搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压下α-铀热输运性质的第一性原理计算

胡柯 孙千惠 王艳 胡翠娥 曾召益 陈军

引用本文:
Citation:

高压下α-铀热输运性质的第一性原理计算

胡柯, 孙千惠, 王艳, 胡翠娥, 曾召益, 陈军

First principles calculations of lattice dynamics and thermal transport properties of alpha uranium under high pressure

HU Ke, SUN Qianhui, WANG Yan, HU Cuie, ZENG Zhaoyi, CHEN Jun
cstr: 32037.14.aps.74.20250619
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本文基于密度泛函理论和玻尔兹曼输运方程, 计算了α-铀(U)在不同压强下的声子色散关系及其热导率. 计算结果表明α-U在压力高达80 GPa下仍保持动力学稳定性, 通过准谐近似得到的α-U物态方程也与计算值和实验值相吻合, 其热导率随温度的升高而先减小后增大, 呈现出典型的“V”形特征. 在低温区, 声子热导较大, 占主导地位且随温度呈递减趋势, 压强的增大会使得格林艾森参数、声子群速度以及声子寿命发生变化进而影响晶格热导率. 而在高温区, 电子热导率较大且随温度的升高而升高, 二者共同导致了热导率在160 K附近存在极小值, 反映了声子-电子热输运协同作用的微观机制. 在300 K, 0 GPa下, 总热导率为25.11 W/(m·K), 在80 GPa下的热导率上升到250.75 W/(m·K), 表明压强对α-U热输运性质有着重要的影响.
    Through first-principles calculations based on density functional theory (DFT) and the Boltzmann transport equation (BTE), the thermal transport properties of α-uranium under high pressure are investigated. In order to investigate the effects of pressure on the phonon dispersion relations and thermal conductivity of α-U, the phonon dispersion relations and lattice thermal conductivity at different pressures are obtained using a 4×4×4 supercell. First, for the calculation of electronic thermal conductivity, the ratio of thermal conductivity to relaxation time is calculated from the Boltzmann transport equation. Then, the relaxation time is calculated using deformation potential energy theory, relaxation time approximation, and effective mass approximation method derived from DFT band structure. Finally, the electronic thermal conductivity is obtained through the Wiedemann-Franz law. The calculation results indicate that α-U remains dynamically stable under a pressure of 80 GPa. The thermal conductivity of α-U exhibits a typical “V”-shaped temperature dependence: at low temperatures, phonon thermal conductivity dominates and decreases with the increase of temperature; at high temperatures, the electronic thermal conductivity becomes more significant and increases with temperature increasing. The combined effect of phonon thermal conductivity and electron thermal conductivity results in the total thermal conductivity reaching its minimum value at a temperature of approximately 160 K. When the temperature is 300 K, the thermal conductivity of α-U at 0 GPa is 25.11 W/(m·K), and increases to 250.75 W/(m·K) at 80 GPa as pressure increases. This result clearly indicates that an increase in pressure significantly enhances thermal conductivity. The calculation results also highlight the influences of pressure on phonon group velocity, phonon lifetime, and electron phonon interactions, all of which promote an increase in thermal conductivity. These findings provide a comprehensive understanding of the thermal conductivity of α-U depending on temperature and pressure and offer valuable insights into potential applications in extreme environments.
      通信作者: 曾召益, zhaoyizeng@126.com
    • 基金项目: 国家自然科学基金(批准号: 12072044)资助的课题.
      Corresponding author: ZENG Zhaoyi, zhaoyizeng@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12072044).
    [1]

    Jacob C W, Warren B E 1937 J. Am. Chem. Soc. 59 2588Google Scholar

    [2]

    Tucker C W 1951 Acta Crystallogr. 4 425Google Scholar

    [3]

    Lawson A C, Olsen C E, Richardson J W 1988 Acta Crystallogr. B 44 89Google Scholar

    [4]

    Wilson A S, Rundle R E 1949 Acta Crystallogr. 2 126.Google Scholar

    [5]

    Le Bihan T, Heathman S, Idiri M 2003 Phys. Rev. B 67 134102Google Scholar

    [6]

