搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重子非轻子衰变的协变手征有效场论研究

张为 杨继锋

引用本文:
Citation:

重子非轻子衰变的协变手征有效场论研究

张为, 杨继锋

Covariant chiral effective field theory of baryonic non-leptonic decays

ZHANG Wei, YANG Jifeng
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 重子非轻子衰变研究中一个悬而未决的问题是描述该类衰变的s波振幅与p波振幅的理论值不能同时与实验值很好的符合. 与以往的文献相比, 本文将采用协变的手征有效理论框架, 在扩展极小减除方案下计算该类衰变的s波、p波振幅的一圈图修正. 为与实验数据相比, 分别采用s波拟合和p波拟合两种途径获得协变理论预言值. 采用s波拟合得到s波协变振幅理论预言值略逊于重重子框架下的理论预言值, 但是由此得到p波协变振幅理论预言值较重重子框架下的理论预言值有较多改善; 采用p波拟合得到p波协变振幅理论预言值贴近实验值, 重重子框架下的理论预言值与实验值相差较大, 由此得到s波协变振幅理论预言值与实验值有明显差距, 但重重子框架下的理论预言值与实验值差距更大. 由此可见, 协变框架下一圈图完整计算中, s波振幅与p波振幅间的理论矛盾依然存在, 但是两者之间矛盾程度与重重子相比得到部分缓解.
    An unresolved issue in the study of baryon non-leptonic decays is that the theoretical values describing the s- and p-wave amplitudes of such decays cannot simultaneously accord well with experimental values. Compared with previous literature, this paper adopts the covariant chiral effective theory framework and calculates the one-loop corrections to the s- and p-wave amplitudes by using the extended minimal subtraction (EMS) scheme, and also takes into account the contributions from intermediate pion states that are neglected in previous studies (the contributions from intermediate decuplet states are not considered here). Unlike infrared regularization and the extended on-shell subtraction scheme, EMS is easier to implement and also avoids over-subtraction. Apart from the typical chiral logarithmic term mslnms obtained in heavy-baryon formalism, the covariant calculation retains many non-local contributions that are not negligible. These non-local contributions vary with loop diagrams and intermediate states, making the complete covariant results significantly different from those from the simple chiral logarithmic structures in heavy-baryon formalism, which may alleviate the tension between the s- and p-wave components of the decay amplitudes. Subsequent numerical analysis confirms this conjecture. Two approaches are adopted to obtain covariant theoretical predictions: s-wave fitting and p-wave fitting. According to the fitted predictions and chi-squares of fitness, the s-wave fitting yields s-wave predictions slightly inferior to those under heavy-baryon formalism, but the resulting p-wave predictions are considerably improved compared with the heavy-baryon formalism predictions. The p-wave fitting produces p-wave predictions closer to experimental values, while the heavy-baryon predictions differ significantly from the experimental values. The resulting s-wave predictions from p-wave fitting show noticeable discrepancies with experimental data, but the heavy-baryon predictions are even worse. Therefore, working in the covariant framework, the tension between s- and p-wave amplitudes for baryon non-leptonic decays is significantly alleviated in comparison with that in heavy-baryon formalism. In addition, it is found that the contributions from intermediate pion states may be neglected in many cases, but are important and must be kept for decays with smaller experimental values.
  • 图 1  (a) 八重态重子波函数重整化图; (b) 介子波函数重整化图

    Fig. 1.  (a) Graph for baryon octet wave function renormalization; (b) graph for pion wave function renormalization.

    图 2  衰变s波树图贡献(虚线表示介子, 实线表示重子)

    Fig. 2.  Tree graph for s-wave hyperon non-leptonic decays (the dotted line denotes meson, and the solid line represents baryon).

    图 3  s波圈图贡献 (黑色方形表示弱作用顶角, 黑色圆形表示强作用)

    Fig. 3.  One-loop graphs for s-wave hyperon non-leptonic decay amplitudes (the solid square denotes weak interaction vertices while solid dot represents strong interaction vertices).

    图 4  衰变p波树图贡献

    Fig. 4.  Tree graphs for p-wave hyperon non-leptonic decays.

