-
中国散裂中子源大气中子辐照谱仪中子能量覆盖meV—GeV, 1 MeV以上能区的中子能谱及注量评估对开展大气中子单粒子效应极为重要. 依托LANSCE WNR的ICE束线中子能谱实测数据, 探索了适用于中高能中子能谱、注量计算的物理模型、计数方式、截面文件等, 生成并验证了用于中子能谱和注量评估的具有能量分布、角度分布和空间分布的二次源项. 基于此获得的中子能谱和注量, 结合国际上现有同类装置及JESD89A参考中子能谱, 从谱型、勒谱和辐射效应等维度评估, 认为中国散裂中子源大气中子辐照谱仪可能是同类装置最接近自然条件大气中子能谱的装置; 同时结合Xilinx Ⅱ代FPGA大气中子实验, 证实中国散裂中子源大气中子辐照谱仪测试结果与国际同类装置上的测试结果具有很好的一致性. 为此, 基于中国散裂中子源大气中子辐照谱仪开展的大气中子单粒子效应研究与工程加速试验结果可直接应用于航空、航天、军事、民用等高可靠性领域, 助力新质生产力的发展.
The neutron energy spectrum and fluence of the atmospheric neutron irradiation spectrometer at China Spallation Neutron Source cover the energy range from meV to GeV. The evaluation of the neutron energy spectrum and fluence in an energy region above 1 MeV is of great significance for studying single event effect of atmospheric neutrons. Due to the limitations of the proton beam time structure of the CSNS and the engineering reality of the ANIS, it is impossible to achieve the neutron energy spectrum and fluence above 1 MeV through absolute measurements. Therefore, it is necessary to adopt a combination of theoretical simulations and partial experiments to provide reference values. This work covers the following aspects. 1) Based on the measured neutron energy spectrum data from the ICE beamline at LANSCE WNR, the physical models, tally types, and cross-section data files suitable for the calculation of high energy neutron energy spectra and fluence are explored using MCNPX2.5.0; 2) A secondary source with energy distribution, angular distribution, and spatial distribution for neutron energy spectrum and fluence evaluation is developed and verified. 3) Using the obtained neutron energy spectrum and fluence and the combination of existing facilities and JSED89A reference neutron energy spectrum, the performance of the ANIS facility is evaluated from the perspectives of spectrum shape and radiation effect. 4) An experiment on neutron induced single-event upset cross-section measurement of configuration memory on Xilinx 2nd generation FPGAs is conducted using the ANIS. The results are consistent with test results of the same chip series on similar international facilities. In summary, it can be concluded that the ANIS at CSNS may be the facility with the neutron energy spectrum closest to the natural atmospheric neutron energy spectrum among similar facilities in the world, and it has also been confirmed that the test results of ANIS from CSNS show excellent consistency with results obtained from other facilities. Therefore, the research results on atmospheric neutron single-particle effects and engineering acceleration tests based on ANIS at CSNS can be directly applied to high-reliability fields such as aviation, aerospace, military, and civil, contributing to the development of new quality productive forces. -
Keywords:
- atmospheric neutron irradiation spectrometer /
- neutron energy spectrum /
- neutron fluence /
- single event effect
[1] 陈伟, 郭晓强, 宋朝晖 2022 中子单粒子效应(北京: 科学出版社)第5—11页
Chen W, Guo X Q, Song Z H 2022 Neutron Single Event Effects (Beijing: Science Press) pp5–11
