-
难熔多主元合金因其优异的高温性能和潜在工程应用成为材料领域研究热点,其中NbTaTiZr四元多主元合金在高应变率与极端温度下的变形机制与力学行为尚不明确。为揭示该合金的原子尺度响应规律,构建了NbTaTiZr四元变组分机器学习势,结合分子动力学模拟系统研究了晶体取向、应变率、温度及组分对合金压缩力学行为的影响。NbTaTiZr在压缩时呈现出结构与力学响应的各向异性,沿[111]晶向压缩时拥有最高屈服强度;而[110]晶向压缩的屈服强度最低,在变形过程中更易产生孪晶;[100]晶向主要通过局域无序及位错滑移为主要变形机制,主导位错类型为1/2<111>。应变率提升至1010/s时,屈服强度显著增强且无序结构比例增加,发现高应变率加载下通过抑制位错运动促进无序化转变。该合金在2100 K高温下仍保持较高强度,Nb/Ta元素占比增加可显著提升屈服强度,而Ti/Zr元素则产生负面效应。研究揭示了多主元合金力学行为的各向异性特征与无序化转变的应变率依赖性,为设计高性能难熔合金提供理论依据。Refractory multi-principal element alloys( RMPEAs) have become a hotspot in materials science research in recent years due to their excellent high-temperature mechanical properties and broad application prospects. Among them, the unique deformation mechanisms and mechanical behaviors of the NbTaTiZr quaternary RMPEA under extreme conditions such as high temperature and high strain rate remain unclear, limiting its further design and engineering applications. To deeply reveal the dynamic response of this alloy at the atomic scale, this study developed a highaccuracy machine learning potential (MLP) for the NbTaTiZr quaternary alloy and combined it with large-scale molecular dynamics (MD) simulations to systematically investigate the effects of crystallographic orientation, strain rate, temperature, and chemical composition on the mechanical properties and microstructural evolution mechanisms of the alloy under compressive loading. The results show that the NbTaTiZr alloy exhibits significant mechanical and structural anisotropy during uniaxial compression. The alloy demonstrates the highest yield strength when loaded along the [111] crystallographic direction, while the yield strength is the lowest under compression along the [110] direction, where deformation is more prone to twinning. Under compression along the [100] direction, the primary deformation mechanisms are local disordering transitions and dislocation slip, with 1/2<111> dislocations being the dominant type. When the strain rate increases to 1010/s, the yield strength of the alloy significantly enhances, accompanied by a notable increase in the proportion of amorphous or disordered structures, indicating that high strain rate loading suppresses dislocation nucleation and motion while promoting disordering transitions. Simulations at varying temperatures reveal that the alloy maintains a high strength level even at temperatures as high as 2100 K. Compositional analysis further indicates that increasing the atomic percentage of Nb or Ta effectively enhances the yield strength of the alloy, whereas an increase in Ti or Zr content adversely affects the strength. By combining MLP with MD methods, this study elucidates the anisotropic characteristics of the mechanical behavior and the strain rate dependence of disordering transitions in the NbTaTiZr RMPEA under combined high strain rate and high temperature conditions, providing an important theoretical basis and simulation foundation for performance optimization and novel material design under extreme environments.