    图 5  p波圈图贡献

    Fig. 5.  One-loop graphs for p-wave hyperon non-leptonic decay amplitudes.

    图 6  协变$\Sigma^{({\mathrm{S}}){\mathrm{e}}}_{ij} $与重重子结果的对比

    Fig. 6.  Comparison of covariant $\Sigma^{({\mathrm{S}}){\mathrm{e}}}_{ij} $ and HB results.

    表 1  s波拟合预测s, p波振幅(重整化点: 4πμ2 = 1)

    Table 1.  Fitting s-wave to predicts s and p wave amplitude (renormalization point: 4πμ2 = 1).

    树图 HB(Jenkins) 协变 协变π 协变(π外) 实验
    Σ+→nπ+(s) 0.00 0.02 0.11 0.05 0.06 0.06 ± 0.01
    Σ+→pπ0(s) –1.37 –1.39 –1.60 –0.18 –1.42 –1.38 ± 0.02
    Σ→nπ(s) 1.94 1.98 2.16 0.36 1.80 1.88 ± 0.01
    Λ→pπ(s) 1.43 1.49 1.58 0.11 1.47 1.38 ± 0.01
    Λ→nπ0(s) –1.01 –1.05 –1.19 –0.12 –1.07 –1.03 ± 0.01
    Ξ→nπ(s) –1.90 –1.76 –1.28 –0.23 –1.05 –1.99 ± 0.01
    Ξ0→nπ0(s) 1.34 1.25 1.03 0.18 0.85 1.51 ± 0.01
    Σ+→nπ+(p) 0.12 0.14 1.03 0.14 0.89 1.81 ± 0.01
    Σ+→pπ0(p) 0.21 0.23 0.72 0.08 0.64 1.24 ± 0.03
    Σ→nπ(p) –0.18 –0.19 0.02 0.03 –0.01 –0.06 ± 0.01
    Λ→pπ(p) 0.43 1.31 0.38 0.05 0.33 0.63 ± 0.01
    Λ→nπ0(p) –0.31 –0.93 –0.27 –0.04 –0.23 –0.41 ± 0.01
    Ξ→nπ(p) 0.10 –0.21 0.19 0.00 0.19 0.39 ± 0.01
    Ξ0→nπ0(p) –0.07 0.15 –0.14 –0.00 –0.14 –0.27 ± 0.01
    hD –0.58 ± 0.09 –0.60 ± 0.12 –0.53 ± 0.35
    hF 1.36 ± 0.05 1.00 ± 0.07 0.92 ± 0.20
    $ \chi _{1{\text{d}}{\text{.o}}{\text{.f}}}^2 $ 4.15 5.23 1.96
    $ \chi _{{\text{2 d}}{\text{.o}}{\text{.f}}}^2 $ 2676.96 3602.73 1403.43
    下载: 导出CSV

    表 2  s波拟合预测s, p波振幅(重整化点: 4πμ2 = 4π)

    Table 2.  Fitting s-wave to predicts s and p wave amplitude (renormalization point: 4πμ2 = 4π).

