搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非正弦电流-相位关系约瑟夫森结动力学行为的分析

杨亮亮 何楷泳 戴根婷 常金琳 姜临盼 孙振源 刘建设 陈炜

引用本文:
Citation:

非正弦电流-相位关系约瑟夫森结动力学行为的分析

杨亮亮, 何楷泳, 戴根婷, 常金琳, 姜临盼, 孙振源, 刘建设, 陈炜

Numerical analysis of dynamical behavior in Josephson junctions with non-sinusoidal current-phase relations

YANG Liangliang, HE Kaiyong, DAI Genting, CHANG Jinlin, JIANG Linpan, SUN Zhenyuan, LIU Jianshe, CHEN Wei
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 约瑟夫森结作为超导电子学中的核心非线性元件, 其电流相位关系(current-phase relation, CPR)直接决定了器件的动力学行为与应用潜力. 传统约瑟夫森结通常表现出标准正弦型CPR, 而近年来非正弦CPR的新型约瑟夫森结引起广泛关注. 本论文基于实验测量的Nb/Al-AlOx/Nb结的电流电压(I-V)特性曲线, 结合阻容并联约瑟夫森结模型, 构建了适用于非正弦CPR的数值计算模型, 系统分析了CPR倾斜对约瑟夫森结动力学特性的影响. 研究表明, 欠阻尼约瑟夫森结的临界电流随CPR倾斜度增加而显著降低, 从而表现出类似直流超导量子干涉器件的临界电流可调的特性; 而在过阻尼结中, CPR倾斜对I-V曲线的影响不明显. 进一步通过计算微波辐照下的I-V特性, 发现非正弦CPR在过阻尼结中易于形成半整数夏皮罗台阶, 验证了CPR倾斜是半整数夏皮罗台阶原因之一. 此外, 借助Advanced Design System (ADS)建立非线性谐振器与直流超导量子干涉器件电路仿真模型, 深入探讨了非正弦CPR对约瑟夫森电感及磁通调制行为的影响. 研究结果表明, 不同CPR的约瑟夫森结显著扩展了超导量子比特、参量放大器以及无磁非互易器件的设计自由度, 展示了开发新型超导电子器件的广阔前景.
    Josephson junction, as the core nonlinear element underpinning superconducting electronics, is characterized by its current-phase relation (CPR), which fundamentally determines the dynamical properties and functional capabilities of superconducting quantum devices.Traditional Josephson junctions typically exhibit a traditional sinusoidal CPR; however, the junctions characterized by non-sinusoidal CPR have recently attracted considerable attention due to their distinctive physical properties and promising quantum device applications. In this work, a numerical model tailored specifically for junctions exhibiting non-sinusoidal CPR is developed by integrating experimentally measured current–voltage (I-V) characteristics from Nb/Al-AlOx/Nb junctions into a resistively and capacitively shunted junction (RCSJ) framework. By leveraging this refined model, the influence of CPR skewness on Josephson junction dynamics is systematically investigated. Our results indicate that in underdamped junctions, the critical current significantly diminishes with the increase of CPR skewness, a behavior reminiscent of the adjustable critical currents typically observed in DC superconducting quantum interference devices (SQUIDs). Conversely, in overdamped junctions, the influence of CPR skewness on the I-V characteristics is found to be negligible. However, our numerical simulations under microwave irradiation indicate that nonsinusoidal CPRs readily promote the emergence of half-integer Shapiro steps in overdamped junctions, thereby establishing CPR skewness as a plausible microscopic origin for this phenomenon. In addition, the advanced design system (ADS) simulations is employed to model nonlinear resonators and DC SQUID circuits, offering a detailed investigation into how nonsinusoidal CPRs modulate the Josephson inductance and magnetic flux response. Our findings reveal that engineering the CPR of Josephson junctions provides substantial flexibility in the design of superconducting qubits, parametric amplifiers, and non-magnetic nonreciprocal devices. This tunability underscores significant opportunities for developing next-generation superconducting electronic components. The Josephson junctions with engineered CPR offer expanded functionality for superconducting quantum technologies. This study suggests that customized CPR can enhance control over the dynamical behavior of junctions, and promote the optimized designs of superconducting qubits, parametric amplifiers, and nonmagnetic nonreciprocal devices.
  • 图 1  约瑟夫森结示意图 (a) Nb/Al-AlOx/Nb约瑟夫森结典型的三明治结构示意图 (b) 约瑟夫森结RCSJ电路模型示意图

    Fig. 1.  Schematic diagram of a Josephson junction: (a) Schematic diagram of a typical sandwich structure of a Nb/Al-AlOx/Nb Josephson junction; (b) Josephson junction RCSJ circuit model diagram.

