搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压下HfS2的光电性质

闫晓丽 冯振豹 于蓝 刘才龙

引用本文:
Citation:

高压下HfS2的光电性质

闫晓丽, 冯振豹, 于蓝, 刘才龙

Photoelectric properties of HfS2 under high pressure

YAN Xiaoli, FENG Zhenbao, YU Lan, LIU Cailong
cstr: 32037.14.aps.74.20250893
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • HfS2作为一种典型的IVB族过渡金属硫化物(transition metal dichalcogenides, TMDs)材料, 凭借其高载流子迁移率和层间电流密度特性, 在光传感、通信、成像等多个前沿领域展现出巨大的潜在应用价值. 近年来的研究揭示了压力对TMDs光谱响应范围和电输运性质的重要调控作用, 这激发了我们对HfS2光电性质进行压力调控的研究兴趣. 本研究采用金刚石对顶砧装置进行高压原位光电流、拉曼散射光谱、交流阻抗谱和紫外-可见吸收光谱测量, 并结合第一性原理计算, 系统探究了压力对 HfS2 电输运和光电性质的影响. 研究结果显示, HfS2 的光电流随着压力的增加持续增强. 30.1 GPa时, HfS2的光电流比初始值提高了5个数量级, 这一显著增强归因于S-S层间作用力增强导致的带隙和电阻减小. 此外, 光学测量实验及理论计算结果进一步表明, HfS2的晶体结构、禁带宽度及光学性质均可通过压力进行有效调控. 本研究为压力调控层状材料的光电性能提供了新思路.
    HfS2, as a typical IVB group transition metal dichalcogenide (TMD) material, has shown great potential applications in various fields such as photo-sensing, communication, and imaging due to its high carrier mobility and interlayer current density characteristics. Recent studies have revealed the significant role of pressure in modulating the spectral response range and electrical transport properties of TMDs, which has aroused our interest in studying the pressure regulation of the optoelectronic properties of HfS2. In this study, diamond anvil cell based high-pressure in-situ photocurrent, Raman scattering spectroscopy, alternating current impedance spectroscopy, ultraviolet-visible absorption spectroscopy measurements, and combined first-principles calculations are used to systematically investigate the effects of pressure on the electrical transport and optoelectronic properties of HfS2. The experimental results show that the photocurrent of HfS2 continuously increases with pressure rising. Within a pressure range of 0–10.2 GPa, the photocurrent and response of HfS2 show a rapid upward trend with pressure rising; at 10.2 GPa, the photocurrent and response of HfS2 (Iph = 0.32 μA, R = 8.19 μA/W) are about three orders of magnitude higher than their initial values at 0.5 GPa (Iph = 1.40 × 10–4 μA, R = 3.56 × 10–3 μA/W). At the pressure above 10.2 GPa, the growth rate of photocurrent and response slow down significantly, which are related to the structural phase transition of HfS2 near 10.0 GPa. Further compression to 30.1 GPa results in a maximum photocurrent of 3.35 μA, which is five orders of magnitude higher than its initial value at 0.5 GPa. This significant enhancement is attributed to the strengthening of S-S interlayer interaction forces under pressure, which leads band gap and resistivity to decrease. In addition, based on the modified Becke-Johnson (mBJ) exchange-correlation potential, the electronic band structure and optical properties of HfS2 in its initial phase are calculated and analyzed using WIEN2K software package. The calculation results show that with the increase of pressure, the optical absorption coefficient and the real part of the photoconductivity of HfS2 along the c-axis significantly increase, which further reveals the intrinsic physical mechanism of the enhanced photoresponse of HfS2 under pressure. This study offers a new insight into pressure regulated optoelectronic properties of layered materials.
      通信作者: 冯振豹, fengzhenbao@lcu.edu.cn ; 于蓝, lan.yu@hpstar.ac.cn ; 刘才龙, cailong_liu@jlu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2023YFA1406200)和山东省泰山学者青年专家项目资助的课题.
      Corresponding author: FENG Zhenbao, fengzhenbao@lcu.edu.cn ; YU Lan, lan.yu@hpstar.ac.cn ; LIU Cailong, cailong_liu@jlu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2023YFA1406200) and the Special Construction Project Fund for Shandong Province Taishan Scholars, China.
    [1]

