搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极性磁体Co2Mo3O8多铁性和磁电耦合效应的平均场近似模型

唐永森 汪寒艳 余冰 李兴鳌

引用本文:
Citation:

极性磁体Co2Mo3O8多铁性和磁电耦合效应的平均场近似模型

唐永森, 汪寒艳, 余冰, 李兴鳌

Mean-field approximation model for multiferroicity and magnetoelectric coupling effects in polar magnet Co2Mo3O8

TANG Yongsen, WANG Hanyan, YU Bing, LI Xing’ao
cstr: 32037.14.aps.74.20250506
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 近年来, 极性磁体M2Mo3O8 (M: 3d过渡金属)因其独特的晶体结构、多重连续的磁电耦合态转变及潜在应用价值, 成为凝聚态物理和材料科学领域的研究热点. 特别是Co2Mo3O8基态下展现出显著的二阶非线性磁电耦合效应, 对应独特的磁电耦合微观机制和实际应用价值. 本文基于分子场唯象模型, 构建了Co2Mo3O8体系的两套不同的反铁磁子格子, 给出体系的自发磁矩、自旋诱导的铁电极化、一阶线性磁电耦合系数以及二阶非线性磁电耦合系数随温度的变化关系. 结果显示Co2Mo3O8的二阶磁电耦合系数要明显比同构的Fe2Mo3O8以及Mn2Mo3O8大, 这主要是因为Co2Mo3O8的两个不同子格子间的反铁磁交换作用能量更低, 体系所处的状态更加稳定. 这也表明, Co2Mo3O8体系拥有更加稳定的不可逆性, 展现了非常明显的磁电二极管效应, 为磁电二极管的发展提供了坚实的理论和实验基础.
    In recent years, polar magnets M2Mo3O8 (M: 3d transition metal) have emerged as a research focus in condensed matter physics and materials science due to their unique crystal structures, multiple continuous magnetoelectric-coupled state transitions, and potential applications. Notably, Co2Mo3O8 exhibits a significant second-order nonlinear magnetoelectric coupling effect in its ground state, corresponding to a unique microscopic magnetoelectric coupling mechanism and practical value. In this work, based on a molecular field phenomenological model, two distinct antiferromagnetic sublattices for the Co2Mo3O8 system constructed and the temperature-dependent variations of its spontaneous magnetic moment, spin-induced ferroelectric polarization, first-order linear magnetoelectric coupling coefficient, and second-order nonlinear magnetoelectric coupling coefficient are presented. Particularly, the parameters t = –1 and o = –0.96 indicate distinct exchange energies between the magnetic sublattices associated with tetrahedron (Cot) and octahedron (Coo). The Co2+ ions in these two sublattices, which are characterized by different molecular field coefficients, synergistically mediate a spin-induced spontaneous polarization of PS ~ 0.12 μC/cm2 through the exchange striction mechanism and p-d hybridization mechanism in Co2Mo3O8. In addition, the significant second-order magnetoelectric coupling effect with a coefficient peaking at 7 × 10–18 s/A near the TN in Co2Mo3O8, with this coefficient being significantly larger than those of isostructural Fe2Mo3O8 (1.81 × 10–28 s/A) and Mn2Mo3O8, implies that this enhancement primarily arises from the weaker inter-sublattice antiferromagnetic exchange between its two sublattices, leading to a stabilizes metastable spin configuration. This also indicates that the Co2Mo3O8 system possesses stronger irreversibility stability and exhibits a pronounced magnetoelectric diode effect, providing a solid theoretical and computational foundation for developing magnetoelectric diodes.
      通信作者: 唐永森, tangys@njupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12304124)资助的课题.
      Corresponding author: TANG Yongsen, tangys@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12304124).
    [1]

    Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y 2003 Nature 426 55Google Scholar

    [2]

    Cheong S, Mostovoy M 2007 Nat. Mater. 6 13Google Scholar

    [3]

    Spaldin N A 2017 MRS Bulletin 42 385Google Scholar

    [4]

