搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钕铁硼永磁材料氢破过程的热力学性质

黄雅晶 郑勇平 黄志高

引用本文:
Citation:

钕铁硼永磁材料氢破过程的热力学性质

黄雅晶, 郑勇平, 黄志高

Thermodynamic properties of hydrogen decrepitation process in Nd2Fe14B permanent magnet materials

HUANG Yajing, ZHENG Yongping, HUANG Zhigao
cstr: 32037.14.aps.74.20250578
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 回收利用是稀土资源高效利用的可持续方案. 氢化破碎技术因其高效环保特性被广泛采用, 但氢破过程中产生的混合相会显著降低回收效率, 这对工艺的优化提出了新的挑战. 本文采用基于第一性原理计算结合机器学习方法, 通过德拜模型系统地探究了氢化破碎过程中关键稀土氢化物(如NdH2, NdH3, Nd2H5)的热力学行为. 研究结果表明, 在600 kPa压强下, 630 K左右的温度区间有望为氢化破碎工艺提供一个较为理想的操作条件. 在此条件下, NdH2能够实现自发氢化, 且能够有效抑制非稳定相的形成, 有助于提高稀土回收效率. 本研究还揭示了过高温度对NdH2热力学性质可能产生的不利影响, 进一步强调了在特定温度区间操作的重要性. 这些发现不仅为理解钕铁硼氢化过程的热力学机理提供了新的视角, 而且为工业应用中氢化破碎工艺参数的优化提供了理论参考.
    Recycling is a sustainable strategy for the efficient utilization of rare earth resources. Hydrogenation milling has been widely adopted because of its high efficiency and environmental benefits. However, the formation of unstable phases in the hydrogenation process significantly reduces recovery efficiency, which presents new challenges for process optimization. In this study, a combination of first-principles calculations and machine learning methods is employed to systematically investigate the thermodynamic behavior of key rare earth hydrides, such as NdH2, NdH3, and Nd2H5 in the hydrogenation milling process using the Debye model for lattice vibrations. The results show that a temperature centered at about 630 K at a pressure of 600 kPa may offer ideal operational conditions for the hydrogenation milling process. Under these conditions, NdH2 can undergo spontaneous hydrogenation, and the formation of unstable phases can be effectively suppressed, thereby improving rare earth recovery efficiency. This study also reveals the potential adverse effects of excessively high temperatures on the stability and reactivity of NdH2, further emphasizing the importance of operating within a specific temperature range. These findings provide new insights into the thermodynamic mechanisms of the hydrogenation process in Nd2Fe14B permanent magnet material. Furthermore, they offer theoretical guidance for the optimization of industrial hydrogenation milling parameters.
      通信作者: 郑勇平, zyp@fjnu.edu.cn ; 黄志高, zghuang@fjnu.edu.cn
    • 基金项目: 福建省技术创新重点攻关及产业化项目(校企联合类) (批准号: 2023XQ010)资助的课题.
      Corresponding author: ZHENG Yongping, zyp@fjnu.edu.cn ; HUANG Zhigao, zghuang@fjnu.edu.cn
    • Funds: Project supported by the Industrialization Projects, China (University-Enterprise Joint Project) (Grant No. 2023XQ010).
    [1]

    Poenaru I, Patroi E A, Patroi D, Iorga A, Manta E 2023 J. Magn. Magn. Mater. 577 170777

    [2]

    Liu X B, Kesler M S, Besser M F, Kramer M J, McGuire M A, Nlebedim I C 2021 IEEE Trans. Magn. 57 6

    [3]

    Dirba I, Pattur P, Soldatov I, Adabifiroozjaei E, Molina-Luna L, Gutfleisch O 2023 J. Alloys Compd. 930 167411Google Scholar

    [4]

    Lixandru A, Poenaru I, Güth K, Gauß R, Gutfleisch O 2017 J. Alloys Compd. 724 51Google Scholar

    [5]

    Ojih J, Al-Fahdi M, Yao Y G, Hu J J, Hu M 2024 J. Mater. Chem. A 12 8502Google Scholar