    Mattinen M, Popov G, Vehkamaki M, King P J, Mizohata K, Jalkanen P, Raisanen J, Leskela M, Ritala M 2019 Chem. Mater. 31 5713Google Scholar

    [2]

    Yan C Y, Gan L, Zhou X, Guo J, Huang W J, Huang J W, Jin B, Xiong J, Zhai T Y, Li Y R 2017 Adv. Funct. Mater. 27 1702918Google Scholar

    [3]

    Zhao Q Y, Guo Y H, Si K Y, Ren Z Y, Bai J T, Xu X L 2017 Phys. Status Solidi B 254 1700033Google Scholar

    [4]

    Xuan J Z, Luan L J, He J, Chen H X, Zhang Y, Liu J, Tian Y, Liu C, Yang Y, Wang X Q, Yuan C G, Duan L 2022 Physics E 144 115456Google Scholar

    [5]

    Antoniazzi I, Woźniak T, Pawbake A, Zawadzka N, Grzeszczyk M, Muhammad Z, Zhao W S, Ibáñez J, Faugeras C, Molas M R 2024 J. Appl. Phys. 136 035901Google Scholar

    [6]

    Zhang Q H, Gu H G, Guo Z F, Liu S Y 2025 Appl. Surf. Sci. Adv. 27 100763Google Scholar

    [7]

    Zhang W X, Huang Z S, Zhang W L, Li Y 2014 Nano Res. 7 1731Google Scholar

    [8]

    Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K, Colombo L 2014 Nat. Nanotechnol. 9 768Google Scholar

    [9]

    Wang D G, Lu Y, Meng J H, Zhang X W, Yin Z G, Gao M L, Wang Y, Cheng L K, You J B, Zhang J C 2019 Nanoscale 11 9310Google Scholar

    [10]

    Muhammad Z, Islam R, Wang Y, Autieri C, Lv Z, Singh B, Vallobra P, Zhang Y, Zhu L, Zhao W S 2022 ACS Appl. Mater. Interfaces 14 35927Google Scholar

    [11]

    Ye J F, Liao K, Fu X, Zhong F, Li Q, Wang G, Miao J S 2022 Infrared Phys. Technol. 123 104139Google Scholar

    [12]

    Lin D Y, Shih Y T, Tseng W C, Lin C F, Chen H Z 2021 Materials 15 173Google Scholar

    [13]

    Sun Q G, Yang C L, Li X H, Liu Y L, Zhao W K, Gao F 2025 J. Mater. Chem. C 10 1039

    [14]

    Luo Q L, Liang Y C, Li X X, Li W Q, Chen Q 2025 Mol. Catal. 583 115227

    [15]

    Qin X X, Zhang G Z, Chen L, Wang Q L, Wang G Y, Zhang H W, Li Y, Liu C L 2024 Ultrafast Sci. 4 0044Google Scholar

    [16]

    Chen L, Chu Y, Qin X X, Gao Z J, Zhang G Z, Zhang H W, Wang Q L, Li Q, Guo H Z, Li Y W, Liu C L 2024 Adv. Sci. 11 2308016Google Scholar

    [17]

    殷雪彤, 廖敦渊, 潘东, 王鹏, 刘冰冰 2025 74 067802Google Scholar

    Yin X T, Liao D Y, Pan D, Wang P, Liu B B 2025 Acta Phys. Sin. 74 067802Google Scholar

    [18]

    Fang S X, Li Q J, Li Z L, Dong Q, Jing X L, Li C Y, Li H Y, Liu B, Liu R, Liu B B 2023 Mater. Res. Lett. 11 134Google Scholar

    [19]

    Wang N, Zhang G Z, Wang G Y, Feng Z B, Li Q, Zhang H W, Li Y W, Liu C L 2024 Small 20 2400216Google Scholar

    [20]

