搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

同轴包覆纳米管对断裂纳米管内水传输的影响

孟现文

引用本文:
Citation:

同轴包覆纳米管对断裂纳米管内水传输的影响

孟现文

Influence of coaxial coated nanotubes on water transport in disjoint nanochannels

MENG Xianwen
cstr: 32037.14.aps.74.20250959
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 在大裂隙的断裂纳米管的连接处存在断裂的水桥, 这使得水分子难以通过断裂纳米管. 即使在断裂纳米管内施加较强的压强差, 水分子依然难以通过某些断裂纳米管. 修复断裂纳米管连接处的水桥是实现断裂纳米管内水传输的关键. 目前模拟证实施加匀强电场或太赫兹电场能够修复大裂隙断裂纳米管连接处的水桥. 但这些方法是被动式修复断裂纳米管连接处的水桥, 一旦关闭电场, 裂隙位置会复现断裂的水桥. 本文提出了在大裂隙纳米管外同轴包覆一条完整的纳米管的方法, 实现一种主动修复断裂纳米管连接处的水桥. 包覆纳米管的直径影响断裂纳米管内水分子的占据数、单位时间流量、运动速度及结构. 本文为修复断裂纳米管连接处的水桥提供了一种新的角度.
    The challenge in transporting water molecules through one-dimensional, large, disjoint nanochannels arises from the breaking of the water bridge. Even under significant pressure differences, water molecules are difficult to transport through these large disjoint nanochannels. Restoring the broken water bridge is crucial for maintaining continuous water transport through disjoint nanochannels. Current repairing methods, including the application of uniform or terahertz electric fields, are passive solutions. Once the electric fields are removed, it will stop working, causing the bridge to break again. In this study, molecular dynamics simulations are employed to investigate water transport through disjoint nanochannels with large nanogaps mediated by the coverage of coaxial nanochannels. The results reveal that as the diameter of the covered nanochannel decreases, the peak interaction between water molecules and the nanochannel decreases, which facilitates the reformation of the water bridge within the nanogap region. The water transfer rate through the disjoint nanochannel exhibits a non-monotonic dependence on the covered nanochannel diameter: it increases rapidly initially, then decreases with further increase in diameter, eventually reaching a relatively stable flow rate. Increasing the diameter of the covered nanochannel enhances water occupancy within the disjoint nanochannel, while the velocity and order parameter of water molecules display an initial increase followed by a decrease with further increase in diameter. These results offer significant insights into understanding the influence of covered nanochannels on water transport through disjoint nanochannels andproviding novel approaches for repairing broken water bridges in disjoint nanochannel systems.
      通信作者: 孟现文, xwmeng@cumt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11605285)和中国矿业大学学科前沿项目(批准号: 2022WLXK17)资助的课题.
      Corresponding author: MENG Xianwen, xwmeng@cumt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11605285) and the Key Academic Discipline Project of China University of Mining and Technology, China (Grant No. 2022WLXK17).
    [1]

    孙志伟, 何燕, 唐元政 2021 70 060201Google Scholar

    Sun Z W, He Y, Tang Y Z 2021 Acta Phys. Sin. 70 060201Google Scholar

    [2]

    章其林, 王瑞丰, 周同, 王允杰, 刘琪 2023 72 084207Google Scholar

    Zhang Q L, Wang R F, Zhou T, Wang Y J, Liu Q 2023 Acta Phys. Sin. 72 084207Google Scholar

    [3]

    Lau A W C, Sokoloff J B 2024 Phys. Rev. Lett. 132 194001Google Scholar

    [4]

    Wang Z H, Liu Y, Li Y Q, Qu Y Y, Zhou R H, Zhao M W, Li W F 2025 Nano Lett. 25 8458Google Scholar

    [5]

    Sahimi M, Ebrahimi F 2019 Phys. Rev. Lett. 122 214506Google Scholar

    [6]

