-
非球面光学元件在芯片制造、遥感探测及航空航天等前沿领域具有重要应用价值,因而对其加工和检测精度的要求不断提高。非球面环形子孔径拼接测量技术是一种高精度、通用性强的有效检测技术,但在大非球面度、大陡度元件检测中显著的面形特征与测量误差的耦合问题制约了其测量精度的提升。本文提出一种基于全口径面形特征与局部测量误差全局优化拟合的非球面测量误差解耦合技术,通过构建包含全口径圆形泽尼克多项式与子孔径环形泽尼克多项式的全局优化模型,实现全口径面形特征与子孔径局部测量误差的同步拟合解算与解耦合并提升测量精度。仿真与实验结果表明,该技术可有效分离面形特征与测量误差,同时可避免传统拼接测量方法中面形参考基准存在误差和子孔径误差累积的问题,在本文的实验中其PVr精度较传统方法可提升近30%。此外,该技术无需依赖子孔径重叠区域,能够减少子孔径数量、提升测量效率。此方法为大非球面度、大陡度光学元件的高精度测量提供了技术解决方案。Aspheric optical elements are essential in high-end manufacturing and scientific research. As precision demands increase, the coupling of surface features and measurement errors during high-asphericity and high steepness element measurement based on annular subaperture stitching limits high-precision measurement development. The traditional overlapping-region based subaperture stitching method suffers from two major issues: the error of the first subaperture, which serves as the reference, cannot be decoupled, and the error accumulation. To solve the error coupling problem, this paper proposes an aspherical measurement error decoupling technology based on global optimal fitting of full-aperture surface shape features and local measurement errors. The method uses fullaperture circular and subaperture annular Zernike polynomials to build a global optimization model, where the former represents surface features and the latter describes subaperture errors. By integrating these polynomials to create a global optimization function and solving for Zernike coefficients, error decoupling and enhanced accuracy can be achieved. Furthermore, processing errors globally can avoid error accumulation in the traditional method and reduce the number of subapertures for higher measurement efficiency. Simulation and experimental validations are demonstrated in this paper. The simulation shows effective fitting of Zernike polynomial coefficients and error decoupling. Experiments shows that the achievement of error decoupling in measurement of high-asphericity and high steepness elements with the proposed method, and the PVr accuracy of measurement is improved by nearly 30% compared to traditional methods. The proposed method offers a practical solution for high-precision measurement of high-asphericity and high steepness element measurement.
-
Keywords:
- optical surface measurement /
- asphere /
- subaperture stitching /
- global stitching
-
[1] Zhang L 2016 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese) [张磊 2016 博士学位论文(杭州:浙江大学)]
[2] Küchel M F 2009 Proc. SPIE 7389, Optical Measurement Systems for Industrial Inspection Munich, Germany, June 14-18, 2009 p738916
[3] Yan L S 2015 Ph. D. Dissertation (Changchun: China University of Chinese Academy of Sciences (Changchun Institute of Optics and Fine Mechanics and Physics, Chinese Academy of Science)) (in Chinese) [闫力松 2015 博士学位论文(长春:中国科学院大学(中国科学院长春光学精密机械与物理研究所))]
[4] KIM C J 1982 Appl. Opt. 21 4521
[5] Yan L S, Wang X K, Luo X, Zheng L G, Zhang X J 2013 Infrared and Laser Engineering 42 150 (in Chinese) [闫力松,王孝坤,罗霄,郑立功,张学军 2013 红外与激光工程 42 150]