    Ou T J, Liu C L, Yan H C, Han Y H, Wang Q L, Liu X Z, Ma Y Z, Gao C X 2019 Appl. Phys. Lett. 114 062105Google Scholar

    [21]

    Lü X J, Wang Y G, Stoumpos C C, Hu Q Y, Guo X F, Chen H J, Yang L X, Smith J S, Yang W G, Zhao Y S, Xu H W, Kanatzidis M G, Jia Q X 2016 Adv. Mater. 28 8663Google Scholar

    [22]

    Zhang X T, Dong Q, Li Z L, Jing X L, Liu R, Liu B, Zhao T T, Lin T, Li Q J, Liu B B 2022 Mater. Res. Lett. 10 547Google Scholar

    [23]

    Yue L, Tian F Y, Liu R, Li Z L, Li R X, Li C Y, Li Y C, Yang D L, Li X D, Li Q J, Zhang L J, Liu B B 2024 Natl. Sci. Rev. 12 419Google Scholar

    [24]

    Wang P, Wang Y G, Qu J Y, Zhu Q, Yang W G, Zhu J L, Wang L P, Zhang W W, He D W, Zhao Y S 2018 Phys. Rev. B 97 235202Google Scholar

    [25]

    Arpita Aparajita A N, Shwetha G, Sanjay Kumar N R, Srihari V, Mani A 2025 Mater. Chem. Phys. 345 131258Google Scholar

    [26]

    Lu R H, Li Z L, Yue L, Song L Y, Fang S X, Liu T Y, Shen P F, Li Q J, Jin X L, Liu B B 2024 Mater. Today Phys. 42 101381Google Scholar

    [27]

    Chen S X, Li Z L, Li S C, Xu K B, Ma N, Yue L, Jin X L, Liu R, Dong Q, Li Q J, Liu B B 2025 Laser Photonics Rev. 19 2500250Google Scholar

    [28]

    Zhang S H, Wang H L, Liu H, Zhen J P, Wan S, Deng W, Han Y H, Chen B, Gao C X 2023 Phys. Rev. Mater. 7 104802Google Scholar

    [29]

    Zhong W, Deng W, Hong F, Yue B B 2023 Phys. Rev. B 107 134118Google Scholar

    [30]

    Wang N, Moutaabbid H, Feng Z B, Wang G Y, Zhang H W, Zhang G Z, Cao Z Y, Li Y W, Liu C L 2024 Appl. Phys. Lett. 125 093904Google Scholar

    [31]

    Feng J M, Qi M Y, Song H, Ye M Y, Runowski M, Hu Z Y, Huang L K, Lian M, Zhao X B, Dan Y Q, Ma S L, Cui T 2025 Chem. Eng. J. 515 163611Google Scholar

    [32]

    Shi H, Chen L, Moutaabbid H, Feng Z B, Zhang G Z, Wang L R, Li Y W, Guo H Z, Liu C L 2024 Small 20 2405692Google Scholar

    [33]

    Zhang Y Z, Zhang G Z, Zhang H W, Ou T J, Wang Q L, Wang L R, Li Y W, Liu C L 2023 Appl. Phys. Lett. 122 132101Google Scholar

    [34]

    Tran F, Blaha P 2009 Phys. Rev. Lett. 102 226401Google Scholar

    [35]

    Terashima K, Imai I 1987 Solid State Commun. 63 315Google Scholar

    [36]

    Greenaway D L, Nitsche R 1965 J. Phys. Chem. Solids 26 1445Google Scholar

    [37]

    Jiang H 2011 J. Chem. Phys. 134 204705Google Scholar

    [38]

    Zhang G H, Zhang Q, Hu Q Y, Wang B H, Yang W G 2019 J. Mater. Chem. A 7 4019Google Scholar

    [39]

    Li Z L, Li H Y, Liu N N, Du M Y, Jin X L, Li Q J, Du Y, Guo L, Liu B B 2021 Adv. Opt. Mater. 9 2101163Google Scholar

    [40]