    [6]

    Toher C, Plata J J, Levy O, De Jong M, Asta M, Nardelli M B, Curtarolo S 2014 Phys. Rev. B 90 174107Google Scholar

    [7]

    Xu C R, Shao L, Ding N, Jiang H H, Tang B Y 2024 Physica B 674 415589Google Scholar

    [8]

    Nenuwe N O, Yebovi A S 2024 Comput. Condens. Matte. 38 e00882

    [9]

    Ning J L, Zhu Y L, Kidd J, Guan Y D, Wang Y, Mao Z Q, Sun J W 2020 npj Comput. Mater. 6 157Google Scholar

    [10]

    Vesti A, Music D, Olsson P A 2024 Nucl. Mater. Energy 39 101684Google Scholar

    [11]

    Sheridan R S, Harris I R, Walton A 2016 J. Magn. Magn. Mater. 401 455Google Scholar

    [12]

    Matin M A, Kwon H W, Lee J G, Yu J H 2014 J. Magn. 19 106Google Scholar

    [13]

    Michalski B, Szymanski M, Gola K, Zygmuntowicz J, Leonowicz M 2022 J. Magn. Magn. Mater. 548 168979Google Scholar

    [14]

    Kirklin S, Saal J E, Meredig B, Thompson A, Doak J W, Aykol M, Rühl S, Wolverton C 2015 npj Comput. Mater. 1 15Google Scholar

    [15]

    Saal J E, Kirklin S, Aykol M, Meredig B, Wolverton C 2013 Jom 65 1501Google Scholar

    [16]

    Li X T, Yue M, Zhou S X, Kuang C J, Zhang G Q, Dong B S, Zeng H 2019 J. Magn. Magn. Mater. 473 144Google Scholar

    [17]

    Habibzadeh A, Kucuker M A, Gökelma M 2023 ACS Omega 8 17431Google Scholar

    [18]

    Qin T, Zhang Q, Wentzcovitch R M, Umemoto K 2019 Comput. Phys. Commun. 237 199Google Scholar

    [19]

    Baroni S, Giannozzi P, Isaev E 2018 Rev. Mineral. Geochem 71 39

    [20]

    Palumbo M, Dal Corso A 2017 J. Phys.- Condens. Mat. 29 395401Google Scholar

    [21]

    Otero-De-La-Roza A, Abbasi-Pérez D, Luaña V 2011 Comput. Phys. Commun. 182 2232Google Scholar

    [22]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [23]

    Bartel C J, Millican S L, Deml A M, Rumptz J R, Tumas W, Weimer A W, Lany S, Stevanović V, Musgrave C B, Holder A M 2018 Nat. Commun. 9 4168Google Scholar

    [24]

    Chen S Y, Zhang J L, Wang Y Z, Wang T F, Li Y, Liu Z J 2023 Metals 13 225Google Scholar

    [25]

    Deng B W, Zhong P C, Jun K, Riebesell J, Han K, Bartel C J, Ceder G 2023 Nat. Mach. Intell. 5 1031Google Scholar

    [26]

    Pan J 2023 Nat. Comput. Sci. 3 816Google Scholar

    [27]

    Blanco M A, Francisco E, Luaña V 2004 Comput. Phys. Commun. 158 57Google Scholar

    [28]

    Shamsuddin M 2024 Thermodynamic Measurement Techniques, Vol. Part F3193 of The Minerals, Metals Materials Series (Cham: Springer International Publishing) pp1–349

    [29]

    Olivotos S, Economou-Eliopoulos M 2016 Geosciences 6 2Google Scholar

    [30]

    Rostami S, Gonze X 2024 Phys. Rev. B 110 014103Google Scholar

    [31]

    Bartel C J 2022 J. Mater. Sci. 57 10475Google Scholar

    [32]

    Drebushchak V A 2020 J. Therm. Anal. Calorim. 142 1097Google Scholar

    [33]

    Yamanaka S, Yoshioka K, Uno M, Katsura M, Anada H, Matsuda T, Kobayashi S 1999 J. Alloys Compd. 293-295 23