    图 2  欠阻尼结和过阻尼结约瑟夫森相位随时间的变化曲线 (a) 正弦型CPR约瑟夫森结相位随时间的变化曲线; (b) 正弦型CPR约瑟夫森结相位导数随时间的变化曲线; (c) 非正弦型CPR约瑟夫森结相位随时间的变化曲线($ T_{n} $ = 0.999); (d) 非正弦型CPR约瑟夫森结相位导数随时间的变化曲线($ T_{n} $ = 0.999)

    Fig. 2.  The time evolution of the Josephson phase for underdamped and overdamped junctions (a) Time evolution of the phase for a sinusoidal CPR Josephson junction; (b) Time evolution of the phase derivative for a sinusoidal CPR Josephson junction; (c) Time evolution of the phase for a non-sinusoidal CPR Josephson junction ($ T_{n} $ = 0.999); (d) Time evolution of the phase derivative for a non-sinusoidal CPR Josephson junction ($ T_{n} $ = 0.999).

    图 3  约瑟夫森结I-V曲线 (a) 约瑟夫森结电流相位关系曲线; (b) 约瑟夫森结中非线性电阻模拟欠阻尼结迟滞曲线, 非线性电阻的电流是准粒子电流不再是超流; (c) 基于RCSJ模型数值计算欠阻尼结在不同CPR时的I-V曲线, 这里只考虑超流的变化, 不同CPR带来不同的临界电流; (d) 基于RCSJ模型数值计算过阻尼结在不同CPR时的I-V曲线, 过阻尼结下不同CPR约瑟夫森结几乎相同的I-V曲线; (e) 实验测量的Nb/Al-AlOx/Nb约瑟夫分森结的I-V曲线, 这是欠阻尼结形式, 可见实际的约瑟夫森结具有超导电流以及迟滞的准粒子电流; (f) 对Nb/Al-AlOx/Nb约瑟夫分森结的临界电流多次扫描, 观察其临界电流稳定性

    Fig. 3.  Josephson-junction I-V curves: (a) current–phase relation; (b) simulated underdamped hysteresis with quasiparticle current; (c) underdamped RCSJ, CPR-dependent $ I_{\mathrm{c}} $; (d) overdamped RCSJ, CPR-independent; (e) measured Nb/Al-AlOx/Nb underdamped hysteresis; (f) repeated $ I_{\mathrm{c}} $ sweeps demonstrating consistent, time-stable critical current

    图 4  约瑟夫森结夏皮罗台阶数值计算结果 (a) 正弦CPR过阻尼结的夏皮罗台阶; (b) 正弦CPR欠阻尼结的夏皮罗台阶; (c) 非正弦CPR过阻尼结的夏皮罗台阶; (d) 非正弦CPR欠阻尼结的夏皮罗台阶

    Fig. 4.  Numerically calculated Shapiro-step responses of Josephson junctions: (a) overdamped junction with sinusoidal CPR; (b) underdamped junction with sinusoidal CPR; (c) overdamped junction with non-sinusoidal CPR; (d) underdamped junction with non-sinusoidal CPR

    图 5  正弦CPR约瑟夫森结微分电阻数值计算结果 (a) 过阻尼结微分电阻和相应夏皮罗台阶; (b) 欠阻尼结微分电阻和相应的夏皮罗台阶; (c) 过阻尼结微分电阻和偏置电路以及微波幅值的伪彩色三维图; (d) 欠阻尼结微分电阻和偏置电路以及微波幅值的伪彩色三维图

    Fig. 5.  Numerically calculated differential resistance of Josephson junctions with sinusoidal CPR: (a) overdamped junction—differential resistance and corresponding Shapiro steps; (b) underdamped junction—differential resistance and corresponding Shapiro steps; (c) pseudocolor 3-D map of differential resistance versus bias current and microwave amplitude for the overdamped junction; (d) same 3-D map for the underdamped junction

    图 6  非正弦CPR约瑟夫森结微分电阻和偏置电流以及微波幅值的伪彩三维图 (a) $ T_{n} $ = 0.01; (b) $ T_{n} $ = 0.5; (c) $ T_{n} $ = 0.9; (d) $ T_{n} $ = 0.999

