搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于定向传质驱动的冷凝微液滴群三维指纹片段重构技术

张卫 牛喻樱 刘瑞 赵玉刚

引用本文:
Citation:

基于定向传质驱动的冷凝微液滴群三维指纹片段重构技术

张卫, 牛喻樱, 刘瑞, 赵玉刚

3D fingerprint fragment reconstruction of condensed microdroplet clusters driven by directed mass transfer

ZHANG Wei, NIU Yuying, LIU Rui, ZHAO Yugang
cstr: 32037.14.aps.74.20250413
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 指纹识别技术作为现代生活安全和信息保护的关键手段, 已广泛应用于日常生活的诸多领域. 传统2D指纹信息承载量不足, 难以满足高安全性需求. 近年提出的几种3D指纹技术虽各有优势, 但采样程序复杂且依赖于大型设备等问题限制了其实际应用. 本文提出一种基于冷凝微液滴群的简单快速三维指纹片段重构技术, 表明按压冷表面时指纹犁沟约束的水蒸气通过扩散凝结所形成的冷凝微液滴群蕴含着三维指纹信息, 并根据冷凝微液滴群的大小分布重建指纹片段. 通过与实测的指纹三维数据对比分析, 发现重构获取的数据与真实的指纹数据误差仅为9.3%, 具有良好的一致性. 该三维指纹重构方法可以便捷获取高信息承载量的指纹片段用于生物个体确认, 随着技术的不断优化和完善, 这一方法有助于在身份认证、安全防范及个人信息保护等领域发挥重要作用.
    Fingerprint recognition technology plays a critical role in modern security and information protection. Traditional 2D fingerprint recognition methods are still limited due to an imbalance between growing security demands and inefficiency of encoding detailed information. Although various 3D fingerprint technologies have been introduced recently, their practical applications are restricted by complex sampling procedures and bulky equipment. This paper proposes a new 3D fingerprint fragments reconstruction method based on the condensation of microdroplet clusters, resulting in efficiently extracting detailed structural information from fingerprint patterns. By identifying the unique topological features of fingerprint valleys, a micrometer-scale vapor transport model is developed. A differential approach is used to divide the microdroplet clusters formed when a finger is pressed on a cold surface into discrete units. In each unit, the diffusion distance and mass transfer in the condensation process are calculated. Nonlinear regression techniques are then utilized to reconstruct the 3D fingerprint fragments. Furthermore, the experimental validation shows excellent consistency with premeasured fingerprint data, with a reconstruction error of less than 9.3%. It has made a significant improvement in capturing high-density fingerprint data in a short period of time, completing the data acquisition in less than 1 second. Compared with ultrasound imaging techniques, this method significantly shortens the acquisition time, which typically involve complex procedures. Additionally, it offers a more efficient alternative to deep learning methods, which require extensive data training and computational processes. This 3D fingerprint reconstruction method provides an efficient, low-cost and easy-to-operate solution. It holds the potential to significantly enhance personal identification and information protection systems, contributing to the advancement of 3D fingerprint recognition technology in practical applications.
      通信作者: 赵玉刚, ygzhao@usst.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52276079)资助的课题.
      Corresponding author: ZHAO Yugang, ygzhao@usst.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52276079).
    [1]

    Kolivand H, Asadianfam S, Akintoye K A, Rahim M S 2023 Multimed. Tools Appl. 82 33541Google Scholar

    [2]

    Li H, Wei P, Hu P 2021 IEEE T. Multimedia 24 594Google Scholar

    [3]

    Jan F, Min-Allah N, Agha S, Usman I, Khan I 2021 Multimed. Tools Appl. 80 4579Google Scholar

    [4]

    Fei L K, Lu G M, Jia W, Teng S H, Zhang D 2018 IEEE T. Syst. Man Cy. A 49 346Google Scholar

    [5]

    Lopes A T, De Aguiar E, De Souza A F, Oliveira-Santos T 2017 Pattern Recogn. 61 610Google Scholar

    [6]

    Pinkus H 1963 JAMA 183 979Google Scholar

    [7]

    Tian J Z, Zhang J Y, Li X Y, Zhou C C, Wu R L, Wang Y C, Huang S Y 2021 IEEE Access 9 160855Google Scholar

