搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应用于超导脑磁系统的集成超导量子干涉器件芯片的设计与性能评估

李加林 张国峰 李思瑶 王甜珺 魏雪齐 李华 古元冬 孙立敏

引用本文:
Citation:

应用于超导脑磁系统的集成超导量子干涉器件芯片的设计与性能评估

李加林, 张国峰, 李思瑶, 王甜珺, 魏雪齐, 李华, 古元冬, 孙立敏

Design and performance evaluation of integrated superconducting quantum interference device chips for superconducting brain magnetometer systems

LI Jialin, ZHANG Guofeng, LI Siyao, WANG Tianjun, WEI Xueqi, LI Hua, GU Yuandong, SUN Limin
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 超导量子干涉器件(SQUID)作为一种超灵敏的磁通传感器, 在生物磁探测、低场核磁共振、地球物理探矿等领域得到广泛应用. 本文设计开发了一种用于脑磁(MEG)系统的集成SQUID芯片, 并进行了批量封装测试. 其中, 每个芯片上集成了两个一阶平面梯度计和一个磁强计, 采用亚微米约瑟夫森结制备技术, 实现0.7 μm×0.7 μm的亚微米结尺寸. SQUID与探测线圈采用Nb超导引线连接, 集成到同一芯片上. 对171个SQUID器件的测试结果显示, 这些器件在磁场白噪声、I-V特性、V-Φ特性等方面表现优异. 本文制备的SQUID器件工作电流集中在15—20 μA, 电压摆幅集中在80—120 μV. 此外, 超过80%的SQUID器件的磁场白噪声低于$ 5{\text{ fT/}}\sqrt {{\text{Hz}}} $, 能够满足多通道SQUID脑磁系统的要求.
    Superconducting quantum interference device (SQUID) is one of the most sensitive flux sensors and is critical in fields such as biomagnetism, low-field nuclear magnetic resonance (NMR), and geophysics. In this paper, an integrated magnetoencephalography (MEG) SQUID chip is investigated in detail, which consists of a magnetometer and two gradiometers. The SQUID and pick-up coils are fabricated on different-sized wafers. The SQUID is fabricated on a commercial silicon substrate using micro- and nano-fabrication processes, including thin-film growth, i-line stepper photolithography, and reactive ion etching (RIE). The sub-micron Josephson junction technology is employed to achieve a junction size of 0.7 μm×0.7 μm with a junction capacitance of only 0.05 pF. The pick-up coil is designed as a single-turn coil for a magnetometer and a planar first-order gradient coil for a gradient sensor. The MEG SQUID chips are tested in a well-shielded chamber with the helium-liquid temperature (4.2 K). Customized low-voltage noise readout circuit and source measure units are used to characterize the magnetic field white noise, current-voltage (I-V) characteristics, and voltage modulation amplitude of 171 SQUID channels. The results show that 81% of the SQUID chips exhibit the lower magnetic field noise (< 5 $ {\text{fT/}}\sqrt {{\text{HZ}}} $), and the high modulation amplitudes (in a range of 80–120 μV) with the low working currents of 15–20 μA, yielding a wafer yield rate of 78%. In summary, the SQUIDs show excellent performance in terms of magnetic field white noises, modulation amplitudes, and working currents, which are suitable for the very weak magnetic signal detection. One of future studies will focus on optimizing the SQUID chip fabrication process to minimize performance variations between chips on the same wafer.
  • 图 1  (a) SQUID晶圆集成示意图; (b) 探测线圈晶圆集成示意图

    Fig. 1.  (a) Wafer of SQUIDs; (b) the wafer of pickup coils.

    图 2  SQUID芯片封装示意图 (a) 引线键合; (b) SQUID封装成品图

    Fig. 2.  SQUID chip packaging: (a) The lead bonding; (b) the final SQUID packaging.

    图 3  测试电路框图 (a) I-V特性、V-Φ特性测试框图; (b) 噪声测试框图

    Fig. 3.  Block diagrams of the test circuits: (a) Block diagram for I-V and V-Φ characteristic measurements; (b) block diagram for noise measurement.

