搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

周期驱动系统中由次近邻跃迁诱导的非厄米拓扑相

包茜茜 郭刚峰 谭磊 刘伍明

引用本文:
Citation:

周期驱动系统中由次近邻跃迁诱导的非厄米拓扑相

包茜茜, 郭刚峰, 谭磊, 刘伍明

Non-Hermitian topological phase induced by next-nearest-neighbor transitions in periodic drive systems

BAO Xixi, GUO Gangfeng, TAN Lei, LIU Wuming
cstr: 32037.14.aps.74.20250599
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 研究了周期驱动下含次近邻跃迁的非厄米系统的拓扑相变行为. 通过结合广义布里渊区理论与Floquet拓扑不变量方法, 发现周期驱动不仅改变了零模的拓扑相边界, 还诱导出独特的π模能隙, 形成由零模相和π模相共同表征的复合拓扑相结构. 次近邻跃迁的引入可以诱导大拓扑数, 但与静态体系不同, 周期驱动下大拓扑数仅在特定参数区间出现. 即随着次近邻跃迁强度的增大, 大拓扑数相反而消失, 表明动态体系具有区别于平衡态的非单调调控特性. 此外, 次近邻跃迁相位的引入, 能够改变拓扑相的边界, 这为实验上实现拓扑态的可控调制提供了新思路. 这些结果揭示了长程跃迁与外部周期驱动对拓扑性质的独特影响, 为非厄米体系中长程与动态调控的交叉研究奠定了理论基础.
    A non-Hermitian system with long-range hopping under periodic driving is constructed in this work. The Hamiltonian has chiral symmetry, implying that a topological invariant can be determined. Using the non-Bloch band theory and the Floquet method, the relevant operators and topological number can be determined, thereby providing quantitative approaches for studying topological properties. For example, by calculating the non-Bloch time-evolution factor, the Floquet operator, etc., it can be found that the topological invariant is determined by changing the phase of $U^{+}_{\epsilon=0,\pi}(\beta)$ as it moves along the generalized Brillouin zone, corresponding to the emergence of quasi-energy zero mode and π mode.The results show that the topological structure of the static system can be significantly affected by periodic driving. The topological phase boundary of the zero mode can be changed. In the absence of periodic driving, energy spectrum does not exhibit π mode. After introducing periodic driving, a gap appears at the quasi-energy $\epsilon=\pi$, thereby inducing a non-trivial π-mode phase and enriching the topological phase diagram. Furthermore, the next nearest neighbor hopping has a unique effect in this system. It can induce large topological numbers. However, unlike the static system, large topological numbers only appear in specific parameter intervals under periodic driving. As the strength of the next nearest neighbor hopping increases, the large topological number phase disappears, reflecting the non-monotonic regulation characteristics of the Floquet system. In addition, introducing the phase of the next nearest neighbor hopping can change the topological phase boundary, providing new ideas for experimentally regulating topological states.This research is of significance in the field of topological phase transitions in non-Hermitian systems. Theoretically, it reveals the synergistic effect of long-range hopping and periodic driving, and improves the theoretical framework for the cross-research of long-range and dynamic regulation in non-Hermitian systems. From an application perspective, it provides theoretical support for experimentally realizing the controllable modulation of topological states, which is helpful in promoting the development of fields such as low energy consumption electronic devices and topological quantum computing.
      通信作者: 郭刚峰, 23189@squ.edu.cn ; 谭磊, tanlei@lzu.edu.cn ; 刘伍明, wliu@iphy.ac.cn
    • 基金项目: 宿迁市科技计划指令性项目(批准号: K202330)、宿迁学院人才引进科研启动基金(批准号: 2024XRC006)和国家自然科学基金(批准号: 11874190, 12174461)资助的课题.
      Corresponding author: GUO Gangfeng, 23189@squ.edu.cn ; TAN Lei, tanlei@lzu.edu.cn ; LIU Wuming, wliu@iphy.ac.cn
    • Funds: Project supported by the Suqian Sci. & Tech. Program, China (Grant No. K202330), the Startup Foundation for Newly Recruited Employees of Suqian University, China (Grant No. 2024XRC006), and the National Natural Science Foundation of China (Grant Nos. 11874190, 12174461).
    [1]

