搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

泵浦调制下全固态被动调Q Nd:YAG/Cr:YAG激光器非线性动力学研究

边嘉仪 孙兆祺 王秋蘋 王飞 邓涛 林晓东 高子叶

引用本文:
Citation:

泵浦调制下全固态被动调Q Nd:YAG/Cr:YAG激光器非线性动力学研究

边嘉仪, 孙兆祺, 王秋蘋, 王飞, 邓涛, 林晓东, 高子叶

Nonlinear dynamics in a pump-modulation all-solid-state passively Q-switched Nd:YAG/Cr:YAG laser

BIAN Jiayi, SUN Zhaoqi, WANG Qiupin, WANG Fei, DENG Tao, LIN Xiaodong, GAO Ziye
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 全固态被动调Q激光器的非线性动力学行为是影响其输出特性的关键因素. 本文通过数值模拟研究了泵浦调制下全固态被动调Q Nd:YAG/Cr:YAG激光器的非线性动力学行为, 讨论了关键调制参量对调Q激光非线性动力学及其输出特性的影响. 仿真结果表明, 在特定的调制频率、调制幅度以及未调制泵浦速率下, 调Q激光可以表现出单周期态、倍周期态、多周期态以及混沌态. 通过分析调Q激光脉冲峰值随调制频率、调制幅度以及未调制泵浦速率变化的分岔图, 发现脉冲峰值主要经倍周期和准周期演化路径进入混沌. 此外, 脉冲频率(即相邻脉冲时间间隔的倒数)进入混沌的演化路径与脉冲峰值的演化路径一致, 但脉冲频率强度变化趋势与脉冲峰值强度变化趋势相反. 研究结果理论上揭示了泵浦调制关键参量对激光器的非线性动力学行为及其输出特性具有显著影响, 并为进一步实验深入探究其演化机制提供了重要的指导.
    All-solid-state passively Q-switched lasers can exhibit nonlinear behaviors such as period-doubling, injection locking, and chaos under specific conditions, offering new applications in fields like secure communication and random number generation. As a result, the nonlinear dynamics of laser systems are becoming increasingly important. Pump modulation is a typical method of controlling the nonlinear dynamical states of solid-state lasers. In this work, the nonlinear dynamical characteristics of an all-solid-state passively Q-switched Nd:YAG/Cr:YAG laser under pump modulation are investigated by solving a four-level rate equation system using the Runge-Kutta method. The results demonstrate that by adjusting key parameters including modulation frequency, modulation amplitude, and unmodulated pump rate, the laser system can exhibit rich dynamical states, including period-one, period-two, multi-period, and chaotic pulsation. By analyzing the bifurcation diagram, the evolution pattern of output laser pulse characteristics with parameter changes is revealed. The system mainly enters chaos through period-doubling and quasi-periodic routes, while exhibiting a unique phenomenon where the pulse peak and pulse frequency follow synchronized evolutionary paths but with opposite trends in intensity variation, indicating dynamic coupling effects between frequency and intensity domains. By constructing the nonlinear dynamical distributions within a three-dimensional pump modulation parameter space, the combined effects of modulation frequency, modulation amplitude, and unmodulated pump rate on the evolution of the laser's nonlinear dynamics are systematically investigated in this work. The results show that at lower unmodulated pump rates, the system cannot be driven into nonlinear states even when the modulation amplitude and frequency are relatively large. In contrast, under higher unmodulated pump rates, the appropriate tuning of modulation amplitude and frequency enables the system to transition from periodic states to chaotic behavior. This work not only elucidates the modulation mechanisms of pump parameters on the nonlinear dynamics of lasers, but also provides theoretical guidance for optimizing laser output performance and designing high-performance chaotic lasers, which is of great significance in promoting the applications of Q-switched lasers in precision measurement and secure communication fields.
  • 图 1  装置示意图

    Fig. 1.  Schematic diagram of the setup.