    [34]

    Hu X, Wang H, Linton K, Le Coq A, Terrani K A 2021 Handbook on the material properties of yttrium hydride for high temperature moderator applications. Tech. rep., Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States

    [35]

    Vajda P, Daou J N 1996 Solid State Phenom. 49-50 71Google Scholar

    [36]

    Grinderslev J B, Møller K T, Bremholm M, Jensen T R 2019 Inorg. Chem. 58 5503Google Scholar

    [37]

    Pourarian F 2002 Physica B 321 18Google Scholar

    [38]

    Suwarno S, Lototskyy M V, Yartys V A 2020 J. Alloys Compd. 842 155530Google Scholar

    [39]

    Sheridan R S, Sillitoe R, Zakotnik M, Harris I R, Williams A J 2012 J. Magn. Magn. Mater. 324 63Google Scholar

    [40]

    Fultz B 2010 Prog. Mater. Sci. 55 247Google Scholar

    [41]

    Piotrowicz A, Pietrzyk S, Noga P, Myćka Ł 2020 J. Min. Metall. B 56 415Google Scholar

    [42]

    Xia M, Abrahamsen A B, Bahl C R, Veluri B, Søegaard A I, Bøjsøe P 2017 J. Magn. Magn. Mater. 441 55Google Scholar

  • 图 1  通过氢破工艺回收废弃钕铁硼磁体的机理流程图

    Fig. 1.  Schematic diagram of the mechanism for recycling discarded Nd2Fe14B magnets through the hydrogenation-breaking process.

    图 2  非基态下的凸包图

    Fig. 2.  Convex hull diagram under non-ground state conditions.

    图 3  比热容随温度的变化情况 (a) 3种钕氢化物的恒容比热容($ C_{\mathrm{v}} $)随温度的变化曲线; (b) 3种钕氢化物的恒压比热容($ C_{\mathrm{p}} $)随温度的变化曲线

    Fig. 3.  Variation of heat capacity with temperature. (a) Variation curves of constant volume heat capacity ($ C_{\mathrm{v}} $) with temperature for three types of Nd-hydrides; (b) variation curves of constant pressure heat capacity ($ C_{\mathrm{p}} $) with temperature for three types of Nd-hydrides.

    图 4  热膨胀系数随温度的变化情况

    Fig. 4.  Variation of thermal expansion coefficient with temperature.

    图 5  等温弹性模量随温度压强的变化情况 (a) 100, 300, 500, 700 kPa的压强下NdH2, NdH3, Nd2H5的等温弹性模量随温度的变化曲线; (b) 100, 300, 500, 700 kPa压强条件下3种钕氢化物的等温体积模量随温度变化率绝对值$ \left(\left| {\partial B}/{\partial T} \right| \right) $的线状图

    Fig. 5.  Variation of isothermal elastic modulus with temperature and pressure: (a) Variation curves of isothermal elastic modulus with temperature for NdH2, NdH3, and Nd2H5 under pressures of 100, 300, 500, and 700 kPa, respectively; (b) line graph of the absolute value $ \left(\left| {\partial B}/{\partial T} \right| \right) $ of the rate of change in isothermal bulk modulus with temperature for the three types of Nd-hydrides under pressures of 100, 300, 500, and 700 kPa.

    图 6  热导率、热扩散系数随温度的变化情况 (a) 3种钕氢化物的热导率随温度的变化曲线; (b) 3种钕氢化物的热扩散系数随温度的变化曲线

    Fig. 6.  Variation of thermal conductivity and thermal diffusivity with temperature: (a) Variation curves of thermal conductivity with temperature for three types of Nd-hydrides; (b) variation curves of thermal diffusivity with temperature for three types of Nd-hydrides.