    Lu C L, Wu M H, Lin L, Liu J M 2019 Nat. Sci. Rev. 6 653Google Scholar

    [5]

    Dong S, Liu J M, Cheong S W, Ren Z 2015 Adv. Phys. 64 519Google Scholar

    [6]

    南策文 2015 中国科学: 技术科学 45 339Google Scholar

    Nan C W 2015 Sci. Sin.: Tech. 45 339Google Scholar

    [7]

    刘俊明, 南策文 2014 物理 43 88Google Scholar

    Liu J M, Nan C W 2014 Physics 43 88Google Scholar

    [8]

    Li Z W, Zhang S Y, Li Q S, Liu H 2023 J. Adv. Dielect. 13 2345002Google Scholar

    [9]

    Liang M C, Yang J, Yang H Y, Liang C, Nie Z Y, Ai H, Zhang T, Ma J, Huang H B, Wang J 2024 J. Adv. Dielect. 14 2440002Google Scholar

    [10]

    Khade V, Wuppulluri M 2024 J. Adv. Dielect. 14 2340001Google Scholar

    [11]

    Wu F, Bao S, Zhou J, Wang Y, Sun J, Wen J, Wan Y, Zhang Q 2023 Nat. Phys. 19 1868Google Scholar

    [12]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spldin N A, Rabe K M, Wuttig M, Ramesh R 2003 Science 299 1719Google Scholar

    [13]

    Wang Y Z, Pascut G L, Gao B, Tyson T A, Haule K, Kiryukhin V, Cheong S W 2015 Sci. Rep. 5 12268Google Scholar

    [14]

    Spaldin N A, Ramesh R 2019 Nat. Mater. 18 203Google Scholar

    [15]

    Kurumaji T, Ishiwata S, Tokura Y 2015 Phys. Rev. X 5 031034Google Scholar

    [16]

    Chang Y, Weng Y, Xie Y, You B, Wang J, Li L, Liu J M, Dong S, Lu C 2023 Phys. Rev. Lett. 131 136701Google Scholar

    [17]

    Tang Y, Wang S, Lin L, Li C, Zheng S, Li C, Zhang J, Yan Z, Jiang X, Liu J M 2019 Phys. Rev. B 100 134112Google Scholar

    [18]

    Kim J, Artyukhin S, Mun E, Jaime M, Harrison N, Hansen A, Yang J, Oh Y, Vanderbilt D, Zapf V, Cheong S 2015 Phys. Rev. Lett. 115 137201Google Scholar

    [19]

    Rivera J P 1994 Ferroelectrics 161 165Google Scholar

    [20]

    Kurumaji T, Ishiwata S, Tokura Y 2017 Phys. Rev. B 95 045142Google Scholar

    [21]

    Kurumaji T, Takahashi Y, Fujioka J, Masuda R, Shishikura H, Ishiwata S, Tokura Y 2017 Phys. Rev. B 95 020405(RGoogle Scholar

    [22]

    俞斌, 胡忠强, 程宇心, 彭斌, 周子尧, 刘明 2018 67 157507Google Scholar

    Yu B, Hu Z Q, Cheng Y X, Peng B, Zhou Z Y, Liu M 2018 Acta Phys. Sin. 67 157507Google Scholar

    [23]

    申见昕, 尚大山, 孙阳 2018 67 127501Google Scholar

    Shen J, Shang D, Sun Y 2018 Acta Phys. Sin. 67 127501Google Scholar

    [24]

    Yu S, Gao B, Kim J, Cheong S W, Man M, Madéo J, Dani K, Talbayev D 2018 Phys. Rev. Lett. 120 037601Google Scholar

    [25]

    Tang Y, Zhou G, Lin L, Chen R, Wang J, Lu C, Huang L, Zhang J, Yan Z, Lu X, Huang X, Jiang X P, Liu J M 2022 Phys. Rev. B 105 064108Google Scholar

    [26]

    Reschke S, Farkas D, Strinić A, Ghara S, Guratinder K, Zaharko O, Prodan L, Tsurkan V, Szaller D, Bordács S, Deisenhofer J, Kézsmárki I 2022 npj Quantum Mater. 7 1Google Scholar