[2] Ziegler J F 1996 IBM J. Res. Dev. 40 19
Google Scholar
[3] 孙雅, 刘国福, 罗晓亮 2014 国防科技 35 24
Google Scholar
Sun Y, Liu G F, Luo X L 2014 National Defense Sci. Technol. 35 24
Google Scholar
[4] Normand E 1996 IEEE Trans Nucl Sci. 43 461
Google Scholar
[5] ATSB Transport Safety Report: In-flight Upset 154 km West of Learmonth, WA 2008 http://www.airsafe.com/plane-crash/atsb-qantas-a330-interim-report1.pdf [2025-07-22]
[6] Suzanne F N, Stephen A W, Michael M 2017 Physics Procedia 90 374
Google Scholar
[7] Ansell S, Frost C D 2007 9th European Conference on Radiation and Its Effects on Components and Systems Deauville, France, September 10–14, 2007 pp1–4
[8] Yu Q Z, Shen F, Yuan L B, Lin L, Hu Z L, Zhou B, Liang T J 2022 Nucl. Eng. Des. 386 111579
Google Scholar
[9] IEC 2016 Process Management for Avionics-atmospheric Radiation Effects, part 1: Accommodation of Atmospheric Radiation Effects Via Single Event Effects Within Avionic Electronic Equip-ment: IEC 62396-1
[10] Denise B P 2005 LA-CP-05-0369, Los Alamos National Laboratory
[11] Steve W 2019 LA-UR 19-30813, Los Alamos National Laboratory
[12] Balestrini S, Brown A, Haight R C, Laymon C M, Lee T M, Lisowski P W, McCorkle W, Nelson R O, Parker W 1993 NIM-A 336 226
Google Scholar
[13] Hidenori I, Gentaro F, Hirotaka S, Takashi K, Michihiro F, Stephen A W 2020 IEEE Trans. Nucl. Sci. 67 2363
Google Scholar
[14] ICE House at LANSCE https://lansce.lanl.gov/facilities/Radiation%20Effects/ICE%20House-FP30L.php[2025-07-22]
[15] IEC 2017 Process Management for Avionics-atmospheric Radiation Effects-Part 2 Guidelines for Single Event Effects Testing for Avionics Systems. IEC 62396-2
[16] Alexander V P, Jan B, Mitja M, Ralf N, Stefan R, Simon P P 2009 IEEE Radiation Effects Data Workshop Canada Quebec, July 20–24, 2009 pp166–173
[17] Ewart W B 2009 IEEE Radiation Effects Data Workshop Canada Quebec, July 20–24, 2009 pp157–160
[18] 胡志良 2023 博士学位论文 (西安: 西安交通大学)
Hu Z L 2023 Ph. D. Dissertation (Xi’an: Xi’an JiaoTong University
[19] Austin L 2009 White Paper: Virtex and Spartan FPGA Families, WP286
[20] Autran J L, Munteanua D, Moindjie S, Saoud T S, Sauze S, Gasiot G, Roche P 2015 Microelectron. Reliab. 55 1506
Google Scholar
[21] Zhang Z G, Lei Z F, Tong T, Li X H, Xi K, Peng C, Shi Q, He Y J, Huang Y, En Y F 2019 IEEE Trans. Nucl Sci. 66 1368
Google Scholar
[22] Device vice Reliability Report (UG116) https://docs.amd.com/r/en-US/ug116 [2025-07-22]
-
图 6 基于TMR模型的ANIS引出孔道En ≥ 10 MeV中子注量评估模型和空间分布 (a) MCNPX ANIS源项评估计算模型; (b) En ≥ 10 MeV中子注量空间分布
Fig. 6. Source term assessment model and spatial distribution of neutron flux with En ≥ 10 MeV of ANIS based on CSNS-TMR: (a) Source term assessment model of ANIS in MCNPX; (b) spatial distribution of neutron flux with En ≥ 10 MeV.
源 1—10 MeV 10—100 MeV >100 MeV IEC 62396-1 35 35 29 JESD89 A 35 35 30 QARM (model) 40 36 24 LANSCE WNR 52 26 22 TRIUMF TNF 24 54 21 CSNS ANIS 35 35 30 表 2 各装置相对于JESD89A参考大气中子引起的辐射效应差异对比
Table 2. Comparison of the differences in radiation effects caused by atmospheric neutrons in various facilities reference JESD89A.