    [8]

    Niu L H, Mantri N, Li C G, Xue C, Pang E 2011 TCM 6 18Google Scholar

    [9]

    Zhang J Q, Shen G X, Saad W, Chowdhury K 2023 IEEE Commun. Mag. 61 110Google Scholar

    [10]

    Zhou Z Y, Kumar A 2023 IEEE T. Inf. Forensics Secur. 19 441Google Scholar

    [11]

    Cui Z, Feng J J, Li S H, Lu J W, Zhou J 2018 IEEE T. Inf. Forensics Secur. 13 3153Google Scholar

    [12]

    An B W, Heo S, Ji S, Bien F, Park J U 2018 Nat. Commun. 9 2458Google Scholar

    [13]

    Yi Y, Cao L C, Guo W, Luo Y P, Feng J J, He Q S, Jin G F 2013 Opt. Express 21 17108Google Scholar

    [14]

    Liu F, Zhang D, Shen L L 2015 Neurocomputing 168 599Google Scholar

    [15]

    Xie W, Song Z, Chung R 2013 Opt. Eng. 52 103103Google Scholar

    [16]

    Chatterjee A, Bhatia V, Prakash S 2017 Opt. Lasers Eng. 95 1Google Scholar

    [17]

    Wang Y C, Lau D L, Hassebrook L G 2010 Appl. Opt. 49 592Google Scholar

    [18]

    Labati R D, Genovese A, Piuri V, Scotti F 2016 IEEE T. Syst. Man Cy. B 46 202Google Scholar

    [19]

    Jiang X Y, Lu Y P, Tang H Y, Tsai J M, Ng E J, Daneman M J, Boser B E, Horsley D A 2017 Microsyst. Nanoeng. 3 17059Google Scholar

    [20]

    Zhao C W, Li J, Lin M, Chen X, Liu Y 2022 IEEE T. Ultrason. Ferr. 69 2965Google Scholar

    [21]

    Saijo Y, Kobayashi K, Okada N, Hozumi N, Hagiwara Y, Tanaka A, Iwamoto T 2008 Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society Vancouver, Aug 20-25, 2008 p2173

    [22]

    李柯林, 黄丽淇, 杨洋 2021 电子测试 15 124Google Scholar

    Li K L, Huang L Q, Yang Y 2021 Electronic Test. 15 124Google Scholar

    [23]

    Liu Y H, Zhou B C, Han C Y, Guo T D, Qin J 2020 Appl. Intell. 50 397Google Scholar

    [24]

    Shen G X, Zhang J Q, Marshall A, Peng L N, Wang X B 2021 IEEE J. Sel. Areas Commun. 39 2604Google Scholar

    [25]

    王崇杰, 刘媛媛, 张博超, 张倩妮, 刘金艳, 金鸽, 张敏 2014 63 122801Google Scholar

    Wang C J, Liu Y Y, Zhang B C, Zhang Q N, Liu J Y, Jin G, Zhang M 2014 Acta Phys. Sin. 63 122801Google Scholar

    [26]

    吴春生, 李孝君, 吴浩 2022 刑事技术 47 88Google Scholar

    Wu C S, Li X J, Wu H 2022 Forensic Sci. Tech. 47 88Google Scholar

    [27]

    Zhu Y F, Yin X M, Hu J K 2023 IEEE T. Pattern Anal. 45 8358Google Scholar

    [28]

    宋天一, 兰忠, 马学虎 2010 化工学报 61 839

    Song T Y, Lan Z, Ma X H 2010 CIESC J. 61 839

    [29]

    宫保强, 姚宝国, 周子晗 2022 传感技术学报 35 14Google Scholar

    Gong B Q, Yao B G, Zhou Z H 2022 Chin. J. Sensors Actuats. 35 14Google Scholar

    [30]

    Guo W, Calija L M M, Xu P, Liu K, Senthil Kumar A 2021 Vacuum 190 110292Google Scholar

    [31]

    Fletcher N H 1958 J Chem. Phys. 29 572Google Scholar

    [32]

    曹治觉 2002 51 25Google Scholar

    Cao Z J 2002 Acta Phys. Sin. 51 25Google Scholar

    [33]