    图 4  (a) 磁强计在不同环境中的磁场噪声谱; (b) 梯度计在不同环境中的磁场噪声谱

    Fig. 4.  (a) Magnetic field noise spectrum diagrams of MAG in different environments; (b) magnetic field noise spectrum diagrams of GRA in different environments.

    图 5  单元脑磁SQUID芯片的参数特性曲线 (a) 磁强计与梯度计磁场与磁通噪声图; (b) 磁强计与梯度计的I-V特性曲线; (c) 磁强计与梯度计的最大电压摆幅特性曲线

    Fig. 5.  Parametric characteristic curves of single MEG SQUID chip: (a) Magnetic fields and flux noises of MAG and GRA; (a) the I-V characteristic curves of MAG and GRA; (c) the maximum voltage swing characteristic curves of MAG and GRA.

    图 6  磁强计与梯度计不同外加磁场的Ic分布 (a) 磁强计Ic散点图; (b) 磁强计直方图; (c) 梯度计Ic散点图; (d) 梯度计直方图

    Fig. 6.  Distribution of Ic under different external magnetic fields of MAG & GRA: (a) The Ic scatter plot of MAG; (b) the MAG histogram; (c) the Ic scatter plot of GRA; (d) the GRA histogram.

    图 7  最大电压摆幅与偏置电流对应图 (a) 磁强计; (b) 梯度计

    Fig. 7.  Plots of maximum voltage swings and bias currents: (a) Magnetometers; (b) gradiometers.

    图 8  SQUID芯片低频磁场噪声Z-score谱(对数坐标) (a) 磁强计低频噪声Z-score谱; (b) 梯度计低频噪声Z-score谱(实线表示噪声的均值曲线, 阴影部分表示噪声的波动范围(Mean ±3σ))

    Fig. 8.  Z-score spectrum of low-frequency magnetic field noise of SQUID chip (logarithmic coordinate): (a) Z-score spectrum of low-frequency noise of MAG; (b) Z-score spectrum of low-frequency noise of GRA (The solid line represents the mean noise curve, and the shaded area indicates the noise fluctuation range (Mean ±3σ)).

    图 9  磁强计与梯度计磁场噪声 (a) 磁强计磁场噪声分布图; (b) 梯度计磁场噪声分布图; (c) 磁强计与梯度计磁场噪声散点图

    Fig. 9.  MAG & GRA magnetic field noise: (a) The noise distribution plot of MAG; (b) the noise distribution plot of GRA; (c) the noise scatter plot of MAG and GRA.

    表 1  SQUID设计参数

    Table 1.  Parameters for designing a SQUID.

    SQUID结构参数数值单位
    约瑟夫森结尺寸0.7×0.7μm2
    临界电流密度2kA/cm2
    临界电流10μA
    结电容0.03pF
    结电阻35Ω
    βc1
    环电感环结构1 st order gradiometer
    内边长20μm
    线宽84μm
    单loop电感56pH
    Input线宽2μm
    Input线距2μm
    Input匝数18×2
    Input电感36nH
    下载: 导出CSV

    表 2  探测线圈设计参数

    Table 2.  Parameters for designing a pickup coil.

    器件类型参数数值单位
    磁强计Pickup内边长7000mm
    Pickup线宽500μm
    Pickup电感19nH
    梯度计Pickup内边长8000mm
    Pickup线宽500μm
    Pickup电感45nH
    下载: 导出CSV
    Baidu
  • [1]

    丁红胜, 陈赓华, 张利华, 黄旭光, 杨乾声 2006 北京科技大学学报 28 863

    Ding H S, Chen G H, Zhang L H, Huang X G, Yang Q S 2006 J. Univ. Sc. Thechnol. Beijing. 28 863

    [2]

    LI H, Zhang M Y 2025 IEEE Trans. Appl. Supercond. 74 1

    [3]

    Maslennikov Y V, Slobodchikov Y V, Krymov V A, Gulyaev Y V 2023 Pattern Recognit. Image Anal. 33 1402Google Scholar

    [4]

    盛经纬, 高家红 2021 物理 50 463

    Sheng J W, Gao J H 2001 Physics 50 463

    [5]