    Tao J B, Song X Y, Bao B, Zhao S L, Liu H L 2020 Chem. Eng. Sci. 219 115602Google Scholar

    [7]

    李伟健, 周晓艳, 陆杭军 2024 73 094702Google Scholar

    Li W J, Zhou X Y, Lu H J 2024 Acta Phys. Sin. 73 094702Google Scholar

    [8]

    Liu Y, Zhu W D, Jiang J, Zhu C Q, Liu C, Slater B, Ojamae L, Francisco J S, Zeng X C 2021 P. Natl. Acad. Sci. USA 118 e2104442118Google Scholar

    [9]

    Camargo A P, Jusufi A, Lee A G, Koplik J, Morris J F, Giovambattista N 2024 Langmuir 40 18439Google Scholar

    [10]

    Liu Y, Jiang J, Pu Y Y, Francisco J S, Zeng X C 2023 ACS Nano 17 6922Google Scholar

    [11]

    Du W, Wang Y J, Yang J W, Chen J G 2024 Phys. Rev. E 109 L062103Google Scholar

    [12]

    Kohler M H, da Silva L B 2016 Chem. Phys. Lett. 645 38Google Scholar

    [13]

    Zhao K W, Wu H Y, Han B S 2017 J. Chem. Phys. 147 164705Google Scholar

    [14]

    Lipomi D J, Vosgueritchian M, Tee B C K, Hellstrom S L, Lee J A, Fox C H F, Bao Z N 2011 Nat. Nanotechnol. 6 788Google Scholar

    [15]

    Tunuguntla R H, Henley R Y, Yao Y C, Pham T A, Wanunu M, Noy A 2017 Science 357 792Google Scholar

    [16]

    Martincic M, Tobias G 2015 Expert Opin. Drug Del. 12 563Google Scholar

    [17]

    Mun T J, Kim S H, Park J W, Moon J H, Jang Y, Huynh C, Baughman R H, Kim S J 2020 Adv. Funct. Mater. 30 2000411Google Scholar

    [18]

    Li J Y, Yang Z X, Fang H P, Zhou R H, Tang X W 2007 Chin. Phys. Lett. 24 2710Google Scholar

    [19]

    Liu Y C, Wang Q 2005 Phys. Rev. B 72 085420Google Scholar

    [20]

    Sam A, Prasad K V, Sathian S P 2019 Phys. Chem. Chem. Phys. 21 6566Google Scholar

    [21]

    Qiu T, Meng X W, Huang J P 2015 J. Phys. Chem. B 119 1496Google Scholar

    [22]

    Meng X W, Wang L Y 2023 Chem. Phys. Lett. 829 140765Google Scholar

    [23]

    Meng X W, Wang L Y 2024 Chem. Phys. Lett. 849 141424Google Scholar

    [24]

    Meng X W, Shen L 2020 Chem. Phys. Lett. 739 137029Google Scholar

    [25]

    Ebrahimi F, Maktabdaran G R, Sahimi M 2020 J. Phys. Chem. B 124 8340Google Scholar

    [26]

    Zhang Q L, Wu Y X, Yang R Y, Zhang J L, Wang R F 2021 Chem. Phys. Lett. 762 138139Google Scholar

    [27]

    Zhang Q L, Wang Y J, Yang H, Deng Y F, Wang T Q, Yang R Y, Zhu Z 2025 Phys. Fluids 37 012031Google Scholar

    [28]

    Meng X W, Li Y, Shen L, Yang X Q 2020 EPL 131 20003Google Scholar

    [29]

    Meng X W, Li Y 2022 Physica E 135 114980Google Scholar

    [30]

    Wang F, Zhang X K, Li S, Su J Y 2022 J. Mol. Liq. 362 119719Google Scholar

    [31]

    Wu Y, Wang Z, Li S, Su J Y 2024 Phys. Fluids 36 022006Google Scholar

    [32]

    Hummer G, Rasaiah J C, Noworyta J P 2001 Nature 414 188Google Scholar

    [33]

    Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L 1983 J. Chem. Phys. 79 926Google Scholar

    [34]

    Hess B, Kutzner C, Van De Spoel D, Lindahl E 2008 J. Chem. Theory. Comp. 4 435Google Scholar

    [35]

    Nose S 1984 J. Chem. Phys. 81 511Google Scholar

    [36]

    Hoover W G 1985 Phys. Rev. A 31 1695Google Scholar

    [37]

    Wan R Z, Li J Y, Lu H J, Fang H P 2005 J. Am. Chem. Soc. 127 7166Google Scholar

    [38]

    Li J Y, Gong X J, Lu H J, Li D, Fang H P 2007 P. Natl. Acad. Sci. USA 104 3687Google Scholar

    [39]

    Darden T A, York D M, Pedersen L G 1993 J. Chem. Phys. 98 10089Google Scholar

    [40]

    Yang F B, Zhang Z R, Xu L J, Liu Z F, Jin P, Zhuang P F, Lei M, Liu J R, Jiang J H, Ouyang X P, Marchesoni F, Huang J P 2024 Rev. Mod. Phys. 96 015002Google Scholar

  • 图 1  (a)模拟框架图, 包括2片平行的石墨烯, 1个断裂纳米管及其同轴包覆的完整纳米管和水层, 其中水分子用红白球表示, 石墨烯及断裂纳米管用青色表示, 压强方向如黑色箭头所示; (b)同轴包覆完整纳米管示意图, 该纳米管的直径为D; (c)断裂纳米管示意图, 该断裂纳米管的裂隙长度标记为L, 断裂纳米管由2个分离的纳米管及间隙组成

    Fig. 1.  (a) Side view of the simulation framework, which includes two parallel sheets, a disjoint nanochannel covered by a coaxial nanochannel, and two water reservoirs. Carbon atoms are shown by the cyan balls, and water molecules are shown by the red balls and the white balls, respectively. The black arrows show the direction of the pressure difference. (b) The nanochannel with a diameter of D used to cover the disjoint nanochannel is displayed in blue. (c) The disjoint nanochannel with a nonogap length of L. The disjoint nanochannel is fabricated by two separated carbon nanotubes and a nanogap.

    图 2  水分子通过断裂纳米管的单位时间流量($V_{\mathrm{f}}$)是D的函数

    Fig. 2.  The average water transfer rate $V_{\mathrm{f}}$, through disjoint nanochannels as a function of D.

    图 3  (a)断裂纳米管内的水分子占据数($N_{1}$)是D的函数; (b)断裂纳米管裂隙处的水分子占据数($N_{2}$)是D的函数

    Fig. 3.  (a) The average water occupancy $N_{1}$ in disjoint nanochannels, as a function of D; (b) the average water occupancy $N_{2}$ within the nanogap region as a function of D.

    图 4  (a), (b) 当L = 0.80, 1.00 nm时, 断裂纳米管内的水分子与纳米管间勒纳德-琼斯势能是位置z的函数; (c)勒纳德-琼斯势能尖峰相对于D = 0 nm的断裂纳米管下降程度

    Fig. 4.  (a), (b) The Lennard-Jones potential between water molecules and the disjoint nanochannel for L = 0.80, 1.00 nm as a function of position (z), respectively; (c) the peak change of the Lennard-Jones potential between water molecules and the disjoint nanochannel for L = 0.80, 1.00 nm compared to the peak of the interaction in the disjoint nanochannel with D = 0 nm, respectively.

    图 5  (a)—(c) D = 0, 0.93, 1.70 nm时, L = 0.80 nm的断裂纳米管内的水分子的结构图; (e)—(f) D = 0, 0.93, 1.70 nm时, L = 1.00 nm的断裂纳米管内的水分子的结构图

    Fig. 5.  (a)–(c) The structure of water molecules in disjoint nanochannels with L = 0.80 nm for D = 0, 0.93, 1.70 nm, respectively; (e)–(f) the structure of water molecules in disjoint nanochannels with L = 1.00 nm for D = 0, 0.93, 1.70 nm, respectively.