装置名称 ANTIA LANSCE TRUIMF ChipIR ANIS 辐射效应
差异$ \varepsilon $/%–59 –26 –16 –25 –2 -
[1] 陈伟, 郭晓强, 宋朝晖 2022 中子单粒子效应(北京: 科学出版社)第5—11页
Chen W, Guo X Q, Song Z H 2022 Neutron Single Event Effects (Beijing: Science Press) pp5–11
[2] Ziegler J F 1996 IBM J. Res. Dev. 40 19
Google Scholar
[3] 孙雅, 刘国福, 罗晓亮 2014 国防科技 35 24
Google Scholar
Sun Y, Liu G F, Luo X L 2014 National Defense Sci. Technol. 35 24
Google Scholar
[4] Normand E 1996 IEEE Trans Nucl Sci. 43 461
Google Scholar
[5] ATSB Transport Safety Report: In-flight Upset 154 km West of Learmonth, WA 2008 http://www.airsafe.com/plane-crash/atsb-qantas-a330-interim-report1.pdf [2025-07-22]
[6] Suzanne F N, Stephen A W, Michael M 2017 Physics Procedia 90 374
Google Scholar
[7] Ansell S, Frost C D 2007 9th European Conference on Radiation and Its Effects on Components and Systems Deauville, France, September 10–14, 2007 pp1–4
[8] Yu Q Z, Shen F, Yuan L B, Lin L, Hu Z L, Zhou B, Liang T J 2022 Nucl. Eng. Des. 386 111579
Google Scholar
[9] IEC 2016 Process Management for Avionics-atmospheric Radiation Effects, part 1: Accommodation of Atmospheric Radiation Effects Via Single Event Effects Within Avionic Electronic Equip-ment: IEC 62396-1
[10] Denise B P 2005 LA-CP-05-0369, Los Alamos National Laboratory
[11] Steve W 2019 LA-UR 19-30813, Los Alamos National Laboratory
[12] Balestrini S, Brown A, Haight R C, Laymon C M, Lee T M, Lisowski P W, McCorkle W, Nelson R O, Parker W 1993 NIM-A 336 226
Google Scholar
[13] Hidenori I, Gentaro F, Hirotaka S, Takashi K, Michihiro F, Stephen A W 2020 IEEE Trans. Nucl. Sci. 67 2363
Google Scholar
[14] ICE House at LANSCE https://lansce.lanl.gov/facilities/Radiation%20Effects/ICE%20House-FP30L.php[2025-07-22]
[15] IEC 2017 Process Management for Avionics-atmospheric Radiation Effects-Part 2 Guidelines for Single Event Effects Testing for Avionics Systems. IEC 62396-2
[16] Alexander V P, Jan B, Mitja M, Ralf N, Stefan R, Simon P P 2009 IEEE Radiation Effects Data Workshop Canada Quebec, July 20–24, 2009 pp166–173
[17] Ewart W B 2009 IEEE Radiation Effects Data Workshop Canada Quebec, July 20–24, 2009 pp157–160
[18] 胡志良 2023 博士学位论文 (西安: 西安交通大学)
Hu Z L 2023 Ph. D. Dissertation (Xi’an: Xi’an JiaoTong University
[19] Austin L 2009 White Paper: Virtex and Spartan FPGA Families, WP286
[20] Autran J L, Munteanua D, Moindjie S, Saoud T S, Sauze S, Gasiot G, Roche P 2015 Microelectron. Reliab. 55 1506
Google Scholar
[21] Zhang Z G, Lei Z F, Tong T, Li X H, Xi K, Peng C, Shi Q, He Y J, Huang Y, En Y F 2019 IEEE Trans. Nucl Sci. 66 1368
Google Scholar
[22] Device vice Reliability Report (UG116) https://docs.amd.com/r/en-US/ug116 [2025-07-22]
计量
- 文章访问数: 410
- PDF下载量: 5
- 被引次数: 0