    [27]

    McAlister S, Strobel P 1983 J. Magn. Magn. 30 340Google Scholar

    [28]

    Tang Y, Zhang J, Lin L, Chen R, Wang J, Zheng S, Li C, Zhang Y, Zhou G, Huang L, Yan Z, Lu X, Wu D, Huang X, Jiang X, Liu J M 2021 Phys. Rev. B 103 014112Google Scholar

    [29]

    Schmid H 1973 Int. J. Magn. 4 337

    [30]

    Johnston D, McQueeney R, Lake B, Honecker A, Zhitomirsky M, Nath R, Furukawa Y, Antropov V, Yogesh Singh 2011 Phys. Rev. B 84 094445Google Scholar

    [31]

    Solovyev I V, Streltsov S V 2019 Phys. Rev. Matter. 3 114402Google Scholar

    [32]

    Taniguchi K, Abe N, Takenobu T, Iwasa Y, Arima T 2006 Phys. Rev. Lett. 97 097203Google Scholar

    [33]

    Balents L 2010 Nature 464 199Google Scholar

    [34]

    Joshua S J 1984 Aust. J. Phys. 37 305Google Scholar

    [35]

    豆树清, 杨晓阔, 夏永顺, 袁佳卉, 崔焕卿, 危波, 白馨, 冯朝文 2023 72 157501Google Scholar

    Dou S, Yang X, Xia Y, Yuan J, Cui H, Wei B, Bai X, Feng C 2023 Acta Phys. Sin. 72 157501Google Scholar

    [36]

    宋骁, 高兴森, 刘俊明 2018 67 157512Google Scholar

    Song X, Gao X, Liu J M 2018 Acta Phys. Sin. 67 157512Google Scholar

    [37]

    Tang Y, Zhou S, Weng Y, Zhang A, Zhang Y, Zheng S, Li X 2025 Phys. Rev. B 111 134423Google Scholar

    [38]

    Wei X, Zhang X, Yu H, Gao L, Tang W, Hong M, Chen Z, Kang Z, Zhang Z, Zhang Y 2024 Nat. Electron. 7 138Google Scholar

  • 图 1  用Vesta软件做的Co2Mo3O8的(a)晶格结构图、(b)面外的磁结构图和(c)面内的磁结构

    Fig. 1.  (a) Crystal structure, (b) the out-of-plane and (c) in-plane magnetic structure of Co2Mo3O8.

    图 2  (a), (b) 基于分子场近似, Cot和Coo 两个不同配位中Co2+自旋磁矩和总磁矩随温度的变化; (c), (d) 不同配位中Co2+的磁化率和总的磁化率随温度的关系; (e), (f) 磁矩对温度的微分和磁比热随温度的变化

    Fig. 2.  (a), (b) Temperature-dependent variations of the Co2+ spin magnetic moment and total magnetic moment in two distinct coordination environments (Cot and Coo); (c), (d) temperature-dependent magnetic susceptibility and the total magnetic susceptibility; (e), (f) temperature derivative of the magnetic moment and temperature-dependent magnetic specific heat based on the molecular field approximation.

    图 3  基于分子场近似, 得到的Co2Mo3O8 (a) χimj (i, j = t, o)、(b) 一阶线性磁电耦合系数、(c) 自旋诱导的铁电极化和(d) 二阶线性磁电耦合系数随温度的变化

    Fig. 3.  Temperature-dependent variations of (a) χimj (i, j = t, o), (b) first-order linear magnetoelectric coupling coefficient, (c) spin-induced ferroelectric polarization, and (d) second-order linear magnetoelectric coupling coefficient for Co2Mo3O8 based on the molecular field approximation.

    图 4  基于分子场近似, (a)—(c) Mn2Mo3O8和(d)—(f) Fe2Mo3O8 体系的基态下的磁电耦合效应数值计算结果

    Fig. 4.  Numerical calculations on the magnetoelectric coupling effects in the ground state for (a)–(c) Mn2Mo3O8 and (d)–(f) Fe2Mo3O8 system based on the molecular field approximation.