    树图 HB(Jenkins) 协变 协变π 协变(π外) 实验
    Σ+→nπ+(s) 0.00 0.05 0.06 0.25 –0.19 0.06 ± 0.01
    Σ+→pπ0(s) –1.37 –1.39 –1.73 –0.31 –1.42 –1.38 ± 0.02
    Σ→nπ(s) 1.94 2.02 2.13 0.76 1.37 1.88 ± 0.01
    Λ→pπ(s) 1.43 1.58 1.71 0.08 1.63 1.38 ± 0.01
    Λ→nπ0(s) –1.01 –1.12 –1.28 –0.06 –1.22 –1.03 ± 0.01
    Ξ→nπ(s) –1.90 –1.61 –0.99 –0.35 –0.64 –1.99 ± 0.01
    Ξ0→nπ0(s) 1.34 1.14 0.92 0.25 0.67 1.51 ± 0.01
    Σ+→nπ+(p) 0.12 0.13 1.51 0.18 1.33 1.81 ± 0.01
    Σ+→pπ0(p) 0.21 0.25 1.09 0.10 0.99 1.24 ± 0.03
    Σ→nπ(p) –0.18 –0.22 –0.03 0.05 –0.08 –0.06 ± 0.01
    Λ→pπ(p) 0.43 0.98 0.33 0.09 0.24 0.63 ± 0.01
    Λ→nπ0(p) –0.31 –0.70 –0.23 –0.06 –0.17 –0.41 ± 0.01
    Ξ→nπ(p) 0.10 –0.36 0.56 0.05 0.51 0.39 ± 0.01
    Ξ0→nπ0(p) –0.07 0.26 –0.40 –0.03 –0.37 –0.27 ± 0.01
    hD –0.58 ± 0.09 –0.49 ± 0.12 –0.47 ± 0.31
    hF 1.36 ± 0.05 0.71 ± 0.07 0.71 ± 0.19
    $ \chi _{1{\text{d}}{\text{.o}}{\text{.f}}}^2 $ 4.15 5.21 1.98
    $ \chi _{{\text{2 d}}{\text{.o}}{\text{.f}}}^2 $ 2676.96 3620.78 1556.18
    下载: 导出CSV

    表 3  p波拟合预测s, p波振幅(重整化点: 4πμ2 = 1)

    Table 3.  Fitting p-wave to predicts s and p wave amplitude (renormalization point: 4πμ2 = 1).

    树图 HB(Jenkins) 协变 协变π 协变(π外) 实验
    Σ+→nπ+(s) 0.00 0.02 0.22 0.16 0.06 0.06 ± 0.01
    Σ+→pπ0(s) -5.57 -3.31 -2.69 –0.31 -2.38 –1.38 ± 0.02
    Σ→nπ(s) 7.89 4.70 3.81 0.61 3.20 1.88 ± 0.01
    Λ→pπ(s) 4.01 1.83 2.76 0.24 2.52 1.38 ± 0.01
    Λ→nπ0(s) -2.83 –1.29 -2.02 –0.19 –1.83 –1.03 ± 0.01
    Ξ→nπ(s) -6.83 -3.27 -2.28 –0.41 –1.87 –1.99 ± 0.01
    Ξ0→nπ0(s) 4.83 2.31 1.73 0.30 1.43 1.51 ± 0.01
    Σ+→nπ+(p) 1.45 1.29 1.81 0.25 1.56 1.81 ± 0.01
    Σ+→pπ0(p) 0.87 0.54 1.29 0.14 1.15 1.24 ± 0.03
    Σ→nπ(p) 0.21 0.53 –0.02 0.05 –0.07 –0.06 ± 0.01
    Λ→pπ(p) 0.74 0.82 0.65 0.09 0.56 0.63 ± 0.01
    Λ→nπ0(p) –0.52 –0.58 –0.46 –0.07 –0.39 –0.41 ± 0.01
    Ξ→nπ(p) 0.84 0.69 0.37 0.00 0.37 0.39 ± 0.01
    Ξ0→nπ0(p) –0.60 –0.49 –0.26 –0.00 –0.26 –0.27 ± 0.01
    hD -3.46 ± 0.87 –1.95 ± 0.67 –0.93 ± 0.02
    hF 4.43 ± 1.34 1.67 ± 0.62 1.58 ± 0.04
    $ \chi _{1{\text{d}}{\text{.o}}{\text{.f}}}^2 $ 98.97 15.57 8.51
    $ \chi _{{\text{2 d}}{\text{.o}}{\text{.f}}}^2 $ 71376.35 10276.18 6026.18
    下载: 导出CSV

    表 4  p波拟合预测s, p波振幅(重整化点: 4πμ2 = 4π)

    Table 4.  Fitting p-wave to predicts s and p wave amplitude (renormalization point: 4πμ2 = 4π).

