搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于全口径面形特征与局部测量误差全局优化拟合的非球面测量误差解耦合技术

王炜豪 王永杰 王亚慧 伍洲 张文喜

引用本文:
Citation:

基于全口径面形特征与局部测量误差全局优化拟合的非球面测量误差解耦合技术

王炜豪, 王永杰, 王亚慧, 伍洲, 张文喜

Aspherical Measurement Error Decoupling Technology Based on Global Optimal Fitting of Full-Aperture Surface Shape Features and Local Measurement Errors

WANG Weihao, WANG Yongjie, WANG Yahui, WU Zhou, ZHANG Wenxi
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 非球面光学元件在芯片制造、遥感探测及航空航天等前沿领域具有重要应用价值,因而对其加工和检测精度的要求不断提高。非球面环形子孔径拼接测量技术是一种高精度、通用性强的有效检测技术,但在大非球面度、大陡度元件检测中显著的面形特征与测量误差的耦合问题制约了其测量精度的提升。本文提出一种基于全口径面形特征与局部测量误差全局优化拟合的非球面测量误差解耦合技术,通过构建包含全口径圆形泽尼克多项式与子孔径环形泽尼克多项式的全局优化模型,实现全口径面形特征与子孔径局部测量误差的同步拟合解算与解耦合并提升测量精度。仿真与实验结果表明,该技术可有效分离面形特征与测量误差,同时可避免传统拼接测量方法中面形参考基准存在误差和子孔径误差累积的问题,在本文的实验中其PVr精度较传统方法可提升近30%。此外,该技术无需依赖子孔径重叠区域,能够减少子孔径数量、提升测量效率。此方法为大非球面度、大陡度光学元件的高精度测量提供了技术解决方案。
    Aspheric optical elements are essential in high-end manufacturing and scientific research. As precision demands increase, the coupling of surface features and measurement errors during high-asphericity and high steepness element measurement based on annular subaperture stitching limits high-precision measurement development. The traditional overlapping-region based subaperture stitching method suffers from two major issues: the error of the first subaperture, which serves as the reference, cannot be decoupled, and the error accumulation. To solve the error coupling problem, this paper proposes an aspherical measurement error decoupling technology based on global optimal fitting of full-aperture surface shape features and local measurement errors. The method uses fullaperture circular and subaperture annular Zernike polynomials to build a global optimization model, where the former represents surface features and the latter describes subaperture errors. By integrating these polynomials to create a global optimization function and solving for Zernike coefficients, error decoupling and enhanced accuracy can be achieved. Furthermore, processing errors globally can avoid error accumulation in the traditional method and reduce the number of subapertures for higher measurement efficiency. Simulation and experimental validations are demonstrated in this paper. The simulation shows effective fitting of Zernike polynomial coefficients and error decoupling. Experiments shows that the achievement of error decoupling in measurement of high-asphericity and high steepness elements with the proposed method, and the PVr accuracy of measurement is improved by nearly 30% compared to traditional methods. The proposed method offers a practical solution for high-precision measurement of high-asphericity and high steepness element measurement.
  • [1]

    Zhang L 2016 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese) [张磊 2016 博士学位论文(杭州:浙江大学)]

    [2]

    Küchel M F 2009 Proc. SPIE 7389, Optical Measurement Systems for Industrial Inspection Munich, Germany, June 14-18, 2009 p738916

    [3]

    Yan L S 2015 Ph. D. Dissertation (Changchun: China University of Chinese Academy of Sciences (Changchun Institute of Optics and Fine Mechanics and Physics, Chinese Academy of Science)) (in Chinese) [闫力松 2015 博士学位论文(长春:中国科学院大学(中国科学院长春光学精密机械与物理研究所))]

    [4]

    KIM C J 1982 Appl. Opt. 21 4521

    [5]

    Yan L S, Wang X K, Luo X, Zheng L G, Zhang X J 2013 Infrared and Laser Engineering 42 150 (in Chinese) [闫力松,王孝坤,罗霄,郑立功,张学军 2013 红外与激光工程 42 150]

    [6]

    Wang N 2013 M. S. Thesis (Chengdu: China University of Chinese Academy of Sciences (Institute of Optics and Electronics, Chinese Academy of Sciences)) (in Chinese) [王宁 2013 硕士学位论文(成都:中国科学院大学(中国科学院光电技术研究所))]

    [7]

    Liu Y M, Lawrence G N, Koliopoulos C L 1988 Appl. Opt. 27 4504

    [8]