-
Keywords:
- multi-principal-element alloys /
- isothermal compression /
- machine learning potential /
- mechanical properties
-
[1] Senkov O N, Wilks G B, Miracle D B, Chuang C P, Liaw P K 2010 Intermetallics 18 1758
[2] Senkov O N, Scott J M, Senkova S V, Miracle D B, Woodward C F 2011 J. Alloys Compd. 509 6043
[3] Senkov O N, Senkova S V, Woodward C, Miracle D B 2013 Acta Mater. 61 1545
[4] Li X G, Chen C, Zheng H, Zuo Y X, Ong S Y P 2020 npj Comput. Mater. 6 10
[5] Senkov O N, G.B. Wilks, J.M. Scott,D.B. Miracle 2011 Intermetallics 19 698
[6] Senkov O N, Scott J M, Senkova S V, Meisenkothen F, Miracle D B, Woodward C F 2012 J. Mater. Sci. 47 4062
[7] Shittu J, Rietema C J, Juhasz M, Ellyson B, Elder K L M, Bocklund B J, Sims Z C, Li T T, Henderson H B, Berry J 2024 J. Alloys Compd. 977 11
[8] Cuo Z, Chen C, Tu Y, Tang E 2024 Chin. J. High Pressure Phys. 38 102 (in Chinese) [郭孜涵, 陈闯, 涂益良, 唐恩凌 2024 高压 38 102]
[9] Luo X, Li X, Tang Z, Li Z, Chen S, Wang Y, Yu Y, Hu J 2024 Chin. J. High Pressure Phys. 38 064101 (in Chinese) [罗小平, 李绪海, 唐泽明, 李治国, 陈森, 王媛, 俞宇颖, 胡建波 2024 高压 38 064101]
[10] Xiang T, Cai Z, Du P, Li K, Zhang Z, Xie G 2021 J. Mater. Sci. Technol 90 150
[11] Wang H, Niu Z, Chen C, Chen H, Zhu X, Zhou F, Zhang X, Liu X, Wu Y, Jiang S 2022 Mater. Charact. 193 112265
[12] Wu Y, Zhang Y, Li Z, Liu Z, Zhao E, Liu J 2024 J. Mater. Res. Technol. 30 8854
[13] Wang R, Tang Y, Li S, Zhang H, Ye Y, Zhu L, Ai Y, Bai S 2019 Mater. Des. 162 256
[14] Wang R X 2022 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [王睿鑫 2022 博士学位论文(长沙:国防科技大学)]
[15] Wang R, Tang Y, Li S, Ai Y, Li Y, Xiao B, Zhu L a, Liu X, Bai S 2020 J. Alloys Compd. 825 154099
[16] Lo K, Murakami H, Glatzel U, Yeh J, Gorsse S, Yeh A C 2022 Int. J. Refract. Met. Hard Mater 108 105918
[17] Liu Z,Chen B,Ling W,Bao N,Kang D,Dai J 2022 Acta Phys. Sin. 71 266 (in Chinese) [刘泽涛, 陈博, 令伟栋, 包南云, 康冬冬, 戴佳钰 2022 71 266]
[18] Wen P,Tao P 2022 Acta Phys. Sin. 71 319 (in Chinese) [闻鹏,陶钢 2022 71 319]
[19] Zhou X-Y, Wu H-H, Wu Y, Liu X, Peng X, Hou S, Lu Z 2024 Acta Mater. 281 12
[20] Li J,Feng H,Chen Y,Li L,Tian Y Y,Tan F S,Peng J,Chen H T,Fang Q H 2020 Chin. J. Solid Mech. 41 16 (in Chinese) [李甲, 冯慧, 陈阳, 李理, 田圆圆, 谭福盛, 彭静, 陈浩天, 方棋洪 2020 固体力学学报 41 16]
[21] Ferrari A, Körmann F, Asta M, Neugebauer J 2023 Nat. Comput. Sci. 3 221
[22] Wen T, Zhang L, Wang H, Weinan E, Srolovitz D J 2022 Materials Futures 1 022601
[23] Qiu R, Zeng Q, Han J, Chen K, Kang D, Yu X, Dai J 2025 Phys. Rev. B 111 064103
[24] Chang X, Chen B, Zeng Q, Wang H, Chen K, Tong Q, Yu X, Kang D, Zhang S, Guo F 2024 Nat. Commun. 15 8543