    图 7  不同钕氢化物吉布斯自由能变化量$ {{\Delta }_{{\mathrm{r}}}}G $在100 kPa, 200 kPa, 300 kPa, 400 kPa, 500 kPa, 600 kPa以及700 kPa压强下随温度的变化情况 (a) NdH2; (b) NdH3; (c) Nd2H5

    Fig. 7.  Variation of gibbs free energy change $ {{\Delta }_{{\mathrm{r}}}}G $ of different Nd-hydrides with temperature under specific pressures of 100 kPa, 200 kPa, 300 kPa, 400 kPa, 500 kPa, 600 kPa, and 700 kPa: (a) NdH2; (b) NdH3; (c) Nd2H5.

    图 8  凸包能($ E_{\rm{hull}} $)与凸包图 (a) 三种钕氢化物的凸包能随温度的变化曲线; (b) 三种钕氢化物在630 K温度下的稳定关系

    Fig. 8.  Convex hull energy ($ E_{\rm{hull}} $) and convex hull diagram: (a) Variation curves of convex hull energy with temperature for three types of Nd-hydrides; (b) stability relationships of three types of Nd-hydrides at 630 K.

    Baidu
  • [1]

    Poenaru I, Patroi E A, Patroi D, Iorga A, Manta E 2023 J. Magn. Magn. Mater. 577 170777

    [2]

    Liu X B, Kesler M S, Besser M F, Kramer M J, McGuire M A, Nlebedim I C 2021 IEEE Trans. Magn. 57 6

    [3]

    Dirba I, Pattur P, Soldatov I, Adabifiroozjaei E, Molina-Luna L, Gutfleisch O 2023 J. Alloys Compd. 930 167411Google Scholar

    [4]

    Lixandru A, Poenaru I, Güth K, Gauß R, Gutfleisch O 2017 J. Alloys Compd. 724 51Google Scholar

    [5]

    Ojih J, Al-Fahdi M, Yao Y G, Hu J J, Hu M 2024 J. Mater. Chem. A 12 8502Google Scholar

    [6]

    Toher C, Plata J J, Levy O, De Jong M, Asta M, Nardelli M B, Curtarolo S 2014 Phys. Rev. B 90 174107Google Scholar

    [7]

    Xu C R, Shao L, Ding N, Jiang H H, Tang B Y 2024 Physica B 674 415589Google Scholar

    [8]

    Nenuwe N O, Yebovi A S 2024 Comput. Condens. Matte. 38 e00882

    [9]

    Ning J L, Zhu Y L, Kidd J, Guan Y D, Wang Y, Mao Z Q, Sun J W 2020 npj Comput. Mater. 6 157Google Scholar

    [10]

    Vesti A, Music D, Olsson P A 2024 Nucl. Mater. Energy 39 101684Google Scholar

    [11]

    Sheridan R S, Harris I R, Walton A 2016 J. Magn. Magn. Mater. 401 455Google Scholar

    [12]

    Matin M A, Kwon H W, Lee J G, Yu J H 2014 J. Magn. 19 106Google Scholar

    [13]

    Michalski B, Szymanski M, Gola K, Zygmuntowicz J, Leonowicz M 2022 J. Magn. Magn. Mater. 548 168979Google Scholar

    [14]

    Kirklin S, Saal J E, Meredig B, Thompson A, Doak J W, Aykol M, Rühl S, Wolverton C 2015 npj Comput. Mater. 1 15Google Scholar

    [15]

    Saal J E, Kirklin S, Aykol M, Meredig B, Wolverton C 2013 Jom 65 1501Google Scholar

    [16]

    Li X T, Yue M, Zhou S X, Kuang C J, Zhang G Q, Dong B S, Zeng H 2019 J. Magn. Magn. Mater. 473 144Google Scholar

    [17]

    Habibzadeh A, Kucuker M A, Gökelma M 2023 ACS Omega 8 17431Google Scholar

    [18]

    Qin T, Zhang Q, Wentzcovitch R M, Umemoto K 2019 Comput. Phys. Commun. 237 199Google Scholar

    [19]

    Baroni S, Giannozzi P, Isaev E 2018 Rev. Mineral. Geochem 71 39

    [20]

    Palumbo M, Dal Corso A 2017 J. Phys.- Condens. Mat. 29 395401Google Scholar

    [21]