    Li Z L, Li Q J, Li H Y, Yue L, Zhao D L, Tian F Y, Dong Q, Zhang X T, Jin X L, Zhang L J, Liu R, Liu B B 2022 Adv. Funct. Mater. 32 2108636Google Scholar

    [41]

    Lucovsky G, White R M, Benda J A, Revelli J F 1973 Phys. Rev. B 7 3859Google Scholar

    [42]

    Cingolani A, Lugara M, Scamarcio G, Lévy F 1987 Solid State Commun. 62 121Google Scholar

    [43]

    Roubi L, Carlone C 1988 Phys. Rev. B 37 6808Google Scholar

    [44]

    Neal S N, Li S, Birol T, Musfeldt J L 2021 npj 2D Mater. Appl. 5 45

    [45]

    Ibáñez J, Woźniak T, Dybala F, Oliva R, Hernández S, Kudrawiec R 2018 Sci. Rep. 8 12757Google Scholar

    [46]

    Hong M L, Dai L D, Hu H Y, Zhang X Y, Li C, He Y 2022 J. Mater. Chem. C 10 10541Google Scholar

    [47]

    Liu B, Yang J, Han Y H, Hu T J, Ren W B, Liu C L, Ma Y Z, Gao C X 2011 J. Appl. Phys. 109 053717Google Scholar

    [48]

    王月, 邵渤淮, 陈双龙, 王春杰, 高春晓 2022 71 096101Google Scholar

    Wang Y, Shao B H, Chen S L, Wang C J, Gao C X 2022 Acta Phys. Sin. 71 096101Google Scholar

    [49]

    Li Z L, Li Q J, Li H Y, Tian F Y, Du M Y, Fang S X, Liu R, Zhang L J, Liu B B 2022 Small Methods 6 2201044Google Scholar

  • 图 1  常温常压下HfS2的XRD和紫外-可见吸收光谱 (a) XRD图谱, 其中黑线代表测量数据, 红线代表标准化衍射峰位置, 插图为HfS2样品光学显微镜照片及对应的晶格参数; (b) 紫外-可见吸收光谱, 插图展示了如何通过Tauc plot法拟合获得光学带隙

    Fig. 1.  The XRD pattern and ultraviolet-visible absorption spectrum of HfS2 at ambient pressure: (a) The XRD pattern (the black line represents the measured data, and the red line represents the normalized diffraction peak positions), inset shows optical microscopy image and corresponding lattice parameters of powder sample HfS2; (b) ultraviolet-visible absorption spectrum, the inset shows the band gap determined by the Tauc plot method.

    图 2  外加偏压为0.1 V, 光功率密度为500 mW/cm2模拟太阳光照射下HfS2样品不同压力下光电流测量结果 (a) 选定压力下 HfS2的光电流(横轴上方的“on”和“off”分别代表打开光源和关闭光源); (b) 加压和卸压过程中HfS2的光电流和响应度随压力的变化关系(红色实心球和红色空心三角形分别代表加压和卸压过程的光电流, 蓝色实心球和蓝色空心三角形分别代表加压和卸压过程的响应度)

    Fig. 2.  Photocurrent measurement results of HfS2 sample under 500 mW/cm2 simulated sunlight irradiation with an applied bias voltage of 0.1 V: (a) The photocurrent of HfS2 at different pressures (the “on” and “off” above the horizontal axis represent the light source on and off, respectively); (b) pressure dependent photocurrents and responsivity(R) of HfS2 during compression and decompression processes (red solid ball and red open triangles represent the photocurrent during compression and decompression, respectively; blue solid ball and blue open triangles represent the responsivity (R) during compression and decompression, respectively).

    图 3  HfS2高压原位拉曼散射光谱 (a)—(c) 不同压力下HfS2的拉曼散射光谱; (d) 压力依赖的拉曼频移

    Fig. 3.  High-pressure in situ Raman scattering spectra of HfS2: (a)–(c) Raman scattering spectra of HfS2 at different pressures; (d) pressure dependence of the Raman shifts.

    图 4  拟合得到 HfS2 的总电阻(Rt)

    Fig. 4.  Fitting results for the total resistance(Rt).