    Chiu C K, Teo J C Y, Schnyder A P, Ryu S 2016 Rev. Mod. Phys. 88 035005Google Scholar

    [2]

    Bansil A, Lin H, Das T 2016 Rev. Mod. Phys. 88 021004Google Scholar

    [3]

    Asbóth J, Oroszlány L, Pályi A 2016 A Short Course on Topological Insulators (Cham: Springer

    [4]

    Shen S Q 2012 Topological Insulators Dirac Equation in Condensed Matters (Berlin, Heidelberg: Springer

    [5]

    Wang J H, Tao Y L, Xu Y 2022 Chin. Phys. Lett. 39 010301Google Scholar

    [6]

    Wang X R, Guo C X, Du Q, Kou S P 2020 Chin. Phys. Lett. 37 117303Google Scholar

    [7]

    Yi Y F 2024 Chin. Phys. B 33 060302Google Scholar

    [8]

    Liu T, Wang Y G 2024 Chin. Phys. B 33 030303Google Scholar

    [9]

    Esaki K, Sato M, Hasebe K, Kohmoto M 2011 Phys. Rev. B 84 205128Google Scholar

    [10]

    Hu Y C, Hughes T L 2011 Phys. Rev. B 84 153101Google Scholar

    [11]

    Zhu B, Lü R, Chen S 2014 Phys. Rev. A 89 062102Google Scholar

    [12]

    Jin L, Song Z 2019 Phys. Rev. B 99 081103Google Scholar

    [13]

    Chen Y, Zhai H 2018 Phys. Rev. B 98 245130Google Scholar

    [14]

    Lang L J, Wang Y, Wang H, Chong Y D 2018 Phys. Rev. B 98 094307Google Scholar

    [15]

    Deng T S, Yi W 2019 Phys. Rev. B 100 035102Google Scholar

    [16]

    Kawabata K, Higashikawa S, Gong Z, Ashida Y, Ueda M 2019 Nat. Commun. 10 297Google Scholar

    [17]

    Liu T, Zhang Y R, Ai Q, Gong Z, Kawabata K, Ueda M, Nori F 2019 Phys. Rev. Lett. 122 076801Google Scholar

    [18]

    Lee C H, Li L, Gong J 2019 Phys. Rev. Lett. 123 016805Google Scholar

    [19]

    Kunst F K, Edvardsson E, Budich J C, Bergholtz E J 2018 Phys. Rev. Lett. 121 026808Google Scholar

    [20]

    Guo G F, Bao X X, Tan L 2021 New J. Phys. 23 123007Google Scholar

    [21]

    Yin C, Jiang H, Li L, Lü R, Chen S 2018 Phys. Rev. A 97 052115Google Scholar

    [22]

    Chen C, Qi L, Xing Y, Cui W X, Zhang S, Wang H F 2021 New J. Phys. 23 123008Google Scholar

    [23]

    Zhang D W, Tang L Z, Lang L J, Yan H, Zhu S L 2020 Sci. Chin. Phys., Mech. & Astron. 63 267062Google Scholar

    [24]

    Pi J, Wang C, Liu Y C, Yan Y 2025 Phys. Rev. B 111 165407Google Scholar

    [25]

    Wang Z, He L 2025 Phys. Rev. B 111 L100305Google Scholar

    [26]

    Zheng Y Q, Li S Z, Li Z 2025 Phys. Rev. B 111 104204Google Scholar

    [27]

    Xiong Y 2018 J. Phys. Commun. 2 035043Google Scholar

    [28]

    Li L, Lee C H, Mu S, Gong J 2020 Nat. Commun. 11 5491Google Scholar

    [29]