    图 5  (a) Co2Mo3O8, (b) Fe2Mo3O8和(c) Mn2Mo3O8的磁结构

    Fig. 5.  Magnetic structures of (a) Co2Mo3O8, (b) Fe2Mo3O8, and (c) Fe2Mo3O8.

    Baidu
  • [1]

    Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y 2003 Nature 426 55Google Scholar

    [2]

    Cheong S, Mostovoy M 2007 Nat. Mater. 6 13Google Scholar

    [3]

    Spaldin N A 2017 MRS Bulletin 42 385Google Scholar

    [4]

    Lu C L, Wu M H, Lin L, Liu J M 2019 Nat. Sci. Rev. 6 653Google Scholar

    [5]

    Dong S, Liu J M, Cheong S W, Ren Z 2015 Adv. Phys. 64 519Google Scholar

    [6]

    南策文 2015 中国科学: 技术科学 45 339Google Scholar

    Nan C W 2015 Sci. Sin.: Tech. 45 339Google Scholar

    [7]

    刘俊明, 南策文 2014 物理 43 88Google Scholar

    Liu J M, Nan C W 2014 Physics 43 88Google Scholar

    [8]

    Li Z W, Zhang S Y, Li Q S, Liu H 2023 J. Adv. Dielect. 13 2345002Google Scholar

    [9]

    Liang M C, Yang J, Yang H Y, Liang C, Nie Z Y, Ai H, Zhang T, Ma J, Huang H B, Wang J 2024 J. Adv. Dielect. 14 2440002Google Scholar

    [10]

    Khade V, Wuppulluri M 2024 J. Adv. Dielect. 14 2340001Google Scholar

    [11]

    Wu F, Bao S, Zhou J, Wang Y, Sun J, Wen J, Wan Y, Zhang Q 2023 Nat. Phys. 19 1868Google Scholar

    [12]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spldin N A, Rabe K M, Wuttig M, Ramesh R 2003 Science 299 1719Google Scholar

    [13]

    Wang Y Z, Pascut G L, Gao B, Tyson T A, Haule K, Kiryukhin V, Cheong S W 2015 Sci. Rep. 5 12268Google Scholar

    [14]

    Spaldin N A, Ramesh R 2019 Nat. Mater. 18 203Google Scholar

    [15]

    Kurumaji T, Ishiwata S, Tokura Y 2015 Phys. Rev. X 5 031034Google Scholar

    [16]

    Chang Y, Weng Y, Xie Y, You B, Wang J, Li L, Liu J M, Dong S, Lu C 2023 Phys. Rev. Lett. 131 136701Google Scholar

    [17]

    Tang Y, Wang S, Lin L, Li C, Zheng S, Li C, Zhang J, Yan Z, Jiang X, Liu J M 2019 Phys. Rev. B 100 134112Google Scholar

    [18]

    Kim J, Artyukhin S, Mun E, Jaime M, Harrison N, Hansen A, Yang J, Oh Y, Vanderbilt D, Zapf V, Cheong S 2015 Phys. Rev. Lett. 115 137201Google Scholar

    [19]

    Rivera J P 1994 Ferroelectrics 161 165Google Scholar

    [20]

    Kurumaji T, Ishiwata S, Tokura Y 2017 Phys. Rev. B 95 045142Google Scholar

    [21]

    Kurumaji T, Takahashi Y, Fujioka J, Masuda R, Shishikura H, Ishiwata S, Tokura Y 2017 Phys. Rev. B 95 020405(RGoogle Scholar

    [22]

    俞斌, 胡忠强, 程宇心, 彭斌, 周子尧, 刘明 2018 67 157507Google Scholar

    Yu B, Hu Z Q, Cheng Y X, Peng B, Zhou Z Y, Liu M 2018 Acta Phys. Sin. 67 157507Google Scholar

    [23]