    刘本琼, 谢雷, 段晓溪, 孙光爱, 陈波, 宋建明, 刘耀光, 汪小琳 2013 62 176104Google Scholar

    Liu B Q, Xie L, Duan X X, Sun G A, Chen B, Song J M, Liu Y G, Wang X L 2013 Acta Phys. Sin. 62 176104Google Scholar

    [7]

    Wills J M, Eriksson O 1992 Phys. Rev. B 45 13879Google Scholar

    [8]

    Söderlind P 2002 Phys. Rev. B 66 085113Google Scholar

    [9]

    张其黎, 赵艳红, 马桂存. 2014 高压 30 32Google Scholar

    Zhang Q L, Zhao Y H, Ma G C 2014 J. High Press. Phys. 30 32Google Scholar

    [10]

    尹晚秋, 薄涛, 赵玉宝, 张蕾, 柴之芳, 石伟群 2024 核化学与放射化学 46 450Google Scholar

    Yin W Q, Bo T, Zhao Y B, Zhang L, Chai Z F, Shi W Q 2024 J. Nucl. Chem. Radiochem. 46 450Google Scholar

    [11]

    Fisher E S, McSkimin H J 1958 J. Appl. Phys. 29 1473Google Scholar

    [12]

    Bouchet J, Albers R C 2011 J. Phys.: Condens. Matter 23 215402Google Scholar

    [13]

    Yang J W, Gao T, Liu B Q, Sun G A, Chen B 2014 Eur. Phys. J. B 87 130Google Scholar

    [14]

    Söderlind P, Yang L H, Landa A, Wu A 2021 Appl. Sci. 11 5643Google Scholar

    [15]

    Crummett W P, Morris J A, Baker A R 1979 Phys. Rev. B 19 6028Google Scholar

    [16]

    Manley M E, Jarman T L, Cooper R A 2003 Phys. Rev. B 67 052302Google Scholar

    [17]

    Yang J W, Gao T,Liu B Q,Sun G A,Chen B 2015 J. Nucl. Mater. 252 521Google Scholar

    [18]

    Bouchet J, Bottin F J 2017 Phys. Rev. B 95 054113Google Scholar

    [19]

    Eriksen V O, Halg W 1955 J. Nucl. Mater. 1 232

    [20]

    Pearson G J D, Danielson G C 1957 Proc. Iowa Acad. Sci. 64 461

    [21]

    Takahashi Y, Yamawaki M, Yamamoto K 1988 J. Nucl. Mater. 154 141Google Scholar

    [22]

    Kaity S, Banerjee J, Nair MR, Ravi K, Dash S, Kutty TRG, Singh RP 2012 J. Nucl. Mater. 427 1Google Scholar

    [23]

    Zhou S X, Jacobs R, Xie W, Tea E, Hin C, Morgan D 2018 Phys. Rev. Mater. 2 083401Google Scholar

    [24]

    Peng J, Deskins W. R, Malakkal L, El-Azab A 2021 J. Appl. Phys. 130 185101Google Scholar

    [25]

    简单 2020 硕士学位论文(绵阳: 中国工程物理研究院)

    Jian D 2020 M. S. Thesis (Mianyang: China Academy of Engineering Physics

    [26]

    Richard N, Hall R O, Lee J A 2002 Phys. Rev. B 66 235112Google Scholar

    [27]

    Söderlind P, Zhang Z, Anderson O 1994 Phys. Rev. B 50 7291Google Scholar

    [28]

    Lan G Q, Yang B O, Xu Y S, Song J, Jiang Y 2016 J. Appl. Phys. 119 235103.Google Scholar

    [29]

    Li W, Carrete J, Katcho N A, Mingo N 2014 Comput. Phys. Commun. 185 1747Google Scholar

    [30]

    Madsen G K H, Singh D J 2006 Comput. Phys. Commun. 175 67Google Scholar

    [31]

    Bardeen J, Shockley W 1950 Phys. Rev. 80 72Google Scholar

    [32]

    Xi J Y, Long M Q, Tang L, Wang D, Shuai Z G 2012 Nanoscale 4 4348Google Scholar

    [33]

    Ziman J M 2001 Electrons and Phonons (Oxford University Press

    [34]

    Hashin Z, Shtrikman S 1963 Phys. Rev. 130 129Google Scholar

    [35]

    Kruglov I A, Yanilkin A, Oganov AR, Korotaev P 2019 Phys. Rev. B 100 174104Google Scholar