    Denner M M, Skurativska A, Schindler F, Fischer M H, Thomale R, Bzdušek T, Neupert T 2021 Nat. Commun. 12 5681Google Scholar

    [30]

    Yao S, Wang Z 2018 Phys. Rev. Lett. 121 086803Google Scholar

    [31]

    Yokomizo K, Murakami S 2019 Phys. Rev. Lett. 123 066404Google Scholar

    [32]

    Zhang K, Yang Z, Fang C 2020 Phys. Rev. Lett. 125 126402Google Scholar

    [33]

    Yang Z, Zhang K, Fang C, Hu J 2020 Phys. Rev. Lett. 125 226402Google Scholar

    [34]

    Okuma N, Kawabata K, Shiozaki K, Sato M 2020 Phys. Rev. Lett. 124 086801Google Scholar

    [35]

    Zhu W, Teo W X, Li L, Gong J 2021 Phys. Rev. B 103 195414Google Scholar

    [36]

    Song F, Yao S, Wang Z 2019 Phys. Rev. Lett. 123 246801Google Scholar

    [37]

    Wu H, Wang B Q, An J H 2021 Phys. Rev. B 103 L041115Google Scholar

    [38]

    He P, Huang Z H 2020 Phys. Rev. A 102 062201Google Scholar

    [39]

    Xiao L, Deng T, Wang K, Zhu G, Wang Z, Yi W, Xue P 2020 Nat. Phys. 16 761Google Scholar

    [40]

    Zhang X, Gong J 2020 Phys. Rev. B 101 045415Google Scholar

    [41]

    Zhou L 2021 Phys. Rev. Research 3 033184Google Scholar

    [42]

    Ke H, Zhang J M, Huo L, Zhao W L 2024 Chin. Phys. B 33 050507Google Scholar

    [43]

    Cao Y, Li Y, Yang X 2021 Phys. Rev. B 103 075126Google Scholar

    [44]

    Lignier H, Sias C, Ciampini D, Singh Y, Zenesini A, Morsch O, Arimondo E 2007 Phys. Rev. Lett. 99 220403Google Scholar

    [45]

    Eckardt A 2017 Rev. Mod. Phys. 89 011004Google Scholar

    [46]

    Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, Szameit A 2013 Nature 496 196Google Scholar

    [47]

    Rudner M S, Lindner N H, Berg E, Levin M 2013 Phys. Rev. X 3 031005Google Scholar

    [48]

    Cheng Q, Pan Y, Wang H, Zhang C, Yu D, Gover A, Zhang H, Li T, Zhou L, Zhu S 2019 Phys. Rev. Lett. 122 173901Google Scholar

    [49]

    McIver J W, Schulte B, Stein F U, Matsuyama T, Jotzu G, Meier G, Cavalleri A 2020 Nat. Phys. 16 38Google Scholar

    [50]

    Chávez N C, Mattiotti F, Méndez-Bermúdez J A, Borgonovi F, Celardo G L 2021 Phys. Rev. Lett. 126 153201Google Scholar

    [51]

    Bao X X, Guo G F, Tan L 2021 J. Phys. Condens. Matter 33 465403Google Scholar

    [52]

    Zhang X Z, Song Z 2020 Phys. Rev. B 102 174303Google Scholar

    [53]

    Pérez-González B, Bello M, Gómez-León A, Platero G 2019 Phys. Rev. B 99 035146Google Scholar

    [54]

    Lee T E 2016 Phys. Rev. Lett. 116 133903Google Scholar

    [55]

    Entin-Wohlman O, Aharony A 2019 Phys. Rev. Res. 1 033112Google Scholar

    [56]

    Sil A, Kumar Ghosh A 2019 J. Phys. Condens. Matter 32 025601Google Scholar

    [57]

    Zuo Z W, Benalcazar W A, Liu Y, Liu C X 2021 J. Phys. D: Appl. Phys. 54 414004Google Scholar

    [58]

    Kuno Y, Nakafuji T, Ichinose I 2015 Phys. Rev. A 92 063630Google Scholar

    [59]