    Otero-De-La-Roza A, Abbasi-Pérez D, Luaña V 2011 Comput. Phys. Commun. 182 2232Google Scholar

    [22]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [23]

    Bartel C J, Millican S L, Deml A M, Rumptz J R, Tumas W, Weimer A W, Lany S, Stevanović V, Musgrave C B, Holder A M 2018 Nat. Commun. 9 4168Google Scholar

    [24]

    Chen S Y, Zhang J L, Wang Y Z, Wang T F, Li Y, Liu Z J 2023 Metals 13 225Google Scholar

    [25]

    Deng B W, Zhong P C, Jun K, Riebesell J, Han K, Bartel C J, Ceder G 2023 Nat. Mach. Intell. 5 1031Google Scholar

    [26]

    Pan J 2023 Nat. Comput. Sci. 3 816Google Scholar

    [27]

    Blanco M A, Francisco E, Luaña V 2004 Comput. Phys. Commun. 158 57Google Scholar

    [28]

    Shamsuddin M 2024 Thermodynamic Measurement Techniques, Vol. Part F3193 of The Minerals, Metals Materials Series (Cham: Springer International Publishing) pp1–349

    [29]

    Olivotos S, Economou-Eliopoulos M 2016 Geosciences 6 2Google Scholar

    [30]

    Rostami S, Gonze X 2024 Phys. Rev. B 110 014103Google Scholar

    [31]

    Bartel C J 2022 J. Mater. Sci. 57 10475Google Scholar

    [32]

    Drebushchak V A 2020 J. Therm. Anal. Calorim. 142 1097Google Scholar

    [33]

    Yamanaka S, Yoshioka K, Uno M, Katsura M, Anada H, Matsuda T, Kobayashi S 1999 J. Alloys Compd. 293-295 23

    [34]

    Hu X, Wang H, Linton K, Le Coq A, Terrani K A 2021 Handbook on the material properties of yttrium hydride for high temperature moderator applications. Tech. rep., Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States

    [35]

    Vajda P, Daou J N 1996 Solid State Phenom. 49-50 71Google Scholar

    [36]

    Grinderslev J B, Møller K T, Bremholm M, Jensen T R 2019 Inorg. Chem. 58 5503Google Scholar

    [37]

    Pourarian F 2002 Physica B 321 18Google Scholar

    [38]

    Suwarno S, Lototskyy M V, Yartys V A 2020 J. Alloys Compd. 842 155530Google Scholar

    [39]

    Sheridan R S, Sillitoe R, Zakotnik M, Harris I R, Williams A J 2012 J. Magn. Magn. Mater. 324 63Google Scholar

    [40]

    Fultz B 2010 Prog. Mater. Sci. 55 247Google Scholar

    [41]

    Piotrowicz A, Pietrzyk S, Noga P, Myćka Ł 2020 J. Min. Metall. B 56 415Google Scholar

    [42]

    Xia M, Abrahamsen A B, Bahl C R, Veluri B, Søegaard A I, Bøjsøe P 2017 J. Magn. Magn. Mater. 441 55Google Scholar