    图 6  断裂纳米管内的水分子运动速度(v)是D的函数

    Fig. 6.  The average water velocity(v) in the disjoint nanochannels as a function of D.

    图 7  断裂纳米管内的水分子序参量(S )是D的函数

    Fig. 7.  The average order parameter of water molecules (S ) in disjoint nanochannels as a function of D.

    Baidu
  • [1]

    孙志伟, 何燕, 唐元政 2021 70 060201Google Scholar

    Sun Z W, He Y, Tang Y Z 2021 Acta Phys. Sin. 70 060201Google Scholar

    [2]

    章其林, 王瑞丰, 周同, 王允杰, 刘琪 2023 72 084207Google Scholar

    Zhang Q L, Wang R F, Zhou T, Wang Y J, Liu Q 2023 Acta Phys. Sin. 72 084207Google Scholar

    [3]

    Lau A W C, Sokoloff J B 2024 Phys. Rev. Lett. 132 194001Google Scholar

    [4]

    Wang Z H, Liu Y, Li Y Q, Qu Y Y, Zhou R H, Zhao M W, Li W F 2025 Nano Lett. 25 8458Google Scholar

    [5]

    Sahimi M, Ebrahimi F 2019 Phys. Rev. Lett. 122 214506Google Scholar

    [6]

    Tao J B, Song X Y, Bao B, Zhao S L, Liu H L 2020 Chem. Eng. Sci. 219 115602Google Scholar

    [7]

    李伟健, 周晓艳, 陆杭军 2024 73 094702Google Scholar

    Li W J, Zhou X Y, Lu H J 2024 Acta Phys. Sin. 73 094702Google Scholar

    [8]

    Liu Y, Zhu W D, Jiang J, Zhu C Q, Liu C, Slater B, Ojamae L, Francisco J S, Zeng X C 2021 P. Natl. Acad. Sci. USA 118 e2104442118Google Scholar

    [9]

    Camargo A P, Jusufi A, Lee A G, Koplik J, Morris J F, Giovambattista N 2024 Langmuir 40 18439Google Scholar

    [10]

    Liu Y, Jiang J, Pu Y Y, Francisco J S, Zeng X C 2023 ACS Nano 17 6922Google Scholar

    [11]

    Du W, Wang Y J, Yang J W, Chen J G 2024 Phys. Rev. E 109 L062103Google Scholar

    [12]

    Kohler M H, da Silva L B 2016 Chem. Phys. Lett. 645 38Google Scholar

    [13]

    Zhao K W, Wu H Y, Han B S 2017 J. Chem. Phys. 147 164705Google Scholar

    [14]

    Lipomi D J, Vosgueritchian M, Tee B C K, Hellstrom S L, Lee J A, Fox C H F, Bao Z N 2011 Nat. Nanotechnol. 6 788Google Scholar

    [15]

    Tunuguntla R H, Henley R Y, Yao Y C, Pham T A, Wanunu M, Noy A 2017 Science 357 792Google Scholar

    [16]

    Martincic M, Tobias G 2015 Expert Opin. Drug Del. 12 563Google Scholar

    [17]

    Mun T J, Kim S H, Park J W, Moon J H, Jang Y, Huynh C, Baughman R H, Kim S J 2020 Adv. Funct. Mater. 30 2000411Google Scholar

    [18]

    Li J Y, Yang Z X, Fang H P, Zhou R H, Tang X W 2007 Chin. Phys. Lett. 24 2710Google Scholar

    [19]

    Liu Y C, Wang Q 2005 Phys. Rev. B 72 085420Google Scholar

    [20]

    Sam A, Prasad K V, Sathian S P 2019 Phys. Chem. Chem. Phys. 21 6566Google Scholar