    图 2  (a) 泵浦速率随时间的变化; (b) 光子数密度随时间的变化; (c) 增益介质反转粒子数密度随时间的变化; (d) 可饱和吸收体粒子数密度随时间的变化

    Fig. 2.  (a) Temporal evolution of the pump rate; (b) temporal evolution of photon number density; (c) temporal evolution of gain medium inversion population density; (d) temporal evolution of saturable absorber population density.

    图 3  当未调制泵浦速率和调制幅度分别为1000 s–1和50%时, 不同调制频率下调Q激光脉冲序列、三维相图、轨迹图和分岔图 (a1)—(c1), (a2)—(c2), (a3)—(c3)分别为在调制频率为200, 220, 270 kHz下调Q激光脉冲序列、三维相图和轨迹图; (d1)和(d2)分别为调Q激光脉冲峰值和脉冲频率随调制频率变化的分岔图

    Fig. 3.  When the unmodulated pump rate and modulation amplitude are 1000 s–1 and 50%, respectively, Q-switched laser pulse trains, 3D phase portraits, trajectory diagrams and bifurcation diagrams at different modulation frequencies. Panel (a1)–(c1), (a2)–(c2) and (a3)–(c3) show Q-switched laser pulse trains, 3D phase portraits and trajectory diagrams at modulation frequencies of 200, 220 and 270 kHz, respectively. Panel (d1) and (d2) present bifurcation diagrams of Q-switched laser pulse peak and pulse frequency versus modulation frequency.

    图 4  当未调制泵浦速率和调制频率分别为1000 s–1和500 kHz时, 不同调制幅度下调Q激光脉冲序列、三维相图、轨迹图和分岔图 (a1)—(c1), (a2)—(c2), (a3)—(c3), (a4)—(c4)分别为调制幅度为20%, 40%, 48%, 55%下调Q激光脉冲序列、相图和轨迹图; (d1)和(d2)分别为调Q激光脉冲峰值和脉冲频率随调制幅度变化的分岔图

    Fig. 4.  When the unmodulated pump rate and modulation frequency are 1000 s–1 and 500 kHz, respectively, Q-switched laser pulse trains, 3D phase portraits, trajectory diagrams and bifurcation diagrams under different modulation amplitude. Panel (a1)–(c1), (a2)–(c2), (a3)–(c3) and (a4)–(c4) show Q-switched laser pulse trains, phase portraits and trajectory diagrams at modulation amplitude of 20%, 40%, 48% and 55%, respectively. Panel (d1) and (d2) present bifurcation diagrams of Q-switched laser pulse peak and pulse frequency versus modulation amplitude.

    图 5  当调制幅度和调制频率分别为50%和500 kHz时, 不同未调制泵浦速率下调Q激光脉冲序列、三维相图、轨迹图和分岔图 (a1)—(c1), (a2)—(c2), (a3)—(c3)分别为未调制泵浦速率为1200, 1300, 1400 s–1下调Q激光脉冲序列、三维相图和轨迹图; (d1)和(d2)分别为调Q激光脉冲峰值和脉冲频率随未调制泵浦速率变化的分岔图

    Fig. 5.  When the modulation amplitude and modulation frequency are 50% and 500 kHz, respectively, Q-switched laser pulse trains, 3D phase portraits, trajectory diagrams and bifurcation diagrams under different unmodulated pump rates. Panel (a1)–(c1), (a2)–(c2) and (a3)–(c3) show Q-switched laser pulse trains, 3D phase portraits and trajectory diagrams at unmodulated pump rates of 1200, 1300 and 1400 s–1, respectively. Panel (d1) and (d2) present bifurcation diagrams of Q-switched laser pulse peak and pulse frequency versus unmodulated pump rate.

    图 6  在调制频率fm、调制幅度Am、未调制泵浦速率P0构成的参数空间内脉冲峰值的非线性动力学分布 (a) fm = 500 kHz时, P0Am构成参数空间内的非线性动力学分布; (b) Am = 50%时, fmP0构成参数空间内的非线性动力学分布; (c) P0 = 1000 s–1时, Amfm构成参数空间内的非线性动力学分布

    Fig. 6.  Dynamic distributions of pulse peak in the parameter space of the modulation frequency fm, modulation amplitude Am, and unmodulated pump rate P0: (a) P0 and Am under fm = 500 kHz; (b) fmand P0 under Am = 50%; (c) Am and fm under P0= 1000 s–1.

