王向峰. DyFeO3中高于Morin温度的新型磁相变.  , doi: 10.7498/aps.74.20250005
    [2] 弭孟娟, 于立轩, 肖寒, 吕兵兵, 王以林. 有机阳离子插层调控二维反铁磁MPX3磁性能.  , doi: 10.7498/aps.73.20232010
    [3] 谭碧, 高栋, 邓登福, 陈姝瑶, 毕磊, 刘冬华, 刘涛. Mn3Sn薄膜磁相变的输运表征.  , doi: 10.7498/aps.73.20231766
    [4] 王壮, 金凡, 李伟, 阮嘉艺, 王龙飞, 吴雪莲, 张义坤, 袁晨晨. 设计制备具有优异形成能力和磁热效应的GdHoErCoNiAl高熵非晶合金.  , doi: 10.7498/aps.73.20241132
    [5] 林源, 胡凤霞, 沈保根. 相变调控、磁热效应和反常热膨胀.  , doi: 10.7498/aps.72.20231118
    [6] 张艳, 宗朔通, 孙志刚, 刘虹霞, 陈峰华, 张克维, 胡季帆, 赵同云, 沈保根. HoCoSi快淬带的磁性和各向异性磁热效应.  , doi: 10.7498/aps.71.20220683
    [7] 彭嘉欣, 唐本镇, 陈棋鑫, 李冬梅, 郭小龙, 夏雷, 余鹏. 非晶态Gd45Ni30Al15Co10合金的制备与磁热性能.  , doi: 10.7498/aps.70.20211530
    [8] 张鹏, 朴红光, 张英德, 黄焦宏. 钙钛矿锰氧化物的磁相变临界行为及磁热效应研究进展.  , doi: 10.7498/aps.70.20210097
    [9] 张虎, 邢成芬, 龙克文, 肖亚宁, 陶坤, 王利晨, 龙毅. 一级磁结构相变材料Mn0.6Fe0.4NiSi0.5Ge0.5和Ni50Mn34Co2Sn14的磁热效应与磁场的线性相关性.  , doi: 10.7498/aps.67.20180927
    [10] 郝志红, 王海英, 张荃, 莫兆军. Eu0.9M0.1TiO3(M=Ca,Sr,Ba,La,Ce,Sm)的磁性和磁热效应.  , doi: 10.7498/aps.67.20181750
    [11] 杨静洁, 赵金良, 许磊, 张红国, 岳明, 刘丹敏, 蒋毅坚. 间隙原子H,B,C对LaFe11.5Al1.5化合物磁性和磁热效应的影响.  , doi: 10.7498/aps.67.20172250
    [12] 霍军涛, 盛威, 王军强. 非晶合金的磁热效应及磁蓄冷性能.  , doi: 10.7498/aps.66.176409
    [13] 郑新奇, 沈俊, 胡凤霞, 孙继荣, 沈保根. 磁热效应材料的研究进展.  , doi: 10.7498/aps.65.217502
    [14] 王芳, 原凤英, 汪金芝. Mn42Al50-xFe8+x合金的磁性和磁热效应.  , doi: 10.7498/aps.62.167501
    [15] 张浩雷, 李哲, 乔燕飞, 曹世勋, 张金仓, 敬超. 哈斯勒合金Ni-Co-Mn-Sn的马氏体相变及其磁热效应研究.  , doi: 10.7498/aps.58.7857
    [16] 敬 超, 陈继萍, 李 哲, 曹世勋, 张金仓. 哈斯勒合金Ni50Mn35In15的马氏体相变及其磁热效应.  , doi: 10.7498/aps.57.4450
    [17] 张立刚, 陈 静, 朱伯铨, 李亚伟, 汪汝武, 李云宝, 张国宏, 李 钰. NaZn13型结构LaFe13-xAlxCy化合物的磁熵变与磁相变的研究.  , doi: 10.7498/aps.55.5506
    [18] 金属间化合物DyMn2Ge2的自发磁相变和场诱导的磁相变.  , doi: 10.7498/aps.50.313
    [19] 陈伟, 钟伟, 潘成福, 常虹, 都有为. La0.8-xCa0.2MnO3纳米颗粒的居里温度与磁热效应.  , doi: 10.7498/aps.50.319
    [20] 郭光华, R.Z.LEVITIN. 金属间化合物RMn2Ge2(R=La,Pr,Nd,Sm,Gd,Tb和Y)中的自发磁相变 及相变时的磁弹性异常.  , doi: 10.7498/aps.49.1838
计量
  • 文章访问数:  12
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-18

/

返回文章
返回
Baidu
map