    [21]

    Qiu T, Meng X W, Huang J P 2015 J. Phys. Chem. B 119 1496Google Scholar

    [22]

    Meng X W, Wang L Y 2023 Chem. Phys. Lett. 829 140765Google Scholar

    [23]

    Meng X W, Wang L Y 2024 Chem. Phys. Lett. 849 141424Google Scholar

    [24]

    Meng X W, Shen L 2020 Chem. Phys. Lett. 739 137029Google Scholar

    [25]

    Ebrahimi F, Maktabdaran G R, Sahimi M 2020 J. Phys. Chem. B 124 8340Google Scholar

    [26]

    Zhang Q L, Wu Y X, Yang R Y, Zhang J L, Wang R F 2021 Chem. Phys. Lett. 762 138139Google Scholar

    [27]

    Zhang Q L, Wang Y J, Yang H, Deng Y F, Wang T Q, Yang R Y, Zhu Z 2025 Phys. Fluids 37 012031Google Scholar

    [28]

    Meng X W, Li Y, Shen L, Yang X Q 2020 EPL 131 20003Google Scholar

    [29]

    Meng X W, Li Y 2022 Physica E 135 114980Google Scholar

    [30]

    Wang F, Zhang X K, Li S, Su J Y 2022 J. Mol. Liq. 362 119719Google Scholar

    [31]

    Wu Y, Wang Z, Li S, Su J Y 2024 Phys. Fluids 36 022006Google Scholar

    [32]

    Hummer G, Rasaiah J C, Noworyta J P 2001 Nature 414 188Google Scholar

    [33]

    Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L 1983 J. Chem. Phys. 79 926Google Scholar

    [34]

    Hess B, Kutzner C, Van De Spoel D, Lindahl E 2008 J. Chem. Theory. Comp. 4 435Google Scholar

    [35]

    Nose S 1984 J. Chem. Phys. 81 511Google Scholar

    [36]

    Hoover W G 1985 Phys. Rev. A 31 1695Google Scholar

    [37]

    Wan R Z, Li J Y, Lu H J, Fang H P 2005 J. Am. Chem. Soc. 127 7166Google Scholar

    [38]

    Li J Y, Gong X J, Lu H J, Li D, Fang H P 2007 P. Natl. Acad. Sci. USA 104 3687Google Scholar

    [39]

    Darden T A, York D M, Pedersen L G 1993 J. Chem. Phys. 98 10089Google Scholar

    [40]

    Yang F B, Zhang Z R, Xu L J, Liu Z F, Jin P, Zhuang P F, Lei M, Liu J R, Jiang J H, Ouyang X P, Marchesoni F, Huang J P 2024 Rev. Mod. Phys. 96 015002Google Scholar