    Lin J, Wang M C, Zhao J 2020 J. Harbin Inst. Technol. (New Series) 27 101

    [6]

    漆汉宏 2004 博士学位论文(秦皇岛: 燕山大学

    QI H H 2004 Ph. D. Dissertation (QingHuangdao: YanShan University

    [7]

    Persky E, Sochnikov I, Kalisky B 2022 Annu. Rev. Condens. Matter Phys. 13 385Google Scholar

    [8]

    Sochnikov I, Davino D, Kalisky B 2020 Phys. Rev. Appl. 14 014020Google Scholar

    [9]

    Granata C, Vettoliere A, Vaccarone R 2007 IEEE Trans. Appl. Supercond. 17 796Google Scholar

    [10]

    Koelle D, Kleiner R, Ludwig F, Dantsker E, John C 1999 Rev. Mod. Phys. 71 631Google Scholar

    [11]

    Enpuku K, Minotani T 2001 IEICE Trans Electron, E84C 43

    [12]

    Faley M I, Dammers J, Maslennikov Y V, Schneiderman J F, Winkler D, Koshelets VP, Shah N J, Dunin-Borkowski R E 2017 Supercond. Sci. Technol. 30 83001Google Scholar

    [13]

    Bechstein S, Köhn C, Drung D, Jan-Hendrik S, Kieler O, Morosh V, Schurig T 2017 Supercond. Sci. Technol. 30 34007Google Scholar

    [14]

    Carmine Granata, Vettoliere Antonio 2016 Phys. Rep. 614 1Google Scholar

    [15]

    Cantor R, Hall J 2015 IEEE Trans. Appl. Supercond. 15 82

    [16]

    Xiong W, Ying L L, Wang H, Zhang G F, Wang Z 2015 Proceedings of 2015 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices Shanghai China, November 20-23, 2015 p282

    [17]

    Schmelz M, Zakosarenko V, Schönau T, Anders S, Kunert J, Meyer M, Meyer H G, Stolz R 2017 Supercond. Sci. Technol. 30 74010Google Scholar

    [18]

    Grönberg L, Kiviranta M, Vesterinen V, Lehtinen J, Simbierowicz S, Luomahaara J, Prunnila M, Hassel J 2017 Supercond. Sci. Technol. 30 125016Google Scholar

    [19]

    Storm J H, Kieler O, Korber R. 2020 IEEE Trans. Appl. Supercond. 30 1

    [20]

    Zhang G f, Zhang X, Wang Y l, Rong L L, Xie X M, Wang Z 2019 Physica C Supercond. Appl. 562 32Google Scholar

    [21]

    Silver A H, Zimmerma J 1967 Phys Phys. Rev. 157 314

    [22]

    Xie M, Schneiderman J F, Chukharkin M, Kalaboukhov A, Whitmarsh S, Lundqvist D, Winkler D 2015 IEEE Trans. Appl. Supercond. 25 6940248

    [23]

    倪志 2024 博士学位论文(上海: 中国科学院上海微系统与信息技术研究所

    Ni Z 2024 Ph. D. Dissertation (shanghai: Shanghai Institute of Microsystem and Information Technology

    [24]

    Drung D 2003 Supercond. Sci. Technol. 16 1320Google Scholar

    [25]

    Enpuku K, Yoshida K, Kohjiro S 1986 J. Appl. Phys. 60 4218Google Scholar

    [26]

    Wang Y L, Zhang S L, Zhang G F, Xu X F, Zhang C X, Wang Y, Xie X M 2020 Physica C 575 1353685Google Scholar

    [27]