    [36]

    Dewaele A, Loubeyre P, Sato H 2013 Phys. Rev. B 88 134202Google Scholar

    [37]

    Akella J, Gupta Y, Luthra G 1990 High Press. Res. 2 295Google Scholar

    [38]

    Birch F 1952 J. Geophys. Res. 57 227Google Scholar

    [39]

    Bouchet J 2008 Phys. Rev. B 77 024113Google Scholar

    [40]

    Ren Z Y, Liu L, Zhang Q 2016 J. Nucl. Mater. 480 80Google Scholar

    [41]

    Yoo C S, Cynn H, Söderlind P 1998 Phys. Rev. B 57 10359Google Scholar

    [42]

    Raetsky V M 1967 J. Nucl. Mater. 21 105Google Scholar

    [43]

    Pascal J, Morin J, Lacombe P 1964 J. Nucl. Mater. 13 28Google Scholar

    [44]

    Touloukian Y S, Bass R L, Shapiro S M 1970 Thermophysical Properties of Matter (TPRC Data Series) (Vol. 1) (New York: IFI/Plenum

    [45]

    Hall R O A, Lee J A 1971 J. Low Temp. Phys. 4 415Google Scholar

    [46]

    Howl D A 1966 J. Nucl. Mater. 19 9Google Scholar

  • 图 1  α-U的归一化晶格常数随压强的变化关系

    Fig. 1.  Normalized lattice constant of α-U as a function of pressure.

    图 2  (a) α-U在0 GPa下的声子色散关系曲线, 实心球是实验数据[15]; (b) 在不同压强下的声子色散关系曲线

    Fig. 2.  (a) Phonon dispersion relationship curve of α-U at 0 GPa, solid sphere is experimental data[15]; (b) phonon dispersion relationship curve at different pressures.

    图 3  不同压强下α-U的物态方程

    Fig. 3.  Equation of state of α-U at different pressures.

    图 4  α-U在不同方向的晶格热导率, 五角星、圆形、三角形是Peng等[24]的计算值

    Fig. 4.  The lattice thermal conductivity of α-U in different directions, with pentagrams, circles, and triangles being the calculated values by Peng et al[24].

    图 5  α-U在不同方向上, 20 GPa (a), 40 GPa (b), 60 GPa (c)和80 GPa (d)的晶格热导率

    Fig. 5.  Lattice thermal conductivity of α-U in different directions at 20 GPa (a), 40 GPa (b), 60 GPa (c), and 80 GPa (d).

    图 6  α-U在不同压强下格林艾森参数随频率的变化

    Fig. 6.  Frequency dependent Grüneisen parameters of α-U under different pressures.

    图 7  α-U在不同压强下沿着(a) [100]方向、(b) [010]方向、(c) [001]方向的声子群速度

    Fig. 7.  Phonon group velocities of α-U along the (a) [100] direction, (b) [010] direction, and (c) [001] direction at different pressures.

    图 8  α-U在不同压强下的声子寿命

    Fig. 8.  Phonon lifetime of α-U under different pressure.

    图 9  α-U沿不同方向的弛豫时间与温度的关系

    Fig. 9.  Relationship between relaxation time and temperature of α-U along different directions.

    图 10  α-U电阻率与温度的关系, 阴影表示Zhou等[23]的结果, 散点表示实验值[42,43]

    Fig. 10.  Relationship between resistivity and temperature of α-U, the shaded part represents the results of Zhou et al.[23], and the scattered point represents the experimental value[42,43]

    图 11  α-U在(a) 0 GPa下的电子热导率和(b) 不同压强的电子热导率

    Fig. 11.  Electronic thermal conductivity of α-U at (a) 0 GPa and (b) at different pressures.

    图 12  α-U在0 GPa下的总热导率, 点线和划线表示计算值[23,24], 散点表示实验值[1922,4446]

    Fig. 12.  Total thermal conductivity of α-U at 0 GPa, dotted lines and dashes represent calculated values[23,24], and scattered points represent experimental values[1922,4446].

    图 13  α-U在不同压强下的热导率

    Fig. 13.  Total thermal conductivity of α-U at different pressures.