    图 5  (a) 不同压力下HfS2的紫外-可见吸收光谱; (b) 实验及理论计算的HfS2压力依赖的带隙(其中红色实心球代表实验带隙值, 绿色五角星代表理论计算带隙值)

    Fig. 5.  (a) The ultraviolet-visible absorption spectra of HfS2 under different pressures; (b) experimental and theoretical calculations of HfS2’s pressure-dependent bandgap (red solid ball represent experimental bandgap values, and green pentagrams represent calculated bandgap values, respectively).

    图 6  基于mBJ交换关联势计算的HfS2在0 GPa时的能带结构及相应的部分态密度

    Fig. 6.  Energy band structure and corresponding density of states of HfS2 at 0 GPa based on mBJ.

    图 7  不同压力下 HfS2 的光学性质 (1 atm = 1.013 × 105 Pa) (a) 选定压力下垂直于c轴方向的吸收系数; (b) 选定压力下沿c轴方向的吸收系数; (c) 选定压力下垂直于c轴方向的光电导系数实部; (d) 选定压力下沿c轴方向的光电导系数实部

    Fig. 7.  Optical properties of HfS2 at different pressures (1 atm = 1.013 × 105 Pa): (a) The absorption coefficient perpendicular to the c-axis at selected pressures; (b) the absorption coefficient parallel to the c-axis at selected pressures; (c) the real part of the photoconductivity coefficient perpendicular to the c-axis at the selected pressures; (d) the real part of the photoconductivity parallel to the c-axis at selected pressures.

    Baidu
  • [1]

    Mattinen M, Popov G, Vehkamaki M, King P J, Mizohata K, Jalkanen P, Raisanen J, Leskela M, Ritala M 2019 Chem. Mater. 31 5713Google Scholar

    [2]

    Yan C Y, Gan L, Zhou X, Guo J, Huang W J, Huang J W, Jin B, Xiong J, Zhai T Y, Li Y R 2017 Adv. Funct. Mater. 27 1702918Google Scholar

    [3]

    Zhao Q Y, Guo Y H, Si K Y, Ren Z Y, Bai J T, Xu X L 2017 Phys. Status Solidi B 254 1700033Google Scholar

    [4]

    Xuan J Z, Luan L J, He J, Chen H X, Zhang Y, Liu J, Tian Y, Liu C, Yang Y, Wang X Q, Yuan C G, Duan L 2022 Physics E 144 115456Google Scholar

    [5]

    Antoniazzi I, Woźniak T, Pawbake A, Zawadzka N, Grzeszczyk M, Muhammad Z, Zhao W S, Ibáñez J, Faugeras C, Molas M R 2024 J. Appl. Phys. 136 035901Google Scholar

    [6]

    Zhang Q H, Gu H G, Guo Z F, Liu S Y 2025 Appl. Surf. Sci. Adv. 27 100763Google Scholar

    [7]

    Zhang W X, Huang Z S, Zhang W L, Li Y 2014 Nano Res. 7 1731Google Scholar

    [8]

    Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K, Colombo L 2014 Nat. Nanotechnol. 9 768Google Scholar

    [9]

    Wang D G, Lu Y, Meng J H, Zhang X W, Yin Z G, Gao M L, Wang Y, Cheng L K, You J B, Zhang J C 2019 Nanoscale 11 9310Google Scholar

    [10]

    Muhammad Z, Islam R, Wang Y, Autieri C, Lv Z, Singh B, Vallobra P, Zhang Y, Zhu L, Zhao W S 2022 ACS Appl. Mater. Interfaces 14 35927Google Scholar

    [11]

    Ye J F, Liao K, Fu X, Zhong F, Li Q, Wang G, Miao J S 2022 Infrared Phys. Technol. 123 104139Google Scholar

    [12]

    Lin D Y, Shih Y T, Tseng W C, Lin C F, Chen H Z 2021 Materials 15 173Google Scholar

    [13]