    Melozzi M, Pezzati L, Mazzoni A 1993 Opt. Eng. 32 5

    [9]

    Fleig J, Dumas P, Murphy P E, Forbes G W 2003 Proc. SPIE 5188, Advanced Characterization Techniques for Optics, Semiconductors, and Nanotechnologies San Diego, California, United States, August 3-8, 2003 p296

    [10]

    Wang X K, Zhang X J, Wang L H, Zheng L G 2006 Optics and Precision Engineering 14 7 (in Chinese) [王孝坤, 张学军, 王丽辉, 郑立功 2006 光学精密工程 14 7]

    [11]

    Wang X K, Zheng L G, Zhang X J 2010 Acta Optica Sinica 30 2022 (in Chinese) [王孝坤, 郑立功 张学军 2010 光学学报 30 2022]

    [12]

    Chen S Y, Xue S, Wang G L, Tian Y 2017 Optics Communications 390 61

    [13]

    Hou X, Wu F, Yang L, Wu S B, Chen Q 2006 Appl. Opt. 45 3442

    [14]

    Wen Y, Cheng H 2015 Optik 126 2236

    [15]

    Hao Q, Ning Y, Hu Y 2018 Metrology & Measurement Technology 38 1 (in Chinese) [郝群,宁妍,胡摇 2018 计测技术 38 1]

    [16]

    Hou X, Wu F, Yang L, Chen Q 2007 Opt. Express 15 12890

    [17]

    Henselmans R 2009 Ph. D. Dissertation (Eindhoven: Technische Universiteit Eindhoven)

    [18]

    https://metrology.mahr.com/en-us/news-events/newsroom/item/testing-double-sided-optical-elements-with-the-marsurf-ld-260-aspheric-3d/

    [19]

    https://www.taylor-hobson.com.cn/products/non-contact-3d-optical-profilers/luphos/

    [20]

    https://www.optipro.com/optical-measuring/ultrasurf-5x/

    [21]

    Lu Y J, Tang F, Wang X Z, Guo F D 2018 Chinese Journal of Lasers 45 206 (in Chinese) [卢云君,唐锋,王向朝,郭福东 2018 中国激光 45 206]

    [22]

    Hou X, Wu F, Yang L, Wu S B, Chen Q 2005 Opto-Electronic Engineering 32 20 (in Chinese) [侯溪,伍凡,杨力,吴时彬,陈强 2005 光电工程 32 20]

    [23]

    Beisswanger R, Weckerle M, Pruss C, Reichelt S 2022 Opt. Express 30 25803

    [24]

    Gronle A, Pruss C, Herkommer A 2022 Opt. Express 30 797

    [25]

    Niu K, Tian C 2022 J. Opt. 24 123001

    [26]

    Zhai T B 2020 M. S. Thesis (Shanghai: Donghua University) (in Chinese) [翟天保 2020 硕士学位论文(上海: 东华大学)]

    [27]

    Mahanjan V N 1981 J. Opt. Soc. Am. A 71 75

    [28]

    Hou X, Wu F, Yang L, Chen Q 2006 Appl. Opt. 45 8893

    [29]

    Fan X H 2019 Ph. D. Dissertation (Changchun: China University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences)) (in Chinese) [樊孝贺 2019 博士学位论文(中国科学院大学(中国科学院长春光学精密机械与物理研究所))]

    [30]

    Zhu L M 2009 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese) [朱黎明 2009 硕士学位论文(哈尔滨:哈尔滨工业大学)]

    [31]

    Qiao Y J, Tan J B, Wang W B 2008 Journal of Optoelectronics·Laser 19 1497 (in Chinese) [乔玉晶,谭久彬,王伟波 2008 光电子.激光 19 1497]

    [32]

    Xue D, Zheng L, Zhang X 2005 Proc. SPIE 5638, Optical Design and Testing II Beijing, China, November 8-11, 2004 p752

    [33]

    Robbins H, Monro S 1951 Annals of Mathematical Statistics 22 400

    [34]

    Bertsekas D P, Tsitsiklis J N 2000 SIAM Journal on Optimization 10 627

    [35]

    Forbes G W 2007 Optics Express 15 5218

    [36]

    Wang X J 2023 M. S. Thesis (Hefei: Hefei University of Technology) (in Chinese) [王秀娟 2023 硕士学位论文(合肥:合肥工业大学)]

    [37]

    He L, Wu Z H, Kang Y, Su Z D 2016 Laser & Optoelectronics Progress 53 220 (in Chinese) [何丽,武中华,康燕,苏志德 2016 激光与光电子学进展 53 220]