    表 1  α-U的晶格常数、体积、体弹模量及其对压强的一阶导数

    Table 1.  Lattice constants, volume, bulk modulus, and its derivative with respect to pressure of α-U.

    方法 a b c V/(Å3·atom–1) B0/GPa $ B_0' $
    本文 2.809 5.798 4.909 19.99 146.2 4.97
    计算值[6] 2.803 5.872 4.905 20.18 141.6 4.83
    实验值[38] 2.836 5.866 4.935 20.52 135.5 3.80
    下载: 导出CSV

    表 2  α-U在不同压强下沿着3个方向的声速(单位: km/s)

    Table 2.  The sound velocity of α-U along three directions at different pressures (in km/s).

    0 GPa 20 GPa 40 GPa 60 GPa 80 GPa

    [100]
    LA 27.117 31.438 35.331 39.011 43.929
    TA1 17.936 19.167 21.691 22.338 22.826
    TA2 17.471 17.942 19.273 20.341 20.529

    [010]
    LA 20.052 22.916 26.307 26.954 29.422
    TA1 16.761 17.295 19.731 20.636 21.069
    TA2 12.026 13.935 17.402 18.338 19.317

    [001]
    LA 23.129 29.177 34.213 37.737 42.609
    TA1 17.239 18.526 20.391 21.735 22.445
    TA2 12.102 15.813 17.534 18.767 19.462
    下载: 导出CSV
    Baidu
  • [1]

    Jacob C W, Warren B E 1937 J. Am. Chem. Soc. 59 2588Google Scholar

    [2]

    Tucker C W 1951 Acta Crystallogr. 4 425Google Scholar

    [3]

    Lawson A C, Olsen C E, Richardson J W 1988 Acta Crystallogr. B 44 89Google Scholar

    [4]

    Wilson A S, Rundle R E 1949 Acta Crystallogr. 2 126.Google Scholar

    [5]

    Le Bihan T, Heathman S, Idiri M 2003 Phys. Rev. B 67 134102Google Scholar

    [6]

    刘本琼, 谢雷, 段晓溪, 孙光爱, 陈波, 宋建明, 刘耀光, 汪小琳 2013 62 176104Google Scholar

    Liu B Q, Xie L, Duan X X, Sun G A, Chen B, Song J M, Liu Y G, Wang X L 2013 Acta Phys. Sin. 62 176104Google Scholar

    [7]

    Wills J M, Eriksson O 1992 Phys. Rev. B 45 13879Google Scholar

    [8]

    Söderlind P 2002 Phys. Rev. B 66 085113Google Scholar

    [9]

    张其黎, 赵艳红, 马桂存. 2014 高压 30 32Google Scholar

    Zhang Q L, Zhao Y H, Ma G C 2014 J. High Press. Phys. 30 32Google Scholar

    [10]

    尹晚秋, 薄涛, 赵玉宝, 张蕾, 柴之芳, 石伟群 2024 核化学与放射化学 46 450Google Scholar

    Yin W Q, Bo T, Zhao Y B, Zhang L, Chai Z F, Shi W Q 2024 J. Nucl. Chem. Radiochem. 46 450Google Scholar

    [11]

    Fisher E S, McSkimin H J 1958 J. Appl. Phys. 29 1473Google Scholar

    [12]

    Bouchet J, Albers R C 2011 J. Phys.: Condens. Matter 23 215402Google Scholar

    [13]

    Yang J W, Gao T, Liu B Q, Sun G A, Chen B 2014 Eur. Phys. J. B 87 130Google Scholar

    [14]

    Söderlind P, Yang L H, Landa A, Wu A 2021 Appl. Sci. 11 5643Google Scholar

    [15]

    Crummett W P, Morris J A, Baker A R 1979 Phys. Rev. B 19 6028Google Scholar

    [16]

    Manley M E, Jarman T L, Cooper R A 2003 Phys. Rev. B 67 052302Google Scholar

    [17]

    Yang J W, Gao T,Liu B Q,Sun G A,Chen B 2015 J. Nucl. Mater. 252 521Google Scholar

    [18]

    Bouchet J, Bottin F J 2017 Phys. Rev. B 95 054113Google Scholar

    [19]

    Eriksen V O, Halg W 1955 J. Nucl. Mater. 1 232

    [20]