    Yao S, Yan Z, Wang Z 2017 Phys. Rev. B 96 195303Google Scholar

    [60]

    Dal Lago V, Atala M, Foa Torres L E F 2015 Phys. Rev. A 92 023624Google Scholar

    [61]

    Fruchart M 2016 Phys. Rev. B 93 115429Google Scholar

  • 图 1  (a)静态体系的开边界能谱; (b) Floquet驱动下开边界能谱, 这时系统激发π模(红点); (c)静态体系的广义布里渊区(蓝线)和布里渊区(绿线); (d) Floquet驱动系统的广义布里渊区(蓝线)和布里渊区(绿线); (e) β沿广义布里渊区逆时针遍历时, $ U^{+}_{0}(\beta) $在复平面形成的曲线, 其没有环绕原点(绿点)表征体系具有平庸拓扑不变量$ W_{0} = 0 $; (f) β沿广义布里渊区逆时针遍历时, $ U^{+}_{\pi}(\beta) $在复平面形成的曲线, 显然其将原点(绿点)包含在内, 代表这时体系具有非平庸拓扑不变量$ W_{\pi} = 1 $. 参数为$ t_{1} = 1 $, $ t_{2} = 0.6 $, $ t_{3} = 0.1 $, $ \gamma = 0.5 $, $ \lambda = 0.8 $, $ \omega = 3 $. 开边界对应的系统尺寸为$ N = 200 $

    Fig. 1.  (a) Eigenvalues under open boundary of static system; (b) eigenvalues under open boundary of Floquet system, demonstrating existence of π-modes (red dots); (c) generalized Brillouin zone in equilibrium (blue curve) and Brillouin zone (green circle); (d) generalized Brillouin zone (blue curve) under periodic driving and Brillouin zone (green circle); (e) complex contour formed by $ U^{+}_{0}(\beta) $ during counterclockwise $ \beta $-traversal along generalized Brillouin zone, whose origin not-encircling (green marker) characterizes the trivial winding number $ W_{0} = 0 $; (f) trajectory of $ U^{+}_{\pi}(\beta) $ in complex plane, with unambiguous origin inclusion (green marker) confirming topologically protected π-mode via $ W_{\pi} = 1 $. Common parameters are $ t_{1} = 1 $, $ t_{2} = 0.6 $, $ t_{3} = 0.1 $, and $ \gamma = 0.5 $. Floquet parameters are $ \lambda = 0.8 $ and $ \omega = 3 $. System size under open-boundary is $ N = 200 $.

    图 2  (a)静态体系的非布洛赫拓扑不变量, 非零值对应开边界条件下零模的出现; (b)当加入周期驱动时体系零模的拓扑相图; (c)加入周期驱动后, 不但零模对应的拓扑不变量会出现改变, 还会导致π模的出现; (d)静态体系的开边界能谱; (e)周期驱动体系的开边界准能谱; (f)当加入次近邻后, 零模对应的相图. 共同参数为$ \gamma = 0.5 $, $ \lambda = 0.8 $, $ \omega = 3 $. (a)—(e) $ t_{3} = 0 $, (d), (e) $ t_{2} = $$ 1.2 $, (f) $ t_{3} = 0.4 $. 开边界对应的系统尺寸为$ N = 60 $

    Fig. 2.  (a) Non-Bloch topological invariant of static system, where non-zero values correspond to the emergence of zero mode under open boundary conditions; (b) topological phase diagram of the zero modes when the periodic driving is added; (c) after adding the periodic driving, not only will the topological invariant corresponding to the zero mode change, but it will also lead to the emergence of π modes; (d) open boundary energy spectrum of the static system; (e) open boundary quasi-energy spectrum of the periodically driven system; (f) when next-nearest neighbor is added, the phase diagram corresponding to the zero mode. Common parameters are $ \gamma = 0.5 $, $ \lambda = 0.8 $, $ \omega = 3 $, (a)–(e) $ t_{3} = 0 $, (d), (e) $ t_{2} = 1.2 $, (f) $ t_{3} = 0.4 $. System size under open-boundary condition is $ N = 60 $.