    Baidu
  • [1]

    Shen J P, Chen Y, Chen L, Xing F Y, Zhang F B, Xia R Z, Zuo H Y, Xiong F, Jiang R R 2025 Chin. Phys. Lett. 42 044202Google Scholar

    [2]

    刘杨, 刘兆军, 丛振华, 徐晓东, 徐军, 门少杰, 夏金宝, 张飒飒 2015 64 174203Google Scholar

    Liu Y, Liu Z J, Cong Z H, Xu X D, Xu J, Men S J, Xia J B, Zhang S S 2015 Acta Phys. Sin 64 174203Google Scholar

    [3]

    Pavel N, Dascalu T, Salamu G, Dinca M, Boicea N, Birtas A 2015 Opt. Express 23 33028Google Scholar

    [4]

    Huang C X, Zhou L J, Zhong L X, Liang J D, Ma L, Chen G D, Li Z J, Lu T, Jin C J 2025 Opt. Laser Technol. 184 112485Google Scholar

    [5]

    Dascalu T, Croitoru G, Grigore O, Pavel N 2016 Photonics Res. 4 267Google Scholar

    [6]

    Han S, Du Q H, Geng L, Liu X L, Zhao H Y, Liu Y Q, Zhang S B, Yang X Q 2025 Opt. Laser Technol. 181 111642Google Scholar

    [7]

    Dun Y Y, Li P, Chen X H, Ma B M 2016 Chin. Phys. Lett. 33 024201Google Scholar

    [8]

    He Y, Ma Y F, Li J, Li X D, Yan R P, Gao J, Yu X, Sun R, Pan Y B 2016 Opt. Laser Technol. 81 46

    [9]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nat. Photonics 2 728Google Scholar

    [10]

    Sciamanna M, Shore K A 2015 Nat. Photonics 9 151Google Scholar

    [11]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer L, Garcia-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343Google Scholar

    [12]

    Lin F Y, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 991Google Scholar

    [13]

    Tang D Y, Ng S P, Qin L J, Meng X L 2003 Opt. Lett. 28 325Google Scholar

    [14]

    Ng S P, Tang D Y, Qin L J, Meng X L, Xiong Z L 2006 Int. J. Bifurcation Chaos 16 2689Google Scholar

    [15]

    Kovalsky M, Hnilo A 2010 Opt. Lett. 35 3498Google Scholar

    [16]

    Tsai S Y, Chiu C P, Chang K C, Wei M D 2016 Opt. Lett. 41 1054Google Scholar

    [17]

    高子叶, 夏光琼, 邓涛, 林晓东, 唐曦, 樊利, 吴正茂 2021 光子学报 50 0314001

    Gao Z Y, Xia G Q, Deng T, Lin X D, Tang X, Fan L, Wu Z M 2021 Acta Photonica Sin. 50 0314001

    [18]

    高子叶, 夏光琼, 邓涛, 林晓东, 唐曦, 樊利, 吴正茂 2023 西南大学学报(自然科学版) 45 195

    Gao Z Y, Xia G Q, Deng T, Lin X D, Tang X, Fan L, Wu Z M 2023 J. Southwest Univ. (Nat. Sci. Ed.) 45 195

    [19]

    Hurtado A, Quirce A, Valle A, Pesquera L, Adams M J 2010 Opt. Express 18 9423Google Scholar

    [20]

    Li X F, Pan W, Luo B, Ma D 2006 Chaos, Solitons Fractals 30 1004Google Scholar

    [21]

    Wei M D, Hsu C C, Huang H H, Wu H H 2010 Opt. Express 18 19977Google Scholar

    [22]

    Hong K G, Wei M D 2013 J. Opt. 15 085201Google Scholar

    [23]

    Villafana-Rauda E, Chiu R, Mora-Gonzalez M, Casillas-Rodriguez F, Medel-Ruiz C L, Sevilla-Escoboza R 2019 Results Phys. 12 908Google Scholar