    Hong Z, Beysens D 1995 Langmuir 11 627Google Scholar

    [34]

    Zhao Y G, Yang C 2016 Appl. Phys. Lett. 108 061065Google Scholar

    [35]

    Arda O, Göksügür N, Tüzün Y 2014 Clin. Dermatol. 32 3Google Scholar

    [36]

    Kückena M, Newell A C 2005 J. Theor. Biol. 235 71Google Scholar

    [37]

    Wertheim K, Maceo A 2002 J. Forensic Identif. 52 35

    [38]

    陈云国, 方力 2007 刑事技术 6 49Google Scholar

    Chen Y G, Fang L 2007 Forensic Sci. Technol. 6 49Google Scholar

    [39]

    Yum S M, Baek I K, Hong D, Kim J, Jung K, Kim S, Eom K, Jang J, Kim S, Sattorov M, Lee M G, Kim S, Adams M J, Park G S 2020 Proc. Natl. A. Sci. 117 31665Google Scholar

    [40]

    Sato T, Katayama C, Hayashida Y, Asanuma Y, Aoyama Y 2022 Exp. Dermatol. 31 1891Google Scholar

    [41]

    Yu X J, Xiong Q Z, Luo Y M, Wang N S, Wang L L, Tey H L, Liu L B 2016 IEEE Photonic. Tech. Lett. 29 70Google Scholar

    [42]

    Masi A D, Olla S, Presutti E 2019 J. Stat. Phys. 175 203Google Scholar

    [43]

    Aum J, Kim J H, Jeong J 2015 IEEE Photonic. Tech. Lett. 28 163Google Scholar

    [44]

    兰忠, 朱霞, 彭本利, 林勐, 马学虎 2012 61 150508Google Scholar

    Lan Z, Zhu X, Peng B L, Lin M, Ma X H 2012 Acta Phys. Sin. 61 150508Google Scholar

    [45]

    Skinner L M, Sambles J R 1972 J. Aerosol Sci. 3 199Google Scholar

  • 图 1  基于冷凝微液滴特征分析的3D指纹重构流程图

    Fig. 1.  3D Fingerprint reconstruction process based on condensed droplet characteristics.

    图 2  冷凝微液滴图像采集 (a) 冷凝微液滴发生图像采集装置; (b) 冷凝微液滴带分布图; (c) 指纹结构显微图

    Fig. 2.  Condensate droplet image capture: (a) Image acquisition setup for condensed drop; (b) distribution of condensation droplet bands; (c) microscopic image of fingerprint structure.

    图 3  不同基底表面特性对液滴行为的影响比较 (a) 普通硅片与疏水硅片的接触角测量; (b) 普通硅片与疏水硅片上液滴冷凝效果对比

    Fig. 3.  Comparison of the effects of substrate surface properties on droplet behavior: (a) Contact angle measurements on standard and hydrophobic silicon wafers; (b) droplet condensation performance on standard and hydrophobic silicon wafers.

    图 4  毛细管模拟实验图 (a) 模具结构正视图; (b) 模具结构俯视图; (c) 模具按压冷表面所得冷凝微液滴分布图

    Fig. 4.  Capillary simulation experiment: (a) Front view of the mold structure; (b) top view of the mold structure; (c) distribution of condensate drops on the cold surface pressed by the mold.

    图 5  指纹犁沟模型建立及其有效性分析 (a) 犁沟内水蒸气输运微观示意图; (b) 冷凝微液滴传质面积计算示意图; (c) 指纹片段冷凝微液滴群图像; (d) 指纹片段水蒸气传质距离图; (e) 指纹片段重构结果3D图

    Fig. 5.  Establishment of the fingerprint valley model and effectiveness analysis: (a) Schematics of the microscopic vapor transfer within the valley; (b) schematic of mass transfer area calculation for condensed drops; (c) image of condensed droplet clusters on the fingerprint segment; (d) vapor mass transfer distance within the fingerprint segment; (e) 3D reconstruction of the fingerprint segment.

    图 6  三维指纹重构 (a) 指纹样品激光扫描图; (b) 扫描所得指纹片段三维形貌; (c) 指纹片段对应冷凝微液滴带分布图; (d) 重构所得指纹片段三维形貌

    Fig. 6.  3D reconstruction of fingerprints: (a) Laser scan of the fingerprint sample; (b) 3D morphology of the fingerprint segment derived from the scan; (c) distribution of condensation droplet bands corresponding to the fingerprint segment; (d) 3D morphology of the reconstructed fingerprint segment.