    Fig. 6.  Pseudocolor three-dimensional maps of differential resistance versus bias current and microwave amplitude for Josephson junctions with non-sinusoidal CPR: (a) $T_n = 0.01$; (b) $T_n = 0.5$; (c) $T_n = 0.9$; (d) $T_n = 0.999$

    图 7  ADS中构建的基于约瑟夫森结的非线性谐振器S11参数随频率和结临界电流变化的伪彩色三维图 (a) 正弦型CPR约瑟夫森结; (b) $T_n = 0.01$; (c) $T_n = 0.9$; (d) $T_n = 0.999$

    Fig. 7.  Pseudocolor three-dimensional maps of the $S_{11}$ parameter versus frequency and junction critical current for ADS-simulated Josephson-junction nonlinear resonators: (a) sinusoidal CPR; (b) $T_{n} = 0.01$; (c) $T_{n} = 0.9$; (d) $T_{n} = 0.999$

    图 8  ADS中构建的DC-SQUID电压和偏置磁通以及DC-SQUID电流关系的伪彩色三维图 (a) 基于正弦CPR约瑟夫森结的DC-SQUID; (b) $T_n = 0.01$; (c) $T_n = 0.9$; (d) $T_n = 0.999$

    Fig. 8.  Pseudocolor three-dimensional maps of DC-SQUID voltage versus bias flux and SQUID current from ADS simulations: (a) DC-SQUID with sinusoidal-CPR Josephson junctions; (b) $T_{n} = 0.01$; (c) $T_{n} = 0.9$; (d) $T_{n} = 0.999$

    Baidu
  • [1]

    Arute F, Arya K, Babbush R, Bacon D, Bardin J C, Barends R, Biswas R, Boixo S, Brandao F G S L, Buell D A, Burkett B, Chen Y, Chen Z, Chiaro B, Collins R, Courtney W, Dunsworth A, Farhi E, Foxen B, Fowler A, Gidney C, Giustina M, Graff R, Guerreiro T, Habegger S, Harrigan M P, Hartmann M J, Ho A, Hoffmann M, Huang T, Humble T S, Isakov S V, Jeffrey E, Jensen K, Jiang Z, Kelly J, Klimov P V, Knysh S, Korotkov A N, Kostritsa F, Landhuis D, Lindmark M, Lucero E, MacKay D, Martin O, McClean J R, McEwen M, Megrant A, Mi X, Morvan A, Neeley M, Neill C, Neven H, Niu M Y, O'Brien T, Ostby E, Petukhov A, Putterman H, Quintana C, Redd C, Rieffel E G, Sank D, Satzinger K J, Smelyanskiy V, Sung K J, Trevithick M D, Vainsencher A, Villalonga B, White T, Yao Z J, Yeh P, Zalcman A, Zhang Y, Zhong Y, Martinis J M 2019 Nature 574 505Google Scholar

    [2]

    Wu Y, Bao W S, Cao S, Chen F, Chen M C, Chen X, Chung T H, Deng H, Du Y, Fan D, Gong M, Guo C, Guo Q, Han L, Hong L, Huang T, Huo Y H, Li C, Li L, Li N, Li S, Li Y, Liang H, Lin J, Lin Z, Qian H, Rong H, Su H, Sun Y, Wang H, Wang S, Wu D, Xu Y, Yan Z, Yang F, Ye Y, Ying C, Yu J, Zha C, Zhai H, Zhang H, Zhang K, Zhang L, Zhang Y, Zhao P, Zhao Y, Zheng D, Zhou H, Zhu Q, Pan J W 2021 Phys. Rev. Lett. 127 180501Google Scholar

    [3]

    Renger M, Pogorzalek S, Chen Q, Nojiri Y, Inomata K, Nakamura Y, Partanen M, Marx A, Gross R, Deppe F, Fedorov K G, Wulf M, Goetz J, Wulschner F, Eder P, Fischer M, Haeberlein M, Schneider A, Wegscheider W, Menzel E P, Rotzinger H, Fowler A G, Wilhelm F K, Michler P 2021 npj Quantum Information 7 160Google Scholar

    [4]

    Yang L, He K, Dai G, Cheng M, Liu J, Chen W 2025 J. Supercond. Nov. Magn. 38 101Google Scholar

    [5]

    He K, Dai G, Yu Q, He Y, Zhao C, Liu J, Chen W 2023 Supercond. Sci. Technol. 36 045010

    [6]