    Sun Q G, Yang C L, Li X H, Liu Y L, Zhao W K, Gao F 2025 J. Mater. Chem. C 10 1039

    [14]

    Luo Q L, Liang Y C, Li X X, Li W Q, Chen Q 2025 Mol. Catal. 583 115227

    [15]

    Qin X X, Zhang G Z, Chen L, Wang Q L, Wang G Y, Zhang H W, Li Y, Liu C L 2024 Ultrafast Sci. 4 0044Google Scholar

    [16]

    Chen L, Chu Y, Qin X X, Gao Z J, Zhang G Z, Zhang H W, Wang Q L, Li Q, Guo H Z, Li Y W, Liu C L 2024 Adv. Sci. 11 2308016Google Scholar

    [17]

    殷雪彤, 廖敦渊, 潘东, 王鹏, 刘冰冰 2025 74 067802Google Scholar

    Yin X T, Liao D Y, Pan D, Wang P, Liu B B 2025 Acta Phys. Sin. 74 067802Google Scholar

    [18]

    Fang S X, Li Q J, Li Z L, Dong Q, Jing X L, Li C Y, Li H Y, Liu B, Liu R, Liu B B 2023 Mater. Res. Lett. 11 134Google Scholar

    [19]

    Wang N, Zhang G Z, Wang G Y, Feng Z B, Li Q, Zhang H W, Li Y W, Liu C L 2024 Small 20 2400216Google Scholar

    [20]

    Ou T J, Liu C L, Yan H C, Han Y H, Wang Q L, Liu X Z, Ma Y Z, Gao C X 2019 Appl. Phys. Lett. 114 062105Google Scholar

    [21]

    Lü X J, Wang Y G, Stoumpos C C, Hu Q Y, Guo X F, Chen H J, Yang L X, Smith J S, Yang W G, Zhao Y S, Xu H W, Kanatzidis M G, Jia Q X 2016 Adv. Mater. 28 8663Google Scholar

    [22]

    Zhang X T, Dong Q, Li Z L, Jing X L, Liu R, Liu B, Zhao T T, Lin T, Li Q J, Liu B B 2022 Mater. Res. Lett. 10 547Google Scholar

    [23]

    Yue L, Tian F Y, Liu R, Li Z L, Li R X, Li C Y, Li Y C, Yang D L, Li X D, Li Q J, Zhang L J, Liu B B 2024 Natl. Sci. Rev. 12 419Google Scholar

    [24]

    Wang P, Wang Y G, Qu J Y, Zhu Q, Yang W G, Zhu J L, Wang L P, Zhang W W, He D W, Zhao Y S 2018 Phys. Rev. B 97 235202Google Scholar

    [25]

    Arpita Aparajita A N, Shwetha G, Sanjay Kumar N R, Srihari V, Mani A 2025 Mater. Chem. Phys. 345 131258Google Scholar

    [26]

    Lu R H, Li Z L, Yue L, Song L Y, Fang S X, Liu T Y, Shen P F, Li Q J, Jin X L, Liu B B 2024 Mater. Today Phys. 42 101381Google Scholar

    [27]

    Chen S X, Li Z L, Li S C, Xu K B, Ma N, Yue L, Jin X L, Liu R, Dong Q, Li Q J, Liu B B 2025 Laser Photonics Rev. 19 2500250Google Scholar

    [28]

    Zhang S H, Wang H L, Liu H, Zhen J P, Wan S, Deng W, Han Y H, Chen B, Gao C X 2023 Phys. Rev. Mater. 7 104802Google Scholar

    [29]

    Zhong W, Deng W, Hong F, Yue B B 2023 Phys. Rev. B 107 134118Google Scholar

    [30]

    Wang N, Moutaabbid H, Feng Z B, Wang G Y, Zhang H W, Zhang G Z, Cao Z Y, Li Y W, Liu C L 2024 Appl. Phys. Lett. 125 093904Google Scholar

    [31]

    Feng J M, Qi M Y, Song H, Ye M Y, Runowski M, Hu Z Y, Huang L K, Lian M, Zhao X B, Dan Y Q, Ma S L, Cui T 2025 Chem. Eng. J. 515 163611Google Scholar