    [38]

    Evans C J 2009 Opt. Eng. 48 043605

  • [1] 文镇清, 李娟, 郝雄波, 畅晨光, 李洪波, 左浩璞, 傅頔, 冯玉涛. 基于全局拟合的多普勒差分干涉仪成像漂移检测方法.  , doi: 10.7498/aps.74.20250027
    [2] 孔梅梅, 刘悦, 董媛, 薛银燕, 潘世成, 赵瑞. 基于平面电极的非球面双液体透镜的设计与分析.  , doi: 10.7498/aps.72.20230758
    [3] 孔梅梅, 董媛, 徐春生, 刘悦, 薛银燕, 潘世成, 赵瑞. 基于平行平板电极的非球面双液体透镜的仿真与实验分析.  , doi: 10.7498/aps.72.20230994
    [4] 姜磊, 赖莉, 蔚涛, 罗懋康. 不同频率涨落驱动下全局耦合谐振子的集体动力学行为.  , doi: 10.7498/aps.70.20210157
    [5] 郝未倩, 梁忠诚, 刘肖尧, 赵瑞, 孔梅梅, 关建飞, 张月. 分形结构稀疏孔径阵列的成像性能.  , doi: 10.7498/aps.68.20190818
    [6] 冯帅, 常军, 牛亚军, 穆郁, 刘鑫. 一种非对称双面离轴非球面反射镜检测补偿变焦光路设计方法.  , doi: 10.7498/aps.68.20182253
    [7] 赵丹, 王逍, 母杰, 左言磊, 周松, 周凯南, 曾小明, 李志林, 粟敬钦, 朱启华. 拼接型光栅对压缩器中刻线密度差对输出脉冲的影响及补偿方案.  , doi: 10.7498/aps.66.024201
    [8] 王童, 童创明, 李西敏, 李昌泽. 分形粗糙面合成孔径雷达成像研究.  , doi: 10.7498/aps.65.070301
    [9] 颜召军, 陈欣扬, 郑立新, 丁媛媛, 朱能鸿. 基于色散干涉图像的拼接望远镜共相零位标定方法研究.  , doi: 10.7498/aps.65.199501
    [10] 周龙峰, 张昂, 张俊波, 樊新龙, 魏凌, 陈善球, 鲜浩. 基于成像清晰度函数的非球面反射镜位置校正实验研究.  , doi: 10.7498/aps.65.139501
    [11] 于涛, 尹成友, 刘汉. 基于特征基函数的球面共形微带天线阵列分析.  , doi: 10.7498/aps.63.230701
    [12] 刘政, 王胜千, 黄林海, 饶长辉. 相位平移误差与子孔径自身像差对稀疏光学合成孔径系统成像质量的综合影响分析.  , doi: 10.7498/aps.60.100702
    [13] 胡摇, 王逍, 朱启华. 三类构型激光脉冲压缩器光栅拼接误差容限比较.  , doi: 10.7498/aps.60.124205
    [14] 常军, 张正慧, 王蕊瑞. 特殊光学元件的新型子孔径拼接检测方法研究.  , doi: 10.7498/aps.60.034218
    [15] 左言磊, 魏晓峰, 朱启华, 刘红婕, 王 逍, 黄 征, 郭 仪, 应纯同. 1700 线/mm镀金光栅的拼接理论和实验研究.  , doi: 10.7498/aps.56.5233
    [16] 左言磊, 魏晓峰, 朱启华, 刘红婕, 王 逍, 黄 征, 郭 仪, 应纯同. 基于配对误差补偿方法的拼接光栅压缩池理论研究.  , doi: 10.7498/aps.56.5227
    [17] 左言磊, 魏晓峰, 朱启华, 王 逍, 刘红婕, 黄 征, 郭 仪, 应纯同. 单程拼接光栅压缩池系统中光栅缝隙的衍射效应.  , doi: 10.7498/aps.56.5784
    [18] 谢本超, 卢振武, 李凤有. 近柱面中频面形检测中曲面拟合法精度问题研究.  , doi: 10.7498/aps.54.3144
    [19] 徐 伟, 贺 群, 戎海武, 方 同. Duffing-van der Pol振子随机分岔的全局分析.  , doi: 10.7498/aps.52.1365
    [20] 张幼文;杨存武;仰晓东. 偏轴非球面红外光学系统的自动设计.  , doi: 10.7498/aps.28.492
计量
  • 文章访问数:  37
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-09

/

返回文章
返回
Baidu
map