搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于正交乘积态的多方量子秘密共享协议

陈云 李璇冰 李帅

引用本文:
Citation:

基于正交乘积态的多方量子秘密共享协议

陈云, 李璇冰, 李帅

Multi-party quantum secret sharing protocol based on orthogonal product states

CHEN Yun, LI Xuanbing, LI Shuai
cstr: 32037.14.aps.74.20250394
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 量子秘密共享是一种通过使用量子力学的基本原理, 实现在多个参与者之间安全分配和重建秘密信息的密码学协议. 本文提出了一种可验证的多方量子秘密共享协议, 该协议中存在一个具有验证能力的秘密分发者和多个接收方. 在协议执行过程中, 秘密分发者会通过设定的编码规则将欲共享的信息用对应的正交乘积态表示, 并将量子态进行分割发送给各个接收方, 只有各接收方共同合作才能最终恢复初始秘密信息. 同时, 考虑到在协议过程中可能存在参与者人数变化的情况, 加入了人员动态变化操作. 通过对协议的安全性分析, 证明了该协议可以抵抗常见的内部和外部攻击. 我们希望该思想能够对量子秘密共享的进一步研究产生积极的影响.
    Quantum secret sharing (QSS) is a cryptographic protocol that utilizes fundamental principles of quantum mechanics to securely distribute and reconstruct secret information among multiple participants. Most existing protocols rely on entangled states (such as Bell and GHZ states), but in practical applications. The preparation of entangled state is constrained by a short quantum coherence time, low state fidelity, etc., which makes it difficult to implement entangled resource-dependent QSS protocols. In this work, a novel practical and verifiable multi-party QSS protocol is proposed based on orthogonal product states, which are easier to prepare than entangled states. During the protocol preparation stage, the secret distributor first converts pre-shared classical secret information into the corresponding orthogonal product states according to the encoding rules, and pre-shares a communication key with participants via quantum key distribution (QKD), which is used to hide the initial quantum sequence information through subsequent particle transformation operations. After preparing the orthogonal product states, the distributor reorganizes the particles by position, extracting particles at the same position from each state to form new sequences, shuffling their order, then applying Hadamard operations using a pre-shared key, inserting decoy particles, and sending the sequences to the participants. After receiving it, participants conduct eavesdropping detection, use the same key for the inverse transformations, retain one particle from each sequence, and sequentially pass the remaining particles until the last participant receives a complete set, triggering state verification with the arbiter distributor. If the verification is successful, the particles will be returned to the first participant and the return stage will follow the same procedure. Only after both the transmission and return stage verifications have passed, will the distributor reveal the initial particle positions, allowing participants to collaboratively reconstruct the secret. In the protocol, the secret distributor acts as an arbitrator to verify the particle state information together with participants at designated points (the end of the transmission stage and the end of the return stage) in order to determine whether the particle-state information is error-free during transmission. If the verification fails at either stage, the protocol will be terminated immediately. Meanwhile, considering that the number of participants may change during the execution of the protocol, a dynamic scheme for personnel changes is designed to ensure the flexibility of the protocol. Through the analysis of possible internal and external attacks, It can be proven that our protocol can effectively resist the existing common attack. Using Qiskit simulation experiments, the core quantum procedures of the protocol can be successfully modeled. The experimental results provide strong computational validation of the theoretical feasibility of the protocol.
      通信作者: 李帅, lis@nxu.edu.cn
      Corresponding author: LI Shuai, lis@nxu.edu.cn
    [1]

    Hellman M, Diffie W 1976 IEEE Trans. Inf. Theory 22 644Google Scholar

    [2]

    Fujisaki E, Okamoto T 1999 Annual international cryptology conference Santa Barbara, California, USA, August 15–19, 1999 p537

    [3]

    Bellare M, Desai A, Jokipii E, Rogaway P 1997 Proceedings 38 th Annual Symposium on Foundations of Computer Science Miami Beach, FL, USA, October 20–22, 1997 p394