  • [1] 李昭青, 韩益华, 王泽君, 白瑞良. 水分子跨细胞膜交换的磁共振测量技术研究进展.  , 2025, 74(11): 118702. doi: 10.7498/aps.74.20250325
    [2] 马腾飞, 朱松林, 宋佳璐, 虞游, 田晓峰. 第一性原理研究单个水分子在PuO2(111)和(110)表面吸附行为.  , 2025, 74(15): 157101. doi: 10.7498/aps.74.20250082
    [3] 邢赫威, 陈占秀, 杨历, 苏瑶, 李源华, 呼和仓. 不凝性气体对纳米通道内水分子流动传热影响的分子动力学模拟.  , 2024, 73(9): 094701. doi: 10.7498/aps.73.20240192
    [4] 武鹏, 李若晗, 张涛, 张进成, 郝跃. AlGaN/GaN肖特基二极管阳极后退火界面态修复技术.  , 2023, 72(19): 198501. doi: 10.7498/aps.72.20230553
    [5] 杨志平, 孔熙, 石发展, 杜江峰. 金刚石表面纳米尺度水分子的相变观测.  , 2022, 71(6): 067601. doi: 10.7498/aps.71.20211348
    [6] 杨韬, 钱仙妹, 马宏亮, 刘强, 朱文越, 郑健捷, 陈杰, 徐秋怡. 1.1 μm波段水分子的CO2加宽系数.  , 2022, 71(20): 203301. doi: 10.7498/aps.71.20220700
    [7] 王路阔, 段芳莉. 金属原子催化作用下缺陷石墨烯薄膜的自修复过程.  , 2019, 68(19): 193101. doi: 10.7498/aps.68.20190995
    [8] 王凯, 张文华, 刘凌云, 徐法强. VO2薄膜表面氧缺陷的修复:F4TCNQ分子吸附反应.  , 2016, 65(8): 088101. doi: 10.7498/aps.65.088101
    [9] 庞宗强, 张悦, 戎舟, 江兵, 刘瑞兰, 唐超. 利用扫描隧道显微镜研究水分子在Cu(110)表面的吸附与分解.  , 2016, 65(22): 226801. doi: 10.7498/aps.65.226801
    [10] 曹平, 罗成林, 陈贵虎, 韩典荣, 朱兴凤, 戴亚飞. 通量可控的双壁碳纳米管水分子泵.  , 2015, 64(11): 116101. doi: 10.7498/aps.64.116101
    [11] 韩典荣, 朱兴凤, 戴亚飞, 程承平, 罗成林. 碳纳米管阵列水渗透性质的研究.  , 2015, 64(23): 230201. doi: 10.7498/aps.64.230201
    [12] 汪胜晗, 李占龙, 孙成林, 里佐威, 门志伟. 激光诱导等离子体对水OH伸缩振动受激拉曼散射的影响.  , 2014, 63(20): 205204. doi: 10.7498/aps.63.205204
    [13] 张首誉, 包尚联, 亢孝俭, 高嵩. 描述人体内水分子扩散各向异性特征的新方法.  , 2013, 62(20): 208703. doi: 10.7498/aps.62.208703
    [14] 王志萍, 吴亚敏, 鲁超, 张秀梅, 何跃娟. 飞秒强激光场中水分子的电离激发.  , 2013, 62(7): 073301. doi: 10.7498/aps.62.073301
    [15] 宋志明, 赵东旭, 郭振, 李炳辉, 张振中, 申德振. ZnO纳米线紫外探测器的制备和快速响应性能的研究.  , 2012, 61(5): 052901. doi: 10.7498/aps.61.052901
    [16] 范冰冰, 王利娜, 温合静, 关莉, 王海龙, 张锐. 水分子链受限于单壁碳纳米管结构的密度泛函理论研究.  , 2011, 60(1): 012101. doi: 10.7498/aps.60.012101
    [17] 陈明, 闵锐, 周俊明, 胡浩, 林波, 缪灵, 江建军. 碳纳米胶囊中水分子的分子动力学研究.  , 2010, 59(7): 5148-5153. doi: 10.7498/aps.59.5148
    [18] 陈国栋, 王六定, 安博, 杨敏, 曹得财, 刘光清. 氮掺杂及水分子吸附碳纳米管电子场发射第一性原理研究.  , 2009, 58(2): 1190-1194. doi: 10.7498/aps.58.1190
    [19] 周艳红, 许 英, 郑小宏. 水分子对碳链的输运性质影响的第一性原理研究.  , 2007, 56(2): 1093-1098. doi: 10.7498/aps.56.1093
    [20] 刘 莹, 彭长德, 兰秀风, 骆晓森, 沈中华, 陆 建, 倪晓武. 乙醇和水分子形成配合物与荧光光谱特性研究.  , 2005, 54(11): 5455-5461. doi: 10.7498/aps.54.5455
计量
  • 文章访问数:  423
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-19
  • 修回日期:  2025-08-05
  • 上网日期:  2025-08-25
  • 刊出日期:  2025-10-20

/

返回文章
返回
Baidu
map