    Pearson G J D, Danielson G C 1957 Proc. Iowa Acad. Sci. 64 461

    [21]

    Takahashi Y, Yamawaki M, Yamamoto K 1988 J. Nucl. Mater. 154 141Google Scholar

    [22]

    Kaity S, Banerjee J, Nair MR, Ravi K, Dash S, Kutty TRG, Singh RP 2012 J. Nucl. Mater. 427 1Google Scholar

    [23]

    Zhou S X, Jacobs R, Xie W, Tea E, Hin C, Morgan D 2018 Phys. Rev. Mater. 2 083401Google Scholar

    [24]

    Peng J, Deskins W. R, Malakkal L, El-Azab A 2021 J. Appl. Phys. 130 185101Google Scholar

    [25]

    简单 2020 硕士学位论文(绵阳: 中国工程物理研究院)

    Jian D 2020 M. S. Thesis (Mianyang: China Academy of Engineering Physics

    [26]

    Richard N, Hall R O, Lee J A 2002 Phys. Rev. B 66 235112Google Scholar

    [27]

    Söderlind P, Zhang Z, Anderson O 1994 Phys. Rev. B 50 7291Google Scholar

    [28]

    Lan G Q, Yang B O, Xu Y S, Song J, Jiang Y 2016 J. Appl. Phys. 119 235103.Google Scholar

    [29]

    Li W, Carrete J, Katcho N A, Mingo N 2014 Comput. Phys. Commun. 185 1747Google Scholar

    [30]

    Madsen G K H, Singh D J 2006 Comput. Phys. Commun. 175 67Google Scholar

    [31]

    Bardeen J, Shockley W 1950 Phys. Rev. 80 72Google Scholar

    [32]

    Xi J Y, Long M Q, Tang L, Wang D, Shuai Z G 2012 Nanoscale 4 4348Google Scholar

    [33]

    Ziman J M 2001 Electrons and Phonons (Oxford University Press

    [34]

    Hashin Z, Shtrikman S 1963 Phys. Rev. 130 129Google Scholar

    [35]

    Kruglov I A, Yanilkin A, Oganov AR, Korotaev P 2019 Phys. Rev. B 100 174104Google Scholar

    [36]

    Dewaele A, Loubeyre P, Sato H 2013 Phys. Rev. B 88 134202Google Scholar

    [37]

    Akella J, Gupta Y, Luthra G 1990 High Press. Res. 2 295Google Scholar

    [38]

    Birch F 1952 J. Geophys. Res. 57 227Google Scholar

    [39]

    Bouchet J 2008 Phys. Rev. B 77 024113Google Scholar

    [40]

    Ren Z Y, Liu L, Zhang Q 2016 J. Nucl. Mater. 480 80Google Scholar

    [41]

    Yoo C S, Cynn H, Söderlind P 1998 Phys. Rev. B 57 10359Google Scholar

    [42]

    Raetsky V M 1967 J. Nucl. Mater. 21 105Google Scholar

    [43]

    Pascal J, Morin J, Lacombe P 1964 J. Nucl. Mater. 13 28Google Scholar

    [44]

    Touloukian Y S, Bass R L, Shapiro S M 1970 Thermophysical Properties of Matter (TPRC Data Series) (Vol. 1) (New York: IFI/Plenum

    [45]

    Hall R O A, Lee J A 1971 J. Low Temp. Phys. 4 415Google Scholar

    [46]