    [4]

    Feistel H 1973 Sci. Amer. 228 15

    [5]

    Shor P W 1999 SIAM Rev. 41 303Google Scholar

    [6]

    Grover L K 1996 Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing Philadelphia, Pennsylvania, May 22–24, 1996 p212

    [7]

    Bennett C H, Brassard G 1984 Proc. Workshop on the Theory and Application of Cryptographic Techniques Santa Barbara, California, USA, August 19–22, 1984 p475

    [8]

    冯发勇, 张强 2007 4 1924Google Scholar

    Feng F Y, Zhang Q 2007 Acta Phys. Sin. 4 1924Google Scholar

    [9]

    Zhao Z, Chen Y A, Zhang A N, Yang T, Briegel H J, Pan J W 2004 Nature 430 54Google Scholar

    [10]

    Wang T Y, Wen Q Y 2011 Chin. Phys. B 20 040307Google Scholar

    [11]

    Jiang S X, Zhao B, Liang X Z 2021 Chin. Phys. B 30 060303Google Scholar

    [12]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317Google Scholar

    [13]

    赵宁, 江英华, 周贤韬 2022 71 150304Google Scholar

    Zhao N, Jiang Y H, Zhou X T 2022 Acta Phys. Sin. 71 150304Google Scholar

    [14]

    Deng F G, Zhou H Y, Long G L 2006 J. Phys. A: Math. Gen. 39 14089Google Scholar

    [15]

    孙莹, 杜建忠, 秦素娟, 温巧燕, 朱甫臣 2008 08 4689Google Scholar

    Sun Y, Du J Z, Qin S J, Wen Q Y, Zhu F C 2008 Acta Phys. Sin. 08 4689Google Scholar

    [16]

    Dai Y W, Qin H Y 2015 Chin. Phys. Lett. 32 100301Google Scholar

    [17]

    Hillery M, Bužek V, Berthiaume A 1999 Phys. Rev. A 59 1829Google Scholar

    [18]

    Karlsson A, Koashi M, Imoto N 1999 Phys. Rev. A 59 162Google Scholar

    [19]

    Xiao L, Lu Long G, Deng F G, Pan J W 2004 Phys. Rev. A 69 052307Google Scholar

    [20]

    Yang Y, Wen Q, Zhu F 2007 Sci. China Ser. G-Phys. Mech. Astron. 50 331Google Scholar

    [21]

    Wang T Y, Wen Q Y, Chen X B, Guo F Z, Zhu F C 2008 Opt. Commun. 281 6130Google Scholar

    [22]

    Wang C, Zhang Y 2009 Chin. Phys. B 18 3238Google Scholar

    [23]

    Jia H Y, Wen Q Y, Gao F, Qin S J, Guo F Z 2012 Phys. Lett. A 376 1035Google Scholar

    [24]

    Hsu J L, Chong S K, Hwang T, Tsai C W 2013 Quantum Inf. Process. 12 331Google Scholar

    [25]

    Du Y T, Bao W S 2018 Chin. Phys. B 27 080304Google Scholar

    [26]

    Yang C W, Tsai C W 2020 Quantum Inf. Process. 19 1Google Scholar

    [27]

    Hu W, Zhou R G, Li X, Fan P, Tan C 2021 Quantum Inf. Process. 20 1Google Scholar

    [28]

    Tian Y, Wang J, Bian G, Chang J, Li J 2024 Adv. Quantum Technol. 7 2400116Google Scholar

    [29]

    Lin J, Chen C C, Huang C Y 2024 Physica A 638 129615Google Scholar

    [30]

    Yu S, Oh C H 2015 arXiv: 1502.01274 [quant-ph]

    [31]

    Guo G P, Li C F, Shi B S, Li J, Guo G C 2001 Phys. Rev. A 64 042301Google Scholar

    [32]