    Xue H, Lin Z, Jiang W, Niu Z, Liu K, Peng W, Wang Z 2021 Chin. Phys. B 30 068503Google Scholar

    [7]

    Choi G, Kim B, Choi J, Park K, Chong Y, Lee Y H 2023 IEEE Trans. Appl. Supercond. 33 1

    [8]

    Qiu J Y, Grimsmo A, Peng K, Kannan B, Lienhard B, Sung Y, Krantz P, Bolkhovsky V, Calusine G, Kim D, Oliver W D 2023 Nat. Phys. 19 706

    [9]

    Macklin C, O'Brien K, Hover D, Schwartz M E, Bolkhovsky V, Zhang X, Oliver W D, Siddiqi I 2015 Science 350 307Google Scholar

    [10]

    Krylov G, Friedman E G 2021 IEEE Trans. Appl. Supercond. 31 1

    [11]

    Clarke J, Braginski A I 2006 The SQUID Handbook: Applications of SQUIDs and SQUID Systems (John Wiley & Sons

    [12]

    Yao Y, Cai R, Yang S H, Xing W, Ma Y, Mori M, Ji Y, Maekawa S, Xie X C, Han W 2021 Phys. Rev. B 104 104414Google Scholar

    [13]

    Stoutimore M J A, Rossolenko A N, Bolginov V V, Oboznov V A, Rusanov A Y, Baranov D S, Pugach N, Frolov S M, Ryazanov V V, Van Harlingen D J 2018 Phys. Rev. Lett. 121 177702Google Scholar

    [14]

    Raes B, Tubsrinuan N, Sreedhar R, Guala D S, Panghotra R, Dausy H, de Souza Silva C C, Van de Vondel J 2020 Phys. Rev. B 102 054507Google Scholar

    [15]

    Basset J, Kuzmanović M, Virtanen P, Heikkilä T T, Estève J, Gabelli J, Strunk C, Aprili M 2019 Phys. Rev. Res. 1 032009Google Scholar

    [16]

    Kalantre S S, Yu F, Wei M T, Watanabe K, Taniguchi T, Hernandez-Rivera M, Amet F, Williams J R 2020 Phys. Rev. Res. 2 023093Google Scholar

    [17]

    Ueda K, Matsuo S, Kamata H, Sato Y, Takeshige Y, Li K, Samuelson L, Xu H, Tarucha S 2020 Phys. Rev. Res. 2 033435Google Scholar

    [18]

    Hart S, Cui Z, Ménard G, Deng M, Antipov A E, Lutchyn R M, Krogstrup P, Marcus C M, Moler K A 2019 Phys. Rev. B 100 064523Google Scholar

    [19]

    Spanton E M, Deng M, Vaitiekėnas S, Krogstrup P, Nygård J, Marcus C M, Moler K A 2017 Nat. Phys. 13 1177Google Scholar

    [20]

    Nanda G, Aguilera-Servin J L, Rakyta P, Kormányos A, Kleiner R, Koelle D, Watanabe K, Taniguchi T, Vandersypen L M K, Goswami S 2017 Nano Lett. 17 3396Google Scholar

    [21]

    English C D, Hamilton D R, Chialvo C, Moraru I C, Mason N, Van Harlingen D J 2016 Phys. Rev. B 94 115435Google Scholar

    [22]

    Borzenets I V, Amet F, Ke C T, Draelos A W, Wei M T, Seredinski A, Watanabe K, Taniguchi T, Bomze Y, Yamamoto M, Finkelstein G 2016 Phys. Rev. Lett. 117 237002Google Scholar

    [23]

    Lee G H, Kim S, Jhi S H, Lee H J 2015 Nat. Commun. 6 6181Google Scholar

    [24]

    Yu W, Pan W, Medlin D L, Rodriguez M A, Lee S R, Bao Z Q, Zhang F 2018 Phys. Rev. Lett. 120 177704Google Scholar

    [25]

    Snyder R A, Trimble C J, Rong C C, Folkes P A, Taylor P J, Williams J R 2018 Phys. Rev. Lett. 121 097701Google Scholar

    [26]

    Li C, de Boer J C, de Ronde B, Ramankutty S V, van Heumen E, Huang Y, de Visser A, Golubov A A, Golden M S, Brinkman A 2018 Nat. Mater. 17 875Google Scholar

    [27]

    Wiedenmann J, Bocquillon E, Deacon R S, Hartinger S, Herrmann O, Klapwijk T M, Maier L, Ames C, Brüne C, Gould C, Molenkamp L W 2016 Nat. Commun. 7 10303Google Scholar