    Howl D A 1966 J. Nucl. Mater. 19 9Google Scholar

  • [1] 张翠萍, 朱金峰, 沈晓玲, 舒明方, 任清勇, 马杰. 中子散射技术在Zintl相化合物热导率研究中的应用.  , 2025, 74(1): 017301. doi: 10.7498/aps.74.20241163
    [2] 黄盛星, 陈健, 王文菲, 王旭东, 姚曼. 新型双过渡金属MXene热电输运性能第一性原理计算.  , 2024, 73(14): 146301. doi: 10.7498/aps.73.20240432
    [3] 李环娅, 周柯, 尹万健. 材料的非简谐性描述符.  , 2024, 73(5): 057101. doi: 10.7498/aps.73.20231428
    [4] 袁国才, 陈曦, 黄雨阳, 毛俊西, 禹劲秋, 雷晓波, 张勤勇. Mg2Si0.3Sn0.7掺杂Ag和Li的热电性能对比.  , 2019, 68(11): 117201. doi: 10.7498/aps.68.20190247
    [5] 王拓, 陈弘毅, 仇鹏飞, 史迅, 陈立东. 具有本征低晶格热导率的硫化银快离子导体的热电性能.  , 2019, 68(9): 090201. doi: 10.7498/aps.68.20190073
    [6] 王烈林, 李江博, 谢华, 邓司浩, 张可心, 易发成. 铀在Nd2Zr2O7烧绿石中的固溶量及重离子辐照效应.  , 2018, 67(19): 192801. doi: 10.7498/aps.67.20181204
    [7] 华钰超, 曹炳阳. 多约束纳米结构的声子热导率模型研究.  , 2015, 64(14): 146501. doi: 10.7498/aps.64.146501
    [8] 刘本琼, 谢雷, 段晓溪, 孙光爱, 陈波, 宋建明, 刘耀光, 汪小琳. 铀的结构相变及力学性能的第一性原理计算.  , 2013, 62(17): 176104. doi: 10.7498/aps.62.176104
    [9] 金宝, 蔡军, 陈义学. 放射性核素铀在针铁矿中的占位研究.  , 2013, 62(8): 087101. doi: 10.7498/aps.62.087101
    [10] 张轶群, 施 毅, 濮 林, 张 荣, 郑有炓. 纳米线阵列横向输运的热电特性研究.  , 2008, 57(8): 5198-5204. doi: 10.7498/aps.57.5198
    [11] 王 翚, 冯 敏, 曹学伟, 王玉芳, 金庆华, 丁大同, 蓝国祥. 单壁BC3纳米管晶格动力学研究.  , 2008, 57(8): 5143-5150. doi: 10.7498/aps.57.5143
    [12] 梁 维, 肖 杨, 丁建文. 石墨带的晶格动力学研究.  , 2008, 57(6): 3714-3719. doi: 10.7498/aps.57.3714
    [13] 罗派峰, 唐新峰, 熊 聪, 张清杰. 多壁碳纳米管对p型Ba0.3FeCo3Sb12化合物热电性能的影响.  , 2005, 54(5): 2403-2408. doi: 10.7498/aps.54.2403
    [14] 张 滨, 王玉芳, 金庆华, 李宝会, 丁大同. 单壁碳纳米扶手椅、锯齿管声子色散关系的计算.  , 2005, 54(3): 1325-1329. doi: 10.7498/aps.54.1325
    [15] 唐新峰, 陈立东, 王军, 罗派峰, 张清杰, 後藤孝, 平井敏雄, 袁润章. RyMxCo4-xSb12化合物的晶格热导率.  , 2004, 53(5): 1463-1468. doi: 10.7498/aps.53.1463
    [16] 罗派峰, 唐新峰, 李 涵, 刘桃香. Ba和Ce两种原子复合填充BamCenFeCo3Sb12化合物的合成及热电性能.  , 2004, 53(9): 3234-3238. doi: 10.7498/aps.53.3234
    [17] 苏良碧, 杨卫桥, 董永军, 徐 军, 周国清. U:CaF2晶体的分凝特性与光谱性质.  , 2004, 53(11): 3956-3960. doi: 10.7498/aps.53.3956
    [18] 唐新峰, 陈立东, 後藤孝, 平井敏雄, 袁润章. p型BayFexCo4-xSb12化合物的热电性能.  , 2001, 50(8): 1560-1566. doi: 10.7498/aps.50.1560
    [19] 唐新峰, 陈立东, 後藤 孝, 平井 敏雄, 袁润章. Ce填充分数对p型CeyFe1.5Co2.5Sb12化合 物热电传输特性的影响.  , 2000, 49(12): 2460-2465. doi: 10.7498/aps.49.2460
    [20] 阎守胜, 高利明, 万君佐, 彭正伟, 应志强. FeMnAl合金低温声子热导率的反常行为.  , 1985, 34(6): 809-812. doi: 10.7498/aps.34.809
计量
  • 文章访问数:  995
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-12
  • 修回日期:  2025-07-02
  • 上网日期:  2025-07-15
  • 刊出日期:  2025-09-05

/

返回文章
返回
Baidu
map