    图 3  (a)以$ t_{3} $为自变量的零模的拓扑相图; (b), (c) 以$ t_{3} $和γ为自变量的拓扑相图; (d), (e) 以$ t_{3} $和$ t_{1} $为自变量的拓扑相图; (f) 静态体系的拓扑相图. 共同参数取值为$ t_{2} = 0.4 $, $ \lambda = 1.2 $, $ \omega = 3 $. (a) $ t_{1} = 1 $, $ \gamma = 0.7 $; (b), (c) $ t_{1} = 1 $; (d)—(f) $ \gamma = 0.2 $

    Fig. 3.  (a) Topological phase diagram of the zero mode; (b), (c) topological phase diagram with $ t_{3} $ and γ as the independent variables; (d), (e) topological phase diagrams with $ t_{3} $ and γ as the independent variables; (f) toplogical phase diagram with $ t_{3} $ and γ as the independent variables. Common parameter values are $ t_{2} = 0.4 $, $ \lambda = 1.2 $, $ \omega = 3 $. (a) $ t_{1} = 1 $, $ \gamma = 0.7 $; (b), (c) $ t_{1} = 1 $; (d)–(f) $ \gamma = 0.2 $.

    图 4  (a), (b) $ t_{3} $的相位$ \theta = 0 $, 即$ {\mathrm{e}}^{{\mathrm{i}}\theta} = 1 $时的拓扑相图; (c), (d) $ t_{3} $的相位$ \theta = \dfrac{\pi}{2} $时的拓扑相图; (e), (f) 以$ {\rm{e}}^{{\rm{i}}\theta} $和$ t_{2} $为自变量的体系的拓扑相图, 其中$ \theta\in[-\pi, \pi] $, 即$ {\mathrm{e}}^{{\mathrm{i}}\theta}\in[-1, 1] $; (g), (h) 以$ {\mathrm{e}}^{{\mathrm{i}}\theta} $和$ t_{3} $为自变量的体系的拓扑相图. 共同参数取值为$ t_{1} = 1 $, $ \gamma = 0.2 $, $ \lambda = 1.5 $, $ \omega = 3 $. (a), (b) $ \theta = 0 $; (c), (d) $ \theta = \dfrac{\pi}{2} $; (e), (f) $ t_{3} = 0.5 $; (g), (h) $ t_{2} = 0.3 $

    Fig. 4.  (a), (b) Topological phase diagrams with the phase $ \theta = 0 $, that is $ {\rm{e}}^{{\rm{i}}\theta} = 1 $; (c), (d) topological phase diagrams with the phase $ \theta = \dfrac{\pi}{2} $; (e), (f) topological phase diagram of the system with $ {\rm{e}}^{{\rm{i}}\theta} $ and $ t_{2} $ as the independent variables, where $ \theta\in[-\pi, \pi] $, that is $ {\rm{e}}^{{\rm{i}}\theta}\in[-1, 1] $; (g), (h) topological phase diagram of the system with $ {\rm{e}}^{{\rm{i}}\theta} $ and $ t_{3} $ as the independent variables. Common parameters are $ t_{1} = 1 $, $ \gamma = 0.2 $, $ \lambda = 1.5 $ and $ \omega = 3 $. (a), (b) $ \theta = 0 $; (c), (d) $ \theta = \dfrac{\pi}{2} $; (e), (f) $ t_{3} = $$ 0.5 $; (g), (h) $ t_{2} = 0.3 $.