    树图 HB(Jenkins) 协变 协变π 协变(π外) 实验
    Σ+→nπ+(s) 0.00 0.05 0.11 0.35 –0.24 0.06 ± 0.01
    Σ+→pπ0(s) -5.57 –3.45 –2.07 –0.38 –1.69 –1.38 ± 0.02
    Σ→nπ(s) 7.89 4.93 2.66 0.97 1.69 1.88 ± 0.01
    Λ→pπ(s) 4.01 1.99 2.45 0.13 2.32 1.38 ± 0.01
    Λ→nπ0(s) –2.83 –1.41 –1.80 –0.09 –1.71 –1.03 ± 0.01
    Ξ→nπ(s) -6.83 –2.93 –1.37 –0.44 –0.93 –1.99 ± 0.01
    Ξ0→nπ0(s) 4.83 2.07 1.19 0.31 0.88 1.51 ± 0.01
    Σ+→nπ+(p) 1.45 1.43 1.76 0.22 1.54 1.81 ± 0.01
    Σ+→pπ0(p) 0.87 0.60 1.38 0.12 1.26 1.24 ± 0.03
    Σ→nπ(p) 0.21 0.59 –0.19 0.05 –0.24 –0.06 ± 0.01
    Λ→pπ(p) 0.74 0.83 0.59 0.12 0.47 0.63 ± 0.01
    Λ→nπ0(p) –0.52 –0.58 –0.42 –0.08 –0.34 –0.41 ± 0.01
    Ξ→nπ(p) 0.84 0.38 0.55 0.05 0.50 0.39 ± 0.01
    Ξ0→nπ0(p) –0.60 –0.27 –0.39 –0.03 –0.36 –0.27 ± 0.01
    hD –3.46 ± 0.87 –1.46 ± 0.46 –0.51 ± 0.05
    hF 4.43 ± 1.34 1.22 ± 0.45 0.96 ± 0.10
    $ \chi _{1{\text{d}}{\text{.o}}{\text{.f}}}^2 $ 98.97 16.37 3.41
    $ \chi _{{\text{2 d}}{\text{.o}}{\text{.f}}}^2 $ 71376.35 10.647.20 2529.84
    下载: 导出CSV
    Baidu
  • [1]

    Bijnens J, Sonoda H, Wise M B 1985 Nucl. Phys. B 261 185Google Scholar

    [2]

    Jenkins E 1992 Nucl. Phys. B 375 561Google Scholar

    [3]

    Borasoy B, Müller G 2000 Phys. Rev. D 62 054020Google Scholar

    [4]

    Żenczykowski P 2006 Phys. Rev. D 73 076005Google Scholar

    [5]

    Le Yaouanc A, Pène O, Raynal J C, Oliver L 1979 Nucl. Phys. B 149 321Google Scholar

    [6]

    Nardulli G 1988 Nuov. Cim. A 100 485Google Scholar

    [7]

    Scadron M D, Thebaud L R 1973 Phys. Rev. D 8 2329Google Scholar

    [8]

    Borasoy B, Holstein B R 1999 Eur. Phys. J. C 6 85Google Scholar

    [9]

    Borasoy B, Marco E 2003 Phys. Rev. D 67 114016Google Scholar

    [10]

    Abd El-Hady A, Tandean J 2000 Phys. Rev. D 61 114014Google Scholar

    [11]

    Becher T, Leutwyler H 1999 Eur. Phys. J. C 9 647

    [12]

    Fuchs T, Gegelia J, Japaridze G, Scherer S 2003 Phys. Rev. D 68 056055

    [13]

    Geng L S, Martín Cámalich J, Vicente Vacas M J 2009 Phys. Lett. B 676 63Google Scholar

    [14]

    Yang J F 2014 Mod. Phys. Lett. A 29 1450043

    [15]

    Liu Z, Wen L H, Yang J F 2021 Nucl. Phys. B 963 115288Google Scholar

    [16]

    Fettes N, Meissner U, Steininger S 1998 Nucl. Phys. A 640 109

    [17]

    Holmberg M, Leupold S 2018 Eur. Phys. J. A 54 103Google Scholar

    [18]

    Copeland P M, Ji C R, Melnitchouk W 2021 Phys. Rev. D 103 044019Google Scholar

    [19]