    申见昕, 尚大山, 孙阳 2018 67 127501Google Scholar

    Shen J, Shang D, Sun Y 2018 Acta Phys. Sin. 67 127501Google Scholar

    [24]

    Yu S, Gao B, Kim J, Cheong S W, Man M, Madéo J, Dani K, Talbayev D 2018 Phys. Rev. Lett. 120 037601Google Scholar

    [25]

    Tang Y, Zhou G, Lin L, Chen R, Wang J, Lu C, Huang L, Zhang J, Yan Z, Lu X, Huang X, Jiang X P, Liu J M 2022 Phys. Rev. B 105 064108Google Scholar

    [26]

    Reschke S, Farkas D, Strinić A, Ghara S, Guratinder K, Zaharko O, Prodan L, Tsurkan V, Szaller D, Bordács S, Deisenhofer J, Kézsmárki I 2022 npj Quantum Mater. 7 1Google Scholar

    [27]

    McAlister S, Strobel P 1983 J. Magn. Magn. 30 340Google Scholar

    [28]

    Tang Y, Zhang J, Lin L, Chen R, Wang J, Zheng S, Li C, Zhang Y, Zhou G, Huang L, Yan Z, Lu X, Wu D, Huang X, Jiang X, Liu J M 2021 Phys. Rev. B 103 014112Google Scholar

    [29]

    Schmid H 1973 Int. J. Magn. 4 337

    [30]

    Johnston D, McQueeney R, Lake B, Honecker A, Zhitomirsky M, Nath R, Furukawa Y, Antropov V, Yogesh Singh 2011 Phys. Rev. B 84 094445Google Scholar

    [31]

    Solovyev I V, Streltsov S V 2019 Phys. Rev. Matter. 3 114402Google Scholar

    [32]

    Taniguchi K, Abe N, Takenobu T, Iwasa Y, Arima T 2006 Phys. Rev. Lett. 97 097203Google Scholar

    [33]

    Balents L 2010 Nature 464 199Google Scholar

    [34]

    Joshua S J 1984 Aust. J. Phys. 37 305Google Scholar

    [35]

    豆树清, 杨晓阔, 夏永顺, 袁佳卉, 崔焕卿, 危波, 白馨, 冯朝文 2023 72 157501Google Scholar

    Dou S, Yang X, Xia Y, Yuan J, Cui H, Wei B, Bai X, Feng C 2023 Acta Phys. Sin. 72 157501Google Scholar

    [36]

    宋骁, 高兴森, 刘俊明 2018 67 157512Google Scholar

    Song X, Gao X, Liu J M 2018 Acta Phys. Sin. 67 157512Google Scholar

    [37]

    Tang Y, Zhou S, Weng Y, Zhang A, Zhang Y, Zheng S, Li X 2025 Phys. Rev. B 111 134423Google Scholar

    [38]

    Wei X, Zhang X, Yu H, Gao L, Tang W, Hong M, Chen Z, Kang Z, Zhang Z, Zhang Y 2024 Nat. Electron. 7 138Google Scholar

