搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

交/直流电场对里德堡原子Stark效应的调控作用及工频强场测量研究

肖冬萍 陈苓 阎晟 王浩 许显立 潘峰 温东阳 张淮清

引用本文:
Citation:

交/直流电场对里德堡原子Stark效应的调控作用及工频强场测量研究

肖冬萍, 陈苓, 阎晟, 王浩, 许显立, 潘峰, 温东阳, 张淮清

Regulation of AC and DC electric fields on Rydberg atoms’ Stark effect and power-frequency strong field measurement

XIAO Dongping, CHEN Ling, YAN Sheng, WANG Hao, XU Xianli, PAN Feng, WEN Dongyang, ZHANG Huaiqing
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 里德堡原子会敏感地响应外部电场作用并发生量子相干效应,这是基于里德堡原子测量精确电场的基本原理。本文首先采用双光子三能级系统生成铯里德堡原子并形成电磁诱导透明(Electromagnetically induced transparency,EIT)效应,以EIT-Stark光谱为宏观表征,通过实验分别探讨了不同强度的直流电场和交流电场对里德堡原子Stark效应的调控作用,揭示了强场测量受限的原因。本文以电力系统工频强电场测量为目标,提出了直流场调控扩大交流电场测量范围的方案,建立了交直流电场共同作用于里德堡原子的动力学模型,推导出解调后的直流和交流电场分量表达式。在激光器扫频范围1 GHz的条件下,施加8 V/cm的直流调控场,采用28D3/2里德堡态可测到交流电场峰值可到32 V/cm,较直接测量方法提升了33.3 %;设置不同强度的直流调控场进行实验,解调后得到的交流场误差在0.8 %以下。本文研究为基于里德堡原子的强场测量提供了一种有效的解决方案。
    The Stark effect in Rydberg atoms exhibits remarkable sensitivity to external electric fields, forming the fundamental basis for precision electric field measurements. This study systematically investigates the regulatory effects of both DC and AC electric fields on cesium Rydberg atoms through a comprehensive experimental and theoretical approach. Utilizing a two-photon three-level system, we generated 28D5/2 Rydberg states and established electromagnetically induced transparency (EIT) as the macroscopic observable. Our experimental results demonstrate distinct Stark splitting patterns under DC fields, revealing three fine-structure states with polarization-dependent frequency shifts, negative polarizability states (mj=1/2, 3/2) exhibiting rightward shifts while the positive polarizability state (mj=5/2) shows leftward displacement. For power-frequency AC fields (50 Hz), we observed characteristic double-frequency modulation of the EIT-Stark spectra, with measurement limitations emerging at field strengths above 24 V/cm due to laser scanning range constraints. To overcome this limitation, we developed an innovative DC field regulated measurement scheme, establishing a dynamic model for the combined AC/DC field interaction with Rydberg atoms. The model successfully derived demodulation expressions for extracting both DC and AC field components from the composite spectral shifts. Experimental validation showed that applying an 8 V/cm DC bias field extended the measurable AC field range to 32 V/cm, achieving a 33.3 % improvement over direct measurement methods within a 1 GHz laser scanning range, while maintaining exceptional accuracy with demodulation errors below 0.8 % across all tested configurations. Detailed error analysis revealed measurement precision improved with increasing field strength, exhibiting a standard deviation of σ=0.2196 %, demonstrating the robustness of our approach. Compared with existing techniques, this DC-field regulation method effectively addresses the critical challenge of limited laser scanning range in strong-field measurements, while preserving the quantum advantages of Rydberg atom sensors. The research provides both theoretical foundations and practical solutions for power-frequency strong electric field measurements in power systems, with potential applications extending to other low-frequency strong-field measurement scenarios. Future work will focus on enhancing measurement stability in extreme field conditions, improving accuracy, and further expanding the operational range of this quantum sensing technology.
      Keywords:
    •  / 
    •  / 
    •  / 
    •  
  • [1]

    Peng J, Jia S H, Bian J M, Zhang S, Liu J B, Zhou X 2019 Sensors 19 2860

    [2]

    Han Z F, Xue F, Hu J, He J L 2021 IEEE Industrial Electronics Magazine 15 35

    [3]

    Han X X, Sun G Z, Hao L P, Bai S Y, Jiao Y C 2024 Acta Phys. Sin 73 093202 (in Chinese)[韩小萱, 孙光祖, 郝丽萍, 白素英, 焦月春 2024 73 093202]

    [4]

    Liu Q, Chen J Z, Wang H, Zhang J, Ruan W M, Wu G Z, Zheng S Y, Luo J T, Song Z F 2024 Chinese Physics B 33 054203

    [5]

    Zhang X C, Qiao J H, Liu Y, Su N, Liu Z H, Cai T, He J, Zhao Y T, Wang J M. 2024 Acta Phys. Sin 73 070201 (in Chinese)[张学超, 乔佳慧, 刘瑶, 苏楠, 刘智慧, 蔡婷, 何军, 赵延霆, 王军民 2024 73 070201]

    [6]

    Facon A, Dietsche E K, Grosso D, Haroche S, Raimond J M, Brune M, Gleyzes S 2016 Nature 535 262

    [7]