    Baidu
  • [1]

    Chiu C K, Teo J C Y, Schnyder A P, Ryu S 2016 Rev. Mod. Phys. 88 035005Google Scholar

    [2]

    Bansil A, Lin H, Das T 2016 Rev. Mod. Phys. 88 021004Google Scholar

    [3]

    Asbóth J, Oroszlány L, Pályi A 2016 A Short Course on Topological Insulators (Cham: Springer

    [4]

    Shen S Q 2012 Topological Insulators Dirac Equation in Condensed Matters (Berlin, Heidelberg: Springer

    [5]

    Wang J H, Tao Y L, Xu Y 2022 Chin. Phys. Lett. 39 010301Google Scholar

    [6]

    Wang X R, Guo C X, Du Q, Kou S P 2020 Chin. Phys. Lett. 37 117303Google Scholar

    [7]

    Yi Y F 2024 Chin. Phys. B 33 060302Google Scholar

    [8]

    Liu T, Wang Y G 2024 Chin. Phys. B 33 030303Google Scholar

    [9]

    Esaki K, Sato M, Hasebe K, Kohmoto M 2011 Phys. Rev. B 84 205128Google Scholar

    [10]

    Hu Y C, Hughes T L 2011 Phys. Rev. B 84 153101Google Scholar

    [11]

    Zhu B, Lü R, Chen S 2014 Phys. Rev. A 89 062102Google Scholar

    [12]

    Jin L, Song Z 2019 Phys. Rev. B 99 081103Google Scholar

    [13]

    Chen Y, Zhai H 2018 Phys. Rev. B 98 245130Google Scholar

    [14]

    Lang L J, Wang Y, Wang H, Chong Y D 2018 Phys. Rev. B 98 094307Google Scholar

    [15]

    Deng T S, Yi W 2019 Phys. Rev. B 100 035102Google Scholar

    [16]

    Kawabata K, Higashikawa S, Gong Z, Ashida Y, Ueda M 2019 Nat. Commun. 10 297Google Scholar

    [17]

    Liu T, Zhang Y R, Ai Q, Gong Z, Kawabata K, Ueda M, Nori F 2019 Phys. Rev. Lett. 122 076801Google Scholar

    [18]

    Lee C H, Li L, Gong J 2019 Phys. Rev. Lett. 123 016805Google Scholar

    [19]

    Kunst F K, Edvardsson E, Budich J C, Bergholtz E J 2018 Phys. Rev. Lett. 121 026808Google Scholar

    [20]

    Guo G F, Bao X X, Tan L 2021 New J. Phys. 23 123007Google Scholar

    [21]

    Yin C, Jiang H, Li L, Lü R, Chen S 2018 Phys. Rev. A 97 052115Google Scholar

    [22]

    Chen C, Qi L, Xing Y, Cui W X, Zhang S, Wang H F 2021 New J. Phys. 23 123008Google Scholar

    [23]

    Zhang D W, Tang L Z, Lang L J, Yan H, Zhu S L 2020 Sci. Chin. Phys., Mech. & Astron. 63 267062Google Scholar

    [24]

    Pi J, Wang C, Liu Y C, Yan Y 2025 Phys. Rev. B 111 165407Google Scholar

    [25]

    Wang Z, He L 2025 Phys. Rev. B 111 L100305Google Scholar

    [26]

    Zheng Y Q, Li S Z, Li Z 2025 Phys. Rev. B 111 104204Google Scholar

    [27]

    Xiong Y 2018 J. Phys. Commun. 2 035043Google Scholar

    [28]

    Li L, Lee C H, Mu S, Gong J 2020 Nat. Commun. 11 5491Google Scholar

    [29]

    Denner M M, Skurativska A, Schindler F, Fischer M H, Thomale R, Bzdušek T, Neupert T 2021 Nat. Commun. 12 5681Google Scholar

    [30]

    Yao S, Wang Z 2018 Phys. Rev. Lett. 121 086803Google Scholar

    [31]

    Yokomizo K, Murakami S 2019 Phys. Rev. Lett. 123 066404Google Scholar

    [32]

    Zhang K, Yang Z, Fang C 2020 Phys. Rev. Lett. 125 126402Google Scholar

    [33]

    Yang Z, Zhang K, Fang C, Hu J 2020 Phys. Rev. Lett. 125 226402Google Scholar

    [34]