[6] Wang N 2013 M. S. Thesis (Chengdu: China University of Chinese Academy of Sciences (Institute of Optics and Electronics, Chinese Academy of Sciences)) (in Chinese) [王宁 2013 硕士学位论文(成都:中国科学院大学(中国科学院光电技术研究所))]
[7] Liu Y M, Lawrence G N, Koliopoulos C L 1988 Appl. Opt. 27 4504
[8] Melozzi M, Pezzati L, Mazzoni A 1993 Opt. Eng. 32 5
[9] Fleig J, Dumas P, Murphy P E, Forbes G W 2003 Proc. SPIE 5188, Advanced Characterization Techniques for Optics, Semiconductors, and Nanotechnologies San Diego, California, United States, August 3-8, 2003 p296
[10] Wang X K, Zhang X J, Wang L H, Zheng L G 2006 Optics and Precision Engineering 14 7 (in Chinese) [王孝坤, 张学军, 王丽辉, 郑立功 2006 光学精密工程 14 7]
[11] Wang X K, Zheng L G, Zhang X J 2010 Acta Optica Sinica 30 2022 (in Chinese) [王孝坤, 郑立功 张学军 2010 光学学报 30 2022]
[12] Chen S Y, Xue S, Wang G L, Tian Y 2017 Optics Communications 390 61
[13] Hou X, Wu F, Yang L, Wu S B, Chen Q 2006 Appl. Opt. 45 3442
[14] Wen Y, Cheng H 2015 Optik 126 2236
[15] Hao Q, Ning Y, Hu Y 2018 Metrology & Measurement Technology 38 1 (in Chinese) [郝群,宁妍,胡摇 2018 计测技术 38 1]
[16] Hou X, Wu F, Yang L, Chen Q 2007 Opt. Express 15 12890
[17] Henselmans R 2009 Ph. D. Dissertation (Eindhoven: Technische Universiteit Eindhoven)
[18] https://metrology.mahr.com/en-us/news-events/newsroom/item/testing-double-sided-optical-elements-with-the-marsurf-ld-260-aspheric-3d/
[19] https://www.taylor-hobson.com.cn/products/non-contact-3d-optical-profilers/luphos/
[20] https://www.optipro.com/optical-measuring/ultrasurf-5x/
[21] Lu Y J, Tang F, Wang X Z, Guo F D 2018 Chinese Journal of Lasers 45 206 (in Chinese) [卢云君,唐锋,王向朝,郭福东 2018 中国激光 45 206]
[22] Hou X, Wu F, Yang L, Wu S B, Chen Q 2005 Opto-Electronic Engineering 32 20 (in Chinese) [侯溪,伍凡,杨力,吴时彬,陈强 2005 光电工程 32 20]
[23] Beisswanger R, Weckerle M, Pruss C, Reichelt S 2022 Opt. Express 30 25803
[24] Gronle A, Pruss C, Herkommer A 2022 Opt. Express 30 797
[25] Niu K, Tian C 2022 J. Opt. 24 123001
[26] Zhai T B 2020 M. S. Thesis (Shanghai: Donghua University) (in Chinese) [翟天保 2020 硕士学位论文(上海: 东华大学)]
[27] Mahanjan V N 1981 J. Opt. Soc. Am. A 71 75
[28] Hou X, Wu F, Yang L, Chen Q 2006 Appl. Opt. 45 8893
[29] Fan X H 2019 Ph. D. Dissertation (Changchun: China University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences)) (in Chinese) [樊孝贺 2019 博士学位论文(中国科学院大学(中国科学院长春光学精密机械与物理研究所))]
[30] Zhu L M 2009 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese) [朱黎明 2009 硕士学位论文(哈尔滨:哈尔滨工业大学)]
[31] Qiao Y J, Tan J B, Wang W B 2008 Journal of Optoelectronics·Laser 19 1497 (in Chinese) [乔玉晶,谭久彬,王伟波 2008 光电子.激光 19 1497]
[32] Xue D, Zheng L, Zhang X 2005 Proc. SPIE 5638, Optical Design and Testing II Beijing, China, November 8-11, 2004 p752
[33] Robbins H, Monro S 1951 Annals of Mathematical Statistics 22 400
[34] Bertsekas D P, Tsitsiklis J N 2000 SIAM Journal on Optimization 10 627
[35] Forbes G W 2007 Optics Express 15 5218
[36] Wang X J 2023 M. S. Thesis (Hefei: Hefei University of Technology) (in Chinese) [王秀娟 2023 硕士学位论文(合肥:合肥工业大学)]
[37] He L, Wu Z H, Kang Y, Su Z D 2016 Laser & Optoelectronics Progress 53 220 (in Chinese) [何丽,武中华,康燕,苏志德 2016 激光与光电子学进展 53 220]
[38] Evans C J 2009 Opt. Eng. 48 043605
计量
- 文章访问数: 37
- PDF下载量: 0
- 被引次数: 0