    Duspayev A, Cardman R, Anderson D A, Raithel G 2024 Phys. Rev. Res. 6 023138

    [8]

    Li C Y, Zhang L J, Zhao J M, Jia S T Acta Phys. Sin. 2012 61 163202 (in Chinese)[李昌勇, 张临杰, 赵建明, 贾锁堂 2012 61 163202]

    [9]

    Huang W, Liang Z T, Du Y X, Yan H, Zhu S L 2015 Acta Phys. Sin. 64 160702. (in Chinese)[黄巍, 梁振涛, 杜炎雄, 颜辉, 朱诗亮 2015 64 160702]

    [10]

    Liao K Y, Tu H T, Yang S Z, Chen C J, Liu X H, Liang J, Zhang X D, Yan H, Zhu S L 2020 Physical Review A 101 053432

    [11]

    Liu X B, Jia F D, Zhang H Y, Mei J Yu Y H, Liang W C, Zhang J, Xie F, Zhong Z P 2021 AIP Advances 11 085127

    [12]

    Jia F D, Liu X B, Mei J, Yu Y H, Zhang H Y, Lin Z Q, Dong H Y, Zhang J, Xie F 2021 Physical Review A 103 063113

    [13]

    Zhou F, Jia F D, Liu X B, Zhang J, Xie F, Zhong Z P 2023 Acta Phys. Sin. 72 045204 (in Chinese)[周飞, 贾凤东, 刘修彬, 张剑, 谢锋, 钟志萍2023 72 045204]

    [14]

    Holloway C L, Prajapati N, Artusio-Glimpse A B, Berweger S, Simons M T, Kasahara Y, Alù A, Ziolkowski R W 2022 Applied Physics Letters 120 204001

    [15]

    Wang Y X, Liu Y Q, Zhang Q Y, Gong P W, Xie W, Wu Z N, Jia F D, Zhong Z P 2024 AIP Advances 14 105137

    [16]

    Weller D 2019 Thermal Rydberg Spectroscopy and Plasma (Munich:Verlag Dr. Hut) p68

    [17]

    Anderson D A, Schwarzkopf A, Miller S A, Thaicharoen N, Raithel G, Gordon J A, Holloway C L 2014 Phys. Rev. A 90 043419

    [18]

    Anderson D A, Miller S A, Raithel G, Gordon J A, Butler M L, Holloway C L 2016 Phys. Rev. Applied 5 034003

    [19]

    Song H T, Hu S S, Ding C, Xiao Y, Wang B S, Zhang Y 2023 Proceedings of the 2023 8th Asia Conference on Power and Electrical Engineering (ACPEE 2023) Tianjin, China, April 1, 2023 p1638

    [20]

    Ding C, Hu S S, Deng S, Song H T, Zhang Y, Wang B S, Yan S, Xiao D P, Zhang H Q. 2025 Acta Phys. Sin. 74 043201 (in Chinese)[丁超, 胡珊珊, 邓松, 宋宏天, 张英, 王保帅, 阎晟, 肖冬萍, 张淮清 2025 74 043201]

    [21]

    Jiao Y C 2017 Ph. D. Dissertation (Shanxi:Shanxi University) (in Chinese)[焦月春 2017 博士论文 (山西,山西大学)]

    [22]

    Xiao D P, Shi Z X, Chen L, Yan S, Xu L X, Zhang H Q 2024 Front. Phys. 12 1405149

    [23]

    Song H T, Xiao Y, Hu S S, Xiao D P, Wang B S, Shi Z X, Zhang H Q 2024 IET Energy Syst. Integr. 6 pp174-181

    [24]

    Urbańczyk T, Kędziorski A, Krośnicki M, Koperski J 2024 Molecules 29 4657

    [25]

    Gatzke M, Veale J R, Swindell W R, Gallagher T F 1996 Phys. Rev. A 54 2492.

    [26]

    Lihachev G, Riemensberger J, Weng W, Liu J, Tian H, Siddharth A, Snigirev V, Shadymov V, Voloshin A, Wang R N, He J, Bhave S A, Kippenberg T J 2022 Nat. Commun. 13 3522

    [27]

    Dong H J, Wang X Y, Li C Y, Jia S T 2015 Acta Phys. Sin. 64 093201 (in Chinese)[董慧杰, 王新宇, 李昌勇, 贾锁堂 2015 64 093201]

    [28]

    Li W, Zhang C G, Zhang H, Jing M Y, Zhang L J 2021 Acta Laser Optoelectron. Prog. 58 144 (in Chinese)[李伟, 张淳刚, 张好, 景明勇, 张临杰 2021 激光与光电子学进展 58 144]

    [29]

    Cui S W, Peng W X, Li S N, Jiang Y, Ji Z H, Zhao Y T 2023 High Voltage Eng. 49 644 (in Chinese)[崔帅威, 彭文鑫, 李松浓, 蒋源, 姬中华, 赵延霆 2023高电压技术 49 644]

    [30]

    Harmin D A 1982 Phys. Rev. A 26 2656

    [31]

    Cardman R, MacLennan J L, Anderson S E, Raithel G. 2021 New J. Phys. 23 063074

计量
  • 文章访问数:  54
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-10-10

/

返回文章
返回
Baidu
map