    [28]

    侯延亮, 王翔, 孙晓培, 吕力 2023 72 7

    Hou Y L, Wang X, Sun X P, Lü L 2023 Acta Phys. Sin. 72 7

    [29]

    Wiedenmann J 2018 Induced Topological Superconductivity in HgTe Based Nanostructures. Ph.D. Dissertation, Julius-Maximilians-Universität Würzburg. Chapter 12, p.73

    [30]

    Bordin A, Liu C X, Dvir T, Zatelli F, Ten Haaf S L D, van Driel D, Wang G, Van Loo N, Zhang Y, Wolff J C, Kouwenhoven L P 2025 Nat. Nanotechnol. 1 In press

    [31]

    Tanaka Y, Tamura S, Cayao J 2024 Prog. Theor. Exp. Phys. 2024 08C105Google Scholar

    [32]

    Zhu P, Feng S, Wang K, Xiang T, Trivedi N 2025 Nat. Commun. 16 2420Google Scholar

    [33]

    Yang L, He K, Dai G, Cheng M, Geng X, Jiang L, Chang J, Liu J, Chen W 2025 Phys. Lett. A 540 130401Google Scholar

    [34]

    Kamal A, Clarke J, Devoret M H 2011 Nat. Phys. 7 311Google Scholar

    [35]

    Kumar N P, Le D T, Pakkiam P, Stace T M, Fedorov A 2025 Phys. Rev. Res. 7 013075Google Scholar

    [36]

    Khaira N K 2022 Reconfigurable Cryogenic Microwave Devices Using Low Temperature Superconducting RF-SQUIDs. Ph.d. dissertation, University of Waterloo

    [37]

    Ingla-Aynés J, Hou Y, Wang S, Chu E D, Mukhanov O A, Wei P, Moodera J S 2025 Nat. Electron. 1 In press

    [38]

    Nadeem M, Fuhrer M S, Wang X 2023 Nat. Rev. Phys. 5 558Google Scholar

    [39]

    Hou Y, Nichele F, Chi H, Lodesani A, Wu Y, Ritter M F, Haxell D Z, Davydova M, Ilić S, Glezakou-Elbert O 2023 Phys. Rev. Lett. 131 027001Google Scholar

    [40]

    Castellani M, Medeiros O, Buzzi A, Foster R A, Colangelo M, Berggren K K 2024 Nat. Electron. 8 417

    [41]

    Kayyalha M, Kazakov A, Miotkowski I, Khlebnikov S, Rokhinson L P, Chen Y P 2020 npj Quantum Mater. 5 7Google Scholar

    [42]

    Huang Z, Elfeky B H, Taniguchi T, Watanabe K, Shabani J, Shahrjerdi D 2023 Appl. Phys. Lett. 122 262601Google Scholar

    [43]

    Panghotra R, Raes B, de Souza Silva C C, Cools I, Van de Vondel J 2020 Commun. Phys. 3 169Google Scholar

    [44]

    Frattini N E, Vool U, Shankar S, Narla A, Sliwa K M, Devoret M H 2017 Appl. Phys. Lett. 110 222603Google Scholar

    [45]

    Ranadive A, Esposito M, Planat L, Bonet E, Naud C, Buisson O, Guichard W, Roch N 2022 Nat. Commun. 13 1737Google Scholar

    [46]

    Bergeal N, Schackert F, Metcalfe M, Vijay R, Manucharyan V E, Frunzio L, Prober D E, Schoelkopf R J, Girvin S M, Devoret M H 2010 Nature 465 64Google Scholar

    [47]

    Bergeal N, Vijay R, Manucharyan V E, Siddiqi I, Schoelkopf R J, Girvin S M, Devoret M H 2010 Nat. Phys. 6 296Google Scholar

    [48]

    Josephson B D 1962 Phys. Lett. 1 251Google Scholar

    [49]