  • [1] 夏永顺, 崔焕卿, 杨晓阔, 郭宝军, 豆树清, 康艳, 危波, 梁卜嘉. 应变调控双组分纳磁体辐射状磁涡旋极性可逆翻转.  , 2025, 74(16): 168503. doi: 10.7498/aps.74.20250575
    [2] 姬慧慧, 高兴国, 李枝兰. 铜/锰异质结中维度驱动的交换耦合效应.  , 2024, 73(21): 216102. doi: 10.7498/aps.73.20240849
    [3] 施洪潮, 唐炳, 刘超飞. 双层蜂窝状海森伯铁磁体中层间交换耦合相互作用对拓扑相的影响.  , 2024, 73(13): 137501. doi: 10.7498/aps.73.20240437
    [4] 丰家峰, 陈星, 魏红祥, 陈鹏, 兰贵彬, 刘要稳, 郭经红, 黄辉, 韩秀峰. 自由层磁性交换偏置效应调控隧穿磁电阻磁传感单元性能.  , 2023, 72(19): 197103. doi: 10.7498/aps.72.20231003
    [5] 张建强, 秦彦军, 方峥, 范晓珍, 马云, 李文忠, 杨慧雅, 邝富丽, 翟耀, 师应龙, 党文强, 叶慧群, 方允樟. 多场耦合Fe基合金巨磁阻抗效应调控机制.  , 2022, 71(23): 237501. doi: 10.7498/aps.71.20221376
    [6] 时立宇, 吴东, 王子潇, 林桐, 张思捷, 刘巧梅, 胡天晨, 董涛, 王楠林. 极性反铁磁体Fe2Mo3O8的太赫兹发射谱.  , 2020, 69(20): 204206. doi: 10.7498/aps.69.20201545
    [7] 陈涛, 颜波. 极性分子的激光冷却及囚禁技术.  , 2019, 68(4): 043701. doi: 10.7498/aps.68.20181655
    [8] 鹿博, 王大军. 超冷极性分子.  , 2019, 68(4): 043301. doi: 10.7498/aps.68.20182274
    [9] 陈爱天, 赵永刚. 多铁异质结构中逆磁电耦合效应的研究进展.  , 2018, 67(15): 157513. doi: 10.7498/aps.67.20181272
    [10] 申见昕, 尚大山, 孙阳. 基于磁电耦合效应的基本电路元件和非易失性存储器.  , 2018, 67(12): 127501. doi: 10.7498/aps.67.20180712
    [11] 吴枚霞, 李满荣. 异常双钙钛矿A2BB'O6氧化物的多铁性.  , 2018, 67(15): 157510. doi: 10.7498/aps.67.20180817
    [12] 俞斌, 胡忠强, 程宇心, 彭斌, 周子尧, 刘明. 多铁性磁电器件研究进展.  , 2018, 67(15): 157507. doi: 10.7498/aps.67.20180857
    [13] 张源, 高雁军, 胡诚, 谭兴毅, 邱达, 张婷婷, 朱永丹, 李美亚. 磁铁/压电双晶片复合材料磁电耦合性能的优化设计.  , 2016, 65(16): 167501. doi: 10.7498/aps.65.167501
    [14] 李永超, 周航, 潘丹峰, 张浩, 万建国. Co/Co3O4/PZT多铁复合薄膜的交换偏置效应及其磁电耦合特性.  , 2015, 64(9): 097701. doi: 10.7498/aps.64.097701
    [15] 李艳杰, 刘金明. 极性分子摆动态的三体量子关联.  , 2014, 63(20): 200302. doi: 10.7498/aps.63.200302
    [16] 王学昭, 沈容, 路阳, 纪爱玲, 孙刚, 陆坤权, 崔平. 极性分子型电流变液导电机理研究.  , 2010, 59(10): 7144-7148. doi: 10.7498/aps.59.7144
    [17] 王先杰, 隋 郁, 千正男, 程金光, 刘志国, 李 妍, 苏文辉, C. K. Ong. 多晶Sr2Fe1-xAlxMoO6的晶粒内低场磁电阻效应.  , 2005, 54(2): 907-911. doi: 10.7498/aps.54.907
    [18] 王亦忠, 胡季帆, 张绍英, 张宏伟, 沈保根. Nd-Fe(Co,Nb)-B交换耦合磁体的磁性.  , 1999, 48(3): 520-526. doi: 10.7498/aps.48.520
    [19] 黄卓和, 陈传誉, 梁世东. 磁场中极性晶体板内的强耦合极化子.  , 1997, 46(4): 715-723. doi: 10.7498/aps.46.715
    [20] 陈慧余, 罗有泉, 朱弘, 温琳清. 81NiFe/Cr多层膜磁电阻单向各向异性与交换耦合.  , 1994, 43(7): 1185-1191. doi: 10.7498/aps.43.1185
计量
  • 文章访问数:  463
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-19
  • 修回日期:  2025-07-20
  • 上网日期:  2025-07-28

/

返回文章
返回
Baidu
map