  • [1] 刘显洋, 姚嘉薇, 杨俊锋, 樊群超, 范志祥, 田洪瑞. H2和HD分子宏观热力学性质.  , 2025, 74(10): 106702. doi: 10.7498/aps.74.20241793
    [2] 范俊宇, 高楠, 王鹏举, 苏艳. LLM-105的分子间相互作用和热力学性质.  , 2024, 73(4): 046501. doi: 10.7498/aps.73.20231696
    [3] 赵玉娜, 丛红璐, 成爽, 于娜, 高涛, 马俊刚. 第一性原理研究Li2NH的晶格动力学和热力学性质.  , 2019, 68(13): 137102. doi: 10.7498/aps.68.20190139
    [4] 黄鳌, 卢志鹏, 周梦, 周晓云, 陶应奇, 孙鹏, 张俊涛, 张廷波. Al和O间隙原子对-Al2O3热力学性质影响的第一性原理计算.  , 2017, 66(1): 016103. doi: 10.7498/aps.66.016103
    [5] 邓世杰, 赵宇宏, 侯华, 文志勤, 韩培德. 高压下Ti2AlX(X=C,N)的结构、力学性能及热力学性质.  , 2017, 66(14): 146101. doi: 10.7498/aps.66.146101
    [6] 吴若熙, 刘代俊, 于洋, 杨涛. CaS电子结构和热力学性质的第一性原理计算.  , 2016, 65(2): 027101. doi: 10.7498/aps.65.027101
    [7] 濮春英, 王丽, 吕林霞, 于荣梅, 何朝政, 卢志文, 周大伟. NbSi2奇异高压相及其热力学性质的第一性原理研究.  , 2015, 64(8): 087103. doi: 10.7498/aps.64.087103
    [8] 李平原, 陈永亮, 周大进, 陈鹏, 张勇, 邓水全, 崔雅静, 赵勇. 拓扑绝缘体Bi2Te3的热膨胀系数研究.  , 2014, 63(11): 117301. doi: 10.7498/aps.63.117301
    [9] 颜小珍, 邝小渝, 毛爱杰, 匡芳光, 王振华, 盛晓伟. 高压下ErNi2B2C弹性性质、电子结构和热力学性质的第一性原理研究.  , 2013, 62(10): 107402. doi: 10.7498/aps.62.107402
    [10] 杨则金, 令狐荣锋, 程新路, 杨向东. Cr2MC(M=Al, Ga)的电子结构、弹性和热力学性质的第一性原理研究.  , 2012, 61(4): 046301. doi: 10.7498/aps.61.046301
    [11] 门福殿, 王炳福, 何晓刚, 隗群梅. 强磁场中弱相互作用费米气体的热力学性质.  , 2011, 60(8): 080501. doi: 10.7498/aps.60.080501
    [12] 李晓凤, 刘中利, 彭卫民, 赵阿可. 高压下CaPo弹性性质和热力学性质的第一性原理研究.  , 2011, 60(7): 076501. doi: 10.7498/aps.60.076501
    [13] 李雪梅, 韩会磊, 何光普. LiNH2 的晶格动力学、介电性质和热力学性质第一性原理研究.  , 2011, 60(8): 087104. doi: 10.7498/aps.60.087104
    [14] 李世娜, 刘永. Cu3N弹性和热力学性质的第一性原理研究.  , 2010, 59(10): 6882-6888. doi: 10.7498/aps.59.6882
    [15] 王宇杰, 周俊敏, 钱萍, 申江. 镍基超导母体材料EuNi2Si2的结构和热力学性质研究.  , 2010, 59(12): 8776-8782. doi: 10.7498/aps.59.8776
    [16] 徐布一, 陈俊蓉, 蔡静, 李权, 赵可清. 2-(甲苯-4-磺酰胺基)-苯甲酸的结构、光谱与热力学性质的理论研究.  , 2009, 58(3): 1531-1536. doi: 10.7498/aps.58.1531
    [17] 陈怡, 申江. NaZn13型Fe基化合物的结构和热力学性质研究.  , 2009, 58(13): 141-S145. doi: 10.7498/aps.58.141
    [18] 刘娜娜, 宋仁伯, 孙翰英, 杜大伟. Mg2Sn电子结构及热力学性质的第一性原理计算.  , 2008, 57(11): 7145-7150. doi: 10.7498/aps.57.7145
    [19] 门福殿. 弱磁场中弱相互作用费米气体的热力学性质.  , 2006, 55(4): 1622-1627. doi: 10.7498/aps.55.1622
    [20] 张雅男, 晏世雷. 随机横场与晶场作用混合自旋系统的热力学性质.  , 2003, 52(11): 2890-2895. doi: 10.7498/aps.52.2890
计量
  • 文章访问数:  902
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-30
  • 修回日期:  2025-06-04
  • 上网日期:  2025-07-01
  • 刊出日期:  2025-09-05

/

返回文章
返回
Baidu
map