    [32]

    Shi H, Chen L, Moutaabbid H, Feng Z B, Zhang G Z, Wang L R, Li Y W, Guo H Z, Liu C L 2024 Small 20 2405692Google Scholar

    [33]

    Zhang Y Z, Zhang G Z, Zhang H W, Ou T J, Wang Q L, Wang L R, Li Y W, Liu C L 2023 Appl. Phys. Lett. 122 132101Google Scholar

    [34]

    Tran F, Blaha P 2009 Phys. Rev. Lett. 102 226401Google Scholar

    [35]

    Terashima K, Imai I 1987 Solid State Commun. 63 315Google Scholar

    [36]

    Greenaway D L, Nitsche R 1965 J. Phys. Chem. Solids 26 1445Google Scholar

    [37]

    Jiang H 2011 J. Chem. Phys. 134 204705Google Scholar

    [38]

    Zhang G H, Zhang Q, Hu Q Y, Wang B H, Yang W G 2019 J. Mater. Chem. A 7 4019Google Scholar

    [39]

    Li Z L, Li H Y, Liu N N, Du M Y, Jin X L, Li Q J, Du Y, Guo L, Liu B B 2021 Adv. Opt. Mater. 9 2101163Google Scholar

    [40]

    Li Z L, Li Q J, Li H Y, Yue L, Zhao D L, Tian F Y, Dong Q, Zhang X T, Jin X L, Zhang L J, Liu R, Liu B B 2022 Adv. Funct. Mater. 32 2108636Google Scholar

    [41]

    Lucovsky G, White R M, Benda J A, Revelli J F 1973 Phys. Rev. B 7 3859Google Scholar

    [42]

    Cingolani A, Lugara M, Scamarcio G, Lévy F 1987 Solid State Commun. 62 121Google Scholar

    [43]

    Roubi L, Carlone C 1988 Phys. Rev. B 37 6808Google Scholar

    [44]

    Neal S N, Li S, Birol T, Musfeldt J L 2021 npj 2D Mater. Appl. 5 45

    [45]

    Ibáñez J, Woźniak T, Dybala F, Oliva R, Hernández S, Kudrawiec R 2018 Sci. Rep. 8 12757Google Scholar

    [46]

    Hong M L, Dai L D, Hu H Y, Zhang X Y, Li C, He Y 2022 J. Mater. Chem. C 10 10541Google Scholar

    [47]

    Liu B, Yang J, Han Y H, Hu T J, Ren W B, Liu C L, Ma Y Z, Gao C X 2011 J. Appl. Phys. 109 053717Google Scholar

    [48]

    王月, 邵渤淮, 陈双龙, 王春杰, 高春晓 2022 71 096101Google Scholar

    Wang Y, Shao B H, Chen S L, Wang C J, Gao C X 2022 Acta Phys. Sin. 71 096101Google Scholar

    [49]

    Li Z L, Li Q J, Li H Y, Tian F Y, Du M Y, Fang S X, Liu R, Zhang L J, Liu B B 2022 Small Methods 6 2201044Google Scholar