  • [1] 李惟嘉, 申晓红, 李亚安, 张奎. 基于阵列多通道数据的非线性特征参数提取.  , doi: 10.7498/aps.74.20241512
    [2] 方振, 余游, 赵秋烨, 张昱冬, 王治强, 张祖兴. 基于泵浦强度调制的超快光纤激光器中孤子分子光谱脉动动力学研究.  , doi: 10.7498/aps.73.20231030
    [3] 李惟嘉, 申晓红, 李亚安. 一种无偏差的多通道多尺度样本熵算法.  , doi: 10.7498/aps.73.20231133
    [4] 黄晓东, 贺彬烜, 宋震, 弭元元, 屈支林, 胡岗. 心律失常的多尺度建模、计算与动力学理论进展综述.  , doi: 10.7498/aps.73.20240977
    [5] 胡恒儒, 龚志强, 王健, 乔盼节, 刘莉, 封国林. ENSO气温关联网络结构特征差异及成因分析.  , doi: 10.7498/aps.70.20210825
    [6] 党小宇, 李洪涛, 袁泽世, 胡文. 基于数模混合的混沌映射实现.  , doi: 10.7498/aps.64.160501
    [7] 于洁, 郭霞生, 屠娟, 章东. 超声造影剂微泡非线性动力学响应的机理及相关应用.  , doi: 10.7498/aps.64.094306
    [8] 张松, 谈宜东, 张书练. 激光回馈引起的微片Nd:YAG激光器频差调制.  , doi: 10.7498/aps.63.104208
    [9] 廖志贤, 罗晓曙. 基于小世界网络模型的光伏微网系统同步方法研究.  , doi: 10.7498/aps.63.230502
    [10] 雷鹏飞, 张家忠, 王琢璞, 陈嘉辉. 非定常瞬态流动过程中的Lagrangian拟序结构与物质输运作用.  , doi: 10.7498/aps.63.084702
    [11] 刘岩, 张文明, 仲作阳, 彭志科, 孟光. 光梯度力驱动纳谐振器的非线性动力学特性研究.  , doi: 10.7498/aps.63.026201
    [12] 余洋, 米增强. 机械弹性储能机组储能过程非线性动力学模型与混沌特性.  , doi: 10.7498/aps.62.038403
    [13] 王从庆, 吴鹏飞, 周鑫. 基于最小关节力矩优化的自由浮动空间刚柔耦合机械臂混沌动力学建模与控制.  , doi: 10.7498/aps.61.230503
    [14] 郑安杰, 吴正茂, 邓涛, 李小坚, 夏光琼. 偏振保持光反馈下1550 nm垂直腔面发射激光器的非线性动力学特性研究.  , doi: 10.7498/aps.61.234203
    [15] 吕玉祥, 孙帅, 杨星. 基于光注入Fabry-Perot半导体激光器实现同步全光分路时钟提取与波长转换.  , doi: 10.7498/aps.58.2467
    [16] 牛生晓, 张明江, 安 义, 贺虎成, 李静霞, 王云才. 外光注入半导体激光器实现重复速率可调全光时钟分频.  , doi: 10.7498/aps.57.6998
    [17] 薄 勇, 耿爱丛, 毕 勇, 孙志培, 杨晓东, 李瑞宁, 崔大复, 许祖彦. 高平均功率调Q准连续Nd:YAG激光器.  , doi: 10.7498/aps.55.1171
    [18] 盛正卯, 王 庸, 马 健, 郑思波. 静电波对磁化等离子体的共振加热的理论及数值模拟研究.  , doi: 10.7498/aps.55.1301
    [19] 李新霞, 唐 翌. 阻尼作用下一维体系热传导性质的研究.  , doi: 10.7498/aps.55.6556
    [20] 姜可宇, 蔡志明. 变尺度概率净化法的优化.  , doi: 10.7498/aps.54.4596
计量
  • 文章访问数:  339
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-20
  • 修回日期:  2025-06-24
  • 上网日期:  2025-07-19

/

返回文章
返回
Baidu
map