    图 7  2D轮廓图 (a) 原始指纹片段轮廓图; (b) 重构指纹片段轮廓图

    Fig. 7.  2D contour map: (a) Original fingerprint fragment contour map; (b) reconstructed fingerprint fragment contour map.

    图 8  三维指纹重构误差分析热图

    Fig. 8.  3D Fingerprint reconstruction error analysis heatmap.

    图 9  不同温湿度组合下的冷凝微液滴分布与三维指纹重构形貌 (a) 冷凝微液滴分布图; (b) 三维指纹重构片段形貌图

    Fig. 9.  Condensed droplet distribution and 3D fingerprint reconstruction morphology under varying temperature and humidity conditions: (a) Distribution of condensed water droplets; (b) morphology of 3D fingerprint reconstruction fragment.

    Baidu
  • [1]

    Kolivand H, Asadianfam S, Akintoye K A, Rahim M S 2023 Multimed. Tools Appl. 82 33541Google Scholar

    [2]

    Li H, Wei P, Hu P 2021 IEEE T. Multimedia 24 594Google Scholar

    [3]

    Jan F, Min-Allah N, Agha S, Usman I, Khan I 2021 Multimed. Tools Appl. 80 4579Google Scholar

    [4]

    Fei L K, Lu G M, Jia W, Teng S H, Zhang D 2018 IEEE T. Syst. Man Cy. A 49 346Google Scholar

    [5]

    Lopes A T, De Aguiar E, De Souza A F, Oliveira-Santos T 2017 Pattern Recogn. 61 610Google Scholar

    [6]

    Pinkus H 1963 JAMA 183 979Google Scholar

    [7]

    Tian J Z, Zhang J Y, Li X Y, Zhou C C, Wu R L, Wang Y C, Huang S Y 2021 IEEE Access 9 160855Google Scholar

    [8]

    Niu L H, Mantri N, Li C G, Xue C, Pang E 2011 TCM 6 18Google Scholar

    [9]

    Zhang J Q, Shen G X, Saad W, Chowdhury K 2023 IEEE Commun. Mag. 61 110Google Scholar

    [10]

    Zhou Z Y, Kumar A 2023 IEEE T. Inf. Forensics Secur. 19 441Google Scholar

    [11]

    Cui Z, Feng J J, Li S H, Lu J W, Zhou J 2018 IEEE T. Inf. Forensics Secur. 13 3153Google Scholar

    [12]

    An B W, Heo S, Ji S, Bien F, Park J U 2018 Nat. Commun. 9 2458Google Scholar

    [13]

    Yi Y, Cao L C, Guo W, Luo Y P, Feng J J, He Q S, Jin G F 2013 Opt. Express 21 17108Google Scholar

    [14]

    Liu F, Zhang D, Shen L L 2015 Neurocomputing 168 599Google Scholar

    [15]

    Xie W, Song Z, Chung R 2013 Opt. Eng. 52 103103Google Scholar

    [16]

    Chatterjee A, Bhatia V, Prakash S 2017 Opt. Lasers Eng. 95 1Google Scholar

    [17]

    Wang Y C, Lau D L, Hassebrook L G 2010 Appl. Opt. 49 592Google Scholar

    [18]

    Labati R D, Genovese A, Piuri V, Scotti F 2016 IEEE T. Syst. Man Cy. B 46 202Google Scholar

    [19]

    Jiang X Y, Lu Y P, Tang H Y, Tsai J M, Ng E J, Daneman M J, Boser B E, Horsley D A 2017 Microsyst. Nanoeng. 3 17059Google Scholar

    [20]

    Zhao C W, Li J, Lin M, Chen X, Liu Y 2022 IEEE T. Ultrason. Ferr. 69 2965Google Scholar

    [21]

    Saijo Y, Kobayashi K, Okada N, Hozumi N, Hagiwara Y, Tanaka A, Iwamoto T 2008 Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society Vancouver, Aug 20-25, 2008 p2173

    [22]