[25] Chang X, Kang D, Chen B, Dai J 2025 Chin. Phys. Lett. 42 37
[26] Guo F, Chen B, Zeng Q, Yu X, Chen K, Kang D, Du Y, Wu J, Dai J 2023 J. Chem. Phys. 159 20
[27] Wu L, Li T 2024 J. Mech. Phys. Solids 187 105639
[28] Wang T, Li J, Wang M, Li C, Su Y, Xu S, Li X-G 2024 npj Comput. Mater. 10 1
[29] Xiao R, Wang Q, Qin J, Zhao J, Ruan Y, Wang H, Li H, Wei B 2023 J. Appl. Phys. 133 085102
[30] Zhang Y, Wang H, Chen W, Zeng J, Zhang L, Wang H, Weinan E,. 2019 Comput. Phys. Commun. 253 107206
[31] Yang F, Zeng Q, Chen B, Kang D, Zhang S, Wu J, Yu X, Dai J 2022 Chin. Phys. Lett. 39 116301
[32] Han J, Zeng Q, Chen K, Yu X, Dai J 2023 Nanomaterials 13 1576
[33] Zeng Q,Chen B,Kang D,Dai J 2023 Acta Phys. Sin. 72 129 (in Chinese) [曾启昱, 陈博, 康冬冬, 戴佳钰 2023 72 129]
[34] Gao T, Zeng Q,Chen B,Kang D,Dai J 2024 Acta Metall. Sin. 60 1439 (in Chinese) [高天雨, 曾启昱, 陈博, 康冬冬, 戴佳钰 2024 金属学报 60 1439]
[35] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169
[36] Kresse G, Furthmüller J 1996 Comput. Mater. Sci 6 15
[37] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[38] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[39] Zeng J, Zhang D, Lu D, Mo P, Li Z, Chen Y, Rynik M, Huang L a, Li Z, Shi S 2023 J. Chem. Phys. 159 054801
[40] Zhang D, Bi H, Dai F-Z, Jiang W, Liu X, Zhang L, Wang H 2024 npj Comput. Mater. 10 94
[41] Wang V, Xu N, Liu J, Tang G, Geng W 2019 Comput. Phys. Commun. 267 4655
[42] Stukowski A 2009 Modell. Simul. Mater. Sci. Eng. 18 015012
[43] Stukowski A 2012 Modell. Simul. Mater. Sci. Eng. 20 045021
[44] Stukowski A, Bulatov V V, Arsenlis A 2012 Modell. Simul. Mater. Sci. Eng. 20 085007
[45] Liu X, Chang L, Ma T, Zhou C 2023 Mater. Today Commun. 36 106523
[46] Santos-Florez P A, Dai S-C, Yao Y, Yanxon H, Li L, Wang Y-J, Zhu Q, Yu X-X 2023 Acta Mater. 255 119041
[47] Pan Y, Fu T, Duan M, Li C, Hu H, Peng X 2024 ACS Appl. Nano Mater. 7 8121
[48] Zhang Q, Huang R R, Zhang X, Cao T Q, Xue Y F, Li X Y 2021 Nano Lett. 21 3671
[49] Hu Y, Ding S, Xu J, Zhang Y, Wu W, Xia R 2023 J. Mater. Res. Technol. 25 285
[50] Wu Y C, Shao J L 2023 Int. J. Plast. 169 103730
[51] Wang Q, Gong J, Chen W, Tian Y 2024 Mater. Today Commun. 38 108187
[52] Wang J, Ma Q, Cheng H, Yu H, Zhang S, Shang H, Zhang G, Wang W 2023 Materials 16 5126
[53] Jiang J, Chen P, Qiu J, Sun W, Saikov I, Shcherbakov V, Alymov M 2021 Mater. Today Commun. 28 102525
[54] Li J,Guo X,Ma S,Li Z, Xin H 2021 Chin. J. High Pressure Phys. 35 9 (in Chinese) [李健, 郭晓璇, 马胜国, 李志强, 辛浩 2021 高压 35 9]
计量
- 文章访问数: 38
- PDF下载量: 0
- 被引次数: 0