    Li H, Zhang M Y 2024 Physica C 625 1354575Google Scholar

  • [1] 马俊, 欧阳鹏辉, 柴亚强, 蒋青权, 贺青, 韦联福. 量子网络中基于弹性散射的微波光子传输调控.  , doi: 10.7498/aps.74.20250404
    [2] 刘怀远, 肖建飞, 吕昭征, 吕力, 屈凡明. Bi2O2Se纳米线的生长及其超导量子干涉器件.  , doi: 10.7498/aps.73.20231600
    [3] 张露露, 白乐乐, 杨煜林, 杨永彪, 王彦华, 温馨, 何军, 王军民. 采用反抽运光改善光泵铷原子磁强计的灵敏度.  , doi: 10.7498/aps.70.20210920
    [4] 徐达, 钟青, 曹文会, 王雪深, 王仕建, 李劲劲, 刘建设, 陈炜. 二阶梯度交叉耦合超导量子干涉仪电流传感器研制.  , doi: 10.7498/aps.70.20201816
    [5] 梁恬恬, 张国峰, 伍文涛, 倪志, 王永良, 应利良, 伍俊, 荣亮亮, 彭炜, 高波. 串联超导量子干涉器件阵列制备与测试分析.  , doi: 10.7498/aps.70.20210467
    [6] 郑东宁. 超导量子干涉器件.  , doi: 10.7498/aps.70.20202131
    [7] 韩昊轩, 张国峰, 张雪, 梁恬恬, 应利良, 王永良, 彭炜, 王镇. 低噪声超导量子干涉器件磁强计设计与制备.  , doi: 10.7498/aps.68.20190483
    [8] 赵国荣, 黄婧丽, 苏艳琴, 孙聪. 基于滚动时域估计的飞行器姿态估计及三轴磁强计在线校正.  , doi: 10.7498/aps.64.210502
    [9] 张永升, 邱阳, 张朝祥, 李华, 张树林, 王永良, 徐小峰, 丁红胜, 孔祥燕. 多通道心磁系统标定方法研究.  , doi: 10.7498/aps.63.228501
    [10] 刘明, 徐小峰, 王永良, 曾佳, 李华, 邱阳, 张树林, 张国峰, 孔祥燕, 谢晓明. 超导量子干涉器件读出电路中匹配变压器的传输特性研究.  , doi: 10.7498/aps.62.188501
    [11] 张树林, 刘扬波, 曾佳, 王永良, 孔祥燕, 谢晓明. 基于低温超导量子干涉器件的脑听觉激励磁场探测.  , doi: 10.7498/aps.61.020701
    [12] 李绍, 任育峰, 王宁, 田野, 储海峰, 黎松林, 陈莺飞, 李洁, 陈赓华, 郑东宁. 利用高温超导直流量子干涉器件进行10-6 T量级磁场下核磁共振的研究.  , doi: 10.7498/aps.58.5744
    [13] 郎佩琳, 陈 珂, 郑东宁, 张鸣剑, 漆汉宏, 赵忠贤. 高阶高温超导量子干涉器件平面式梯度计的设计.  , doi: 10.7498/aps.53.3530
    [14] 董正超. 铁磁-绝缘层-铁磁-d波超导结中的量子干涉效应对微分电导与散粒噪声的影响.  , doi: 10.7498/aps.51.894
    [15] 丁红胜, 韩冰, 陈赓华, 张利华, 杨乾声. 一种抑制市电对高温SQUID干扰的新方法.  , doi: 10.7498/aps.51.220
    [16] 马平, 姚坤, 谢飞翔, 张升原, 邓鹏, 何东风, 张凡, 刘乐园, 聂瑞娟, 王福仁, 王守证, 戴远东. 利用单通道高温超导磁梯度计获取心磁地图.  , doi: 10.7498/aps.51.224
    [17] 韩 冰, 陈赓华, 徐凤枝, 赵士平, 杨乾声. 高温超导台阶结YBCO dc-SQUID一阶平面梯度计.  , doi: 10.7498/aps.49.2051
    [18] 杜胜望, 戴远东, 王世光. 用射频超导量子干涉器件测量高温超导体序参量的位相.  , doi: 10.7498/aps.48.2364
    [19] 陈莺飞, S.ZAREMBINSKI. 阻尼型高温直流超导量子干涉器磁强计的设计.  , doi: 10.7498/aps.47.1369
    [20] 沐建林, 蔡诗东. 梯度磁场中静电波引起的粒子随机运动.  , doi: 10.7498/aps.38.1818
计量
  • 文章访问数:  195
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-02
  • 修回日期:  2025-07-15
  • 上网日期:  2025-08-25

/

返回文章
返回
Baidu
map