    李柯林, 黄丽淇, 杨洋 2021 电子测试 15 124Google Scholar

    Li K L, Huang L Q, Yang Y 2021 Electronic Test. 15 124Google Scholar

    [23]

    Liu Y H, Zhou B C, Han C Y, Guo T D, Qin J 2020 Appl. Intell. 50 397Google Scholar

    [24]

    Shen G X, Zhang J Q, Marshall A, Peng L N, Wang X B 2021 IEEE J. Sel. Areas Commun. 39 2604Google Scholar

    [25]

    王崇杰, 刘媛媛, 张博超, 张倩妮, 刘金艳, 金鸽, 张敏 2014 63 122801Google Scholar

    Wang C J, Liu Y Y, Zhang B C, Zhang Q N, Liu J Y, Jin G, Zhang M 2014 Acta Phys. Sin. 63 122801Google Scholar

    [26]

    吴春生, 李孝君, 吴浩 2022 刑事技术 47 88Google Scholar

    Wu C S, Li X J, Wu H 2022 Forensic Sci. Tech. 47 88Google Scholar

    [27]

    Zhu Y F, Yin X M, Hu J K 2023 IEEE T. Pattern Anal. 45 8358Google Scholar

    [28]

    宋天一, 兰忠, 马学虎 2010 化工学报 61 839

    Song T Y, Lan Z, Ma X H 2010 CIESC J. 61 839

    [29]

    宫保强, 姚宝国, 周子晗 2022 传感技术学报 35 14Google Scholar

    Gong B Q, Yao B G, Zhou Z H 2022 Chin. J. Sensors Actuats. 35 14Google Scholar

    [30]

    Guo W, Calija L M M, Xu P, Liu K, Senthil Kumar A 2021 Vacuum 190 110292Google Scholar

    [31]

    Fletcher N H 1958 J Chem. Phys. 29 572Google Scholar

    [32]

    曹治觉 2002 51 25Google Scholar

    Cao Z J 2002 Acta Phys. Sin. 51 25Google Scholar

    [33]

    Hong Z, Beysens D 1995 Langmuir 11 627Google Scholar

    [34]

    Zhao Y G, Yang C 2016 Appl. Phys. Lett. 108 061065Google Scholar

    [35]

    Arda O, Göksügür N, Tüzün Y 2014 Clin. Dermatol. 32 3Google Scholar

    [36]

    Kückena M, Newell A C 2005 J. Theor. Biol. 235 71Google Scholar

    [37]

    Wertheim K, Maceo A 2002 J. Forensic Identif. 52 35

    [38]

    陈云国, 方力 2007 刑事技术 6 49Google Scholar

    Chen Y G, Fang L 2007 Forensic Sci. Technol. 6 49Google Scholar

    [39]

    Yum S M, Baek I K, Hong D, Kim J, Jung K, Kim S, Eom K, Jang J, Kim S, Sattorov M, Lee M G, Kim S, Adams M J, Park G S 2020 Proc. Natl. A. Sci. 117 31665Google Scholar

    [40]

    Sato T, Katayama C, Hayashida Y, Asanuma Y, Aoyama Y 2022 Exp. Dermatol. 31 1891Google Scholar

    [41]

    Yu X J, Xiong Q Z, Luo Y M, Wang N S, Wang L L, Tey H L, Liu L B 2016 IEEE Photonic. Tech. Lett. 29 70Google Scholar

    [42]

    Masi A D, Olla S, Presutti E 2019 J. Stat. Phys. 175 203Google Scholar

    [43]

    Aum J, Kim J H, Jeong J 2015 IEEE Photonic. Tech. Lett. 28 163Google Scholar

    [44]

    兰忠, 朱霞, 彭本利, 林勐, 马学虎 2012 61 150508Google Scholar

    Lan Z, Zhu X, Peng B L, Lin M, Ma X H 2012 Acta Phys. Sin. 61 150508Google Scholar

    [45]

    Skinner L M, Sambles J R 1972 J. Aerosol Sci. 3 199Google Scholar

计量
  • 文章访问数:  1072
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-31
  • 修回日期:  2025-06-04
  • 上网日期:  2025-07-17
  • 刊出日期:  2025-09-20

/

返回文章
返回
Baidu
map