    Jenkins E 1992 Nucl. Phys. B 36 190

    [20]

    刘舟, 杨继锋 2022 华东师范大学学报 (自然科学版) 2022 103

    Liu Z, Yang J F 2022 J. East China Normal Univ. (Nat. Sci. ) 2022 103

    [21]

    周海峰, 杨继锋 2024 华东师范大学学报 (自然科学版) 3 12

    Zhou H F, Yang J F 2024 J. East China Normal Univ. (Nat. Sci. ) 3 12

    [22]

    Salone N 2024 Nuov. Cim. 47C 201

    [23]

    Martín Cámalich J, Geng L S, Vacas M J V 2021 Phys. Rev. D 82 074504

    [24]

    Gell-Mann M 1961 Cal. Tech. Rept. CTSL-20

    [25]

    Okubo S 1962 Prog. Theo. Phys. 27 949Google Scholar

  • [1] 王靖. 手征马约拉纳费米子.  , doi: 10.7498/aps.69.20200534
    [2] 许松, 唐晓明, 苏远大. 横向各向同性固体材料中含定向非均匀体的有效弹性模量.  , doi: 10.7498/aps.64.206201
    [3] 徐岩, 樊炜, 冀彦君, 宋仁刚, 陈兵, 赵振华, 陈达. 非相对论弱相互作用玻色气体的有效场理论处理.  , doi: 10.7498/aps.63.040501
    [4] 宋永佳, 胡恒山. 含定向非均匀体固体材料的横观各向同性有效弹性模量.  , doi: 10.7498/aps.63.016202
    [5] 钟时, 杨修群, 郭维栋. 局地零平面位移对非均匀地表有效空气动力学参数的影响.  , doi: 10.7498/aps.62.144212
    [6] 黄瑾, 钟中, 郭维栋, 卢伟. 非均匀地表空气动力学有效粗糙度的统计特征.  , doi: 10.7498/aps.62.054204
    [7] 黄永平, 赵光普, 肖希, 王藩侯. 部分空间相干光束在非Kolmogorov湍流大气中的有效曲率半径.  , doi: 10.7498/aps.61.144202
    [8] 史庆藩, 李粮生, 张 梅. “禁忌”3-磁振子相互作用哈密顿项的有效性分析.  , doi: 10.7498/aps.53.3916
    [9] 翁征宇, 吴杭生. 归一有效声子谱谱形对超导临界温度Tc的影响.  , doi: 10.7498/aps.37.239
    [10] 张耀中. 手征QCD2模型的有效拉氏量和质量生成.  , doi: 10.7498/aps.36.1513
    [11] 梁晓玲, 李家明. 激发态原子振子强度密度极小点.  , doi: 10.7498/aps.34.1479
    [12] 李宏成. 有效声子谱对超导体临界温度的影响.  , doi: 10.7498/aps.28.104
    [13] 阮同泽, 李炳安. 层子模型中重子的半轻子衰变和高能中微子反应.  , doi: 10.7498/aps.26.397
    [14] 罗辽复, 陆埮. 奇异粒子的非轻子衰变和层子模型.  , doi: 10.7498/aps.24.105
    [15] 杨国琛, 陆埮, 罗辽复. 中间玻色子理论Ⅱ.超子的非轻子衰变.  , doi: 10.7498/aps.22.1032
    [16] 阮同泽, 陈时. K+介子的三体轻子衰变.  , doi: 10.7498/aps.21.779
    [17] 陈启洲. 么正对称性和超子的非轻子衰变.  , doi: 10.7498/aps.21.1915
    [18] 罗遼复. 奇异粒子非轻子衰变的选择定则.  , doi: 10.7498/aps.21.1132
    [19] 宋行长. Cabibbo理论与非轻子衰变.  , doi: 10.7498/aps.21.469
    [20] 宋行长. 超子的非轻子衰变与么正对称性.  , doi: 10.7498/aps.20.1048
计量
  • 文章访问数:  302
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-15
  • 修回日期:  2025-09-16
  • 上网日期:  2025-10-14

/

返回文章
返回
Baidu
map