  • [1] 李辰恺, 朱金龙. 高压调控过渡金属硫族化合物及异质结构的光电性质.  , 2025, 74(17): 176802. doi: 10.7498/aps.74.20250498
    [2] 陈美娟, 郭佳芯, 吴浩, 郑潇然, 闵楠, 田辉, 李全军, 都时禹, 沈龙海. 高压下三元半导体Al4In2N6结构、弹性及电子性质的第一性原理研究.  , 2025, 74(17): 177102. doi: 10.7498/aps.74.20250287
    [3] 吴姝颖, 马帅领, 赵春燕, 李世新, 叶梅艳, 戚梦瑶, 赵行斌, 王玲瑞, 崔田. 高压下非铅双钙钛矿Cs2TeCl6的光电性质调控.  , 2025, 74(17): 178503. doi: 10.7498/aps.74.20250693
    [4] 郭宏伟, 贺苗苗, 姜云, 李会, 张金彦, 连敏, 崔田. 高压下无铅双钙钛矿Cs2AgInCl6的结构和光电性能.  , 2025, 74(17): 178401. doi: 10.7498/aps.74.20250613
    [5] 张英楠, 张敏, 张派, 胡文博. 基于第一性原理GGA+U方法研究Si掺杂β-Ga2O3电子结构和光电性质.  , 2024, 73(1): 017102. doi: 10.7498/aps.73.20231147
    [6] 王飞, 李全军, 胡阔, 刘冰冰. 高压导致纳米TiO2形变的电子显微研究.  , 2023, 72(3): 036201. doi: 10.7498/aps.72.20221656
    [7] 王月, 邵渤淮, 陈双龙, 王春杰, 高春晓. 高压下TiO2纳米线晶粒和晶界性质及电输运行为.  , 2022, 71(9): 096101. doi: 10.7498/aps.71.20212276
    [8] 王春杰, 王月, 高春晓. 高压下纳米晶ZnS晶粒和晶界性质及相变机理.  , 2020, 69(14): 147202. doi: 10.7498/aps.69.20200240
    [9] 姚盼盼, 王玲瑞, 王家祥, 郭海中. 高压下非铅双钙钛矿Cs2TeCl6的结构和光学性质.  , 2020, 69(21): 218801. doi: 10.7498/aps.69.20200988
    [10] 王春杰, 王月, 高春晓. 高压下金红石相TiO2的晶界电学性质.  , 2019, 68(20): 206401. doi: 10.7498/aps.68.20190630
    [11] 王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春. 高压下RhB的相变、弹性性质、电子结构及硬度的第一性原理计算.  , 2014, 63(18): 186401. doi: 10.7498/aps.63.186401
    [12] 张品亮, 龚自正, 姬广富, 刘崧. α-Ti2Zr高压物性的第一性原理计算研究.  , 2013, 62(4): 046202. doi: 10.7498/aps.62.046202
    [13] 吴迪, 赵纪军, 田华. Fe2+取代对MgSiO3钙钛矿高温高压物性的影响.  , 2013, 62(4): 049101. doi: 10.7498/aps.62.049101
    [14] 吴宝嘉, 李燕, 彭刚, 高春晓. InSe的高压电输运性质研究.  , 2013, 62(14): 140702. doi: 10.7498/aps.62.140702
    [15] 颜小珍, 邝小渝, 毛爱杰, 匡芳光, 王振华, 盛晓伟. 高压下ErNi2B2C弹性性质、电子结构和热力学性质的第一性原理研究.  , 2013, 62(10): 107402. doi: 10.7498/aps.62.107402
    [16] 明星, 王小兰, 杜菲, 陈岗, 王春忠, 尹建武. 菱铁矿FeCO3高压相变与性质的第一性原理研究.  , 2012, 61(9): 097102. doi: 10.7498/aps.61.097102
    [17] 陈中钧. 高压下MgS的弹性性质、电子结构和光学性质的第一性原理研究.  , 2012, 61(17): 177104. doi: 10.7498/aps.61.177104
    [18] 苏锐, 何捷, 陈家胜, 郭英杰. 金红石相VO2电子结构与光电性质的第一性原理研究.  , 2011, 60(10): 107101. doi: 10.7498/aps.60.107101
    [19] 吴宝嘉, 韩永昊, 彭刚, 刘才龙, 王月, 高春晓. 原位高压微米氧化锌电学性质的研究.  , 2010, 59(6): 4235-4239. doi: 10.7498/aps.59.4235
    [20] 丁迎春, 徐 明, 潘洪哲, 沈益斌, 祝文军, 贺红亮. γ-Si3N4在高压下的电子结构和物理性质研究.  , 2007, 56(1): 117-122. doi: 10.7498/aps.56.117
计量
  • 文章访问数:  423
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-08
  • 修回日期:  2025-08-18
  • 上网日期:  2025-08-30
  • 刊出日期:  2025-09-05

/

返回文章
返回
Baidu
map