    Prance J R, Thompson M D 2023 Appl. Phys. Lett. 122 222602

  • [1] 李加林, 张国峰, 李思瑶, 王甜珺, 魏雪齐, 李华, 古元冬, 孙立敏. 应用于超导脑磁系统的集成SQUID芯片的设计与性能评估.  , doi: 10.7498/aps.74.20250426
    [2] 侯延亮, 王翔, 孙晓培, 吕力. 基于拓扑绝缘体纳米线约瑟夫森结的反常临界超流增强和半整数夏皮洛台阶.  , doi: 10.7498/aps.72.20222072
    [3] 张定, 朱玉莹, 汪恒, 薛其坤. 转角铜氧化物中的约瑟夫森效应.  , doi: 10.7498/aps.72.20231815
    [4] 李中祥, 王淑亚, 黄自强, 王晨, 穆清. 原子级控制的约瑟夫森结中Al2O3势垒层制备工艺.  , doi: 10.7498/aps.71.20220820
    [5] 李春光, 王佳, 吴云, 王旭, 孙亮, 董慧, 高波, 李浩, 尤立星, 林志荣, 任洁, 李婧, 张文, 贺青, 王轶文, 韦联福, 孙汉聪, 王华兵, 李劲劲, 屈继峰. 中国超导电子学研究及应用进展.  , doi: 10.7498/aps.70.20202121
    [6] 韩金舸, 欧阳鹏辉, 李恩平, 王轶文, 韦联福. 超导约瑟夫森结物理参数的实验推算.  , doi: 10.7498/aps.70.20210393
    [7] 陈恒杰, 薛航, 李邵雄, 王镇. 一种通过约瑟夫森结非线性频率响应确定微波耗散的方法.  , doi: 10.7498/aps.68.20190167
    [8] 王松, 王星云, 周章渝, 杨发顺, 杨健, 傅兴华. 硼膜制备工艺、微观结构及其在硼化镁超导约瑟夫森结中的应用.  , doi: 10.7498/aps.65.017401
    [9] 陈钊, 何根芳, 张青雅, 刘建设, 李铁夫, 陈炜. 具有Washer型输入线圈的超导量子干涉放大器的制备与表征.  , doi: 10.7498/aps.64.128501
    [10] 曹文会, 李劲劲, 钟青, 郭小玮, 贺青, 迟宗涛. 用于电压基准的Nb/NbxSi1-x/Nb约瑟夫森单结的研制.  , doi: 10.7498/aps.61.170304
    [11] 张立森, 蔡理, 冯朝文. 线性延时反馈Josephson结的Hopf分岔和混沌化.  , doi: 10.7498/aps.60.060306
    [12] 张立森, 蔡理, 冯朝文. 约瑟夫森结中周期解及其稳定性的解析分析.  , doi: 10.7498/aps.60.030308
    [13] 岳宏卫, 阎少林, 周铁戈, 谢清连, 游峰, 王争, 何明, 赵新杰, 方兰, 杨扬, 王福音, 陶薇薇. 嵌入Fabry-Perot谐振腔的高温超导双晶约瑟夫森结的毫米波辐照特性研究.  , doi: 10.7498/aps.59.1282
    [14] 岳宏卫, 王争, 樊彬, 宋凤斌, 游峰, 赵新杰, 何明, 方兰, 阎少林. 高温超导双晶约瑟夫森结阵列毫米波相干辐射.  , doi: 10.7498/aps.59.5755
    [15] 王争, 岳宏卫, 周铁戈, 赵新杰, 何明, 谢清连, 方兰, 阎少林. SrTiO3基片上Tl-2212双晶约瑟夫森结的动态特性及噪声影响研究.  , doi: 10.7498/aps.58.7216
    [16] 崔大健, 林德华, 于海峰, 彭智慧, 朱晓波, 郑东宁, 景秀年, 吕 力, 赵士平. 本征约瑟夫森结跳变电流分布的量子修正.  , doi: 10.7498/aps.57.5933
    [17] 李照鑫, 邹 健, 蔡金芳, 邵 彬. 电荷量子比特与量子化光场之间的纠缠.  , doi: 10.7498/aps.55.1580
    [18] 肖宇飞, 王登龙, 王凤姣, 颜晓红. 非对称的玻色-爱因斯坦凝聚中的约瑟夫森结的动力学性质.  , doi: 10.7498/aps.55.547
    [19] 王震宇, 廖红印, 周世平. 直流偏置的与RLC谐振器耦合的约瑟夫森结动力学行为的数值模拟.  , doi: 10.7498/aps.50.1996
    [20] 韩 冰, 陈赓华, 徐凤枝, 赵士平, 杨乾声. 高温超导台阶结YBCO dc-SQUID一阶平面梯度计.  , doi: 10.7498/aps.49.2051
计量
  • 文章访问数:  405
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-04
  • 修回日期:  2025-07-16
  • 上网日期:  2025-07-28

/

返回文章
返回
Baidu
map