    Okuma N, Kawabata K, Shiozaki K, Sato M 2020 Phys. Rev. Lett. 124 086801Google Scholar

    [35]

    Zhu W, Teo W X, Li L, Gong J 2021 Phys. Rev. B 103 195414Google Scholar

    [36]

    Song F, Yao S, Wang Z 2019 Phys. Rev. Lett. 123 246801Google Scholar

    [37]

    Wu H, Wang B Q, An J H 2021 Phys. Rev. B 103 L041115Google Scholar

    [38]

    He P, Huang Z H 2020 Phys. Rev. A 102 062201Google Scholar

    [39]

    Xiao L, Deng T, Wang K, Zhu G, Wang Z, Yi W, Xue P 2020 Nat. Phys. 16 761Google Scholar

    [40]

    Zhang X, Gong J 2020 Phys. Rev. B 101 045415Google Scholar

    [41]

    Zhou L 2021 Phys. Rev. Research 3 033184Google Scholar

    [42]

    Ke H, Zhang J M, Huo L, Zhao W L 2024 Chin. Phys. B 33 050507Google Scholar

    [43]

    Cao Y, Li Y, Yang X 2021 Phys. Rev. B 103 075126Google Scholar

    [44]

    Lignier H, Sias C, Ciampini D, Singh Y, Zenesini A, Morsch O, Arimondo E 2007 Phys. Rev. Lett. 99 220403Google Scholar

    [45]

    Eckardt A 2017 Rev. Mod. Phys. 89 011004Google Scholar

    [46]

    Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, Szameit A 2013 Nature 496 196Google Scholar

    [47]

    Rudner M S, Lindner N H, Berg E, Levin M 2013 Phys. Rev. X 3 031005Google Scholar

    [48]

    Cheng Q, Pan Y, Wang H, Zhang C, Yu D, Gover A, Zhang H, Li T, Zhou L, Zhu S 2019 Phys. Rev. Lett. 122 173901Google Scholar

    [49]

    McIver J W, Schulte B, Stein F U, Matsuyama T, Jotzu G, Meier G, Cavalleri A 2020 Nat. Phys. 16 38Google Scholar

    [50]

    Chávez N C, Mattiotti F, Méndez-Bermúdez J A, Borgonovi F, Celardo G L 2021 Phys. Rev. Lett. 126 153201Google Scholar

    [51]

    Bao X X, Guo G F, Tan L 2021 J. Phys. Condens. Matter 33 465403Google Scholar

    [52]

    Zhang X Z, Song Z 2020 Phys. Rev. B 102 174303Google Scholar

    [53]

    Pérez-González B, Bello M, Gómez-León A, Platero G 2019 Phys. Rev. B 99 035146Google Scholar

    [54]

    Lee T E 2016 Phys. Rev. Lett. 116 133903Google Scholar

    [55]

    Entin-Wohlman O, Aharony A 2019 Phys. Rev. Res. 1 033112Google Scholar

    [56]

    Sil A, Kumar Ghosh A 2019 J. Phys. Condens. Matter 32 025601Google Scholar

    [57]

    Zuo Z W, Benalcazar W A, Liu Y, Liu C X 2021 J. Phys. D: Appl. Phys. 54 414004Google Scholar

    [58]

    Kuno Y, Nakafuji T, Ichinose I 2015 Phys. Rev. A 92 063630Google Scholar

    [59]

    Yao S, Yan Z, Wang Z 2017 Phys. Rev. B 96 195303Google Scholar

    [60]

    Dal Lago V, Atala M, Foa Torres L E F 2015 Phys. Rev. A 92 023624Google Scholar

    [61]

    Fruchart M 2016 Phys. Rev. B 93 115429Google Scholar

计量
  • 文章访问数:  1390
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-06
  • 修回日期:  2025-06-21
  • 上网日期:  2025-07-08
  • 刊出日期:  2025-09-20

/

返回文章
返回
Baidu
map