    Jiang D H, Wang J, Liang X Q, Xu G B, Qi H F 2020 Int. J. Theor. Phys. 59 436Google Scholar

    [33]

    Jiang D H, Hu Q Z, Liang X Q, Xu G B 2020 Int. J. Theor. Phys. 59 1442Google Scholar

    [34]

    Walgate J, Hardy L 2002 Phys. Rev. Lett. 89 147901Google Scholar

    [35]

    Xu G B, Wen Q Y, Qin S J, Yang Y H, Gao F 2016 Phys. Rev. A 93 032341Google Scholar

    [36]

    Feng Y, Shi Y 2009 IEEE Trans. Inf. Theory 55 2799Google Scholar

    [37]

    Deng F G, Li X H, Zhou H Y, Zhang Z J 2005 Phys. Rev. A 72 044302Google Scholar

    [38]

    Li X H, Deng F G, Zhou H Y 2006 Phys. Rev. A 74 054302Google Scholar

    [39]

    Cabello A 2000 Phys. Rev. Lett. 85 5635Google Scholar

  • 图 1  协议整体流程图. 其中红色标注的量子序列是在传输阶段参与者进行保留的序列, 蓝色标注的量子序列是在传输阶段不同参与者的传输回合中待发送的序列

    Fig. 1.  The overall flowchart of the protocol. The quantum sequences marked in red are the sequences that the participants retain during the transmission stage, and the quantum sequences marked in blue are the sequences to be sent in the transmission rounds of different participants during the transmission phase.

    图 2  有接收方退出时的协议流程, 其中红色标注的量子序列是在传输阶段参与者进行保留的序列, 蓝色标注的量子序列是在传输阶段不同参与者的传输回合中待发送的序列

    Fig. 2.  The protocol flow when a receiver withdraws, the quantum sequences marked in red are the sequences that the participants retain during the transmission stage, and the quantum sequences marked in blue are the sequences to be sent in the transmission rounds of different participants during the transmission phase.

    图 3  有新的接收方加入时的协议流程, 其中红色标注的量子序列是在传输阶段参与者进行保留的序列, 蓝色标注的量子序列是在传输阶段不同参与者的传输回合中待发送的序列

    Fig. 3.  The protocol flow when a new receiver joins, the quantum sequences marked in red are the sequences that the participants retain during the transmission stage, and the quantum sequences marked in blue are the sequences to be sent in the transmission rounds of different participants during the transmission phase.

    图 4  正交乘积态$ |\psi_2\rangle $的制备及仿真结果

    Fig. 4.  Preparation and simulation results of orthogonal product state $ |\psi_2\rangle $

    图 5  正交乘积态$ |\psi_4\rangle $的制备及仿真结果

    Fig. 5.  Preparation and simulation results of orthogonal product state $ |\psi_4\rangle $.

    图 6  正交乘积态$ |\psi_2\rangle $中的粒子在密钥值为011情况下的变换和恢复的电路图

    Fig. 6.  Circuit diagram for the transformation and recovery of particles in the orthogonal product state $ |\psi_2\rangle $under the key value of 011

    图 7  正交乘积态$ |\psi_2\rangle $中的粒子在密钥值为011情况下的变换和恢复的测量结果

    Fig. 7.  Measurement results for the transformation and recovery of particles in the orthogonal product state $ |\psi_2\rangle $under the key value of 011.

    图 8  正交乘积态$ |\psi_4\rangle $中的粒子在密钥值为101情况下的变换和恢复的电路图

    Fig. 8.  Circuit diagram for the transformation and recovery of particles in the orthogonal product state $ |\psi_4\rangle $under the key value of 101.

    图 9  正交乘积态$ |\psi_4\rangle $中的粒子在密钥值为101情况下的变换和恢复的测量结果

    Fig. 9.  Measurement results for the transformation and recovery of particles in the orthogonal product state $ |\psi_4\rangle $ under the key value of 101.

    表 1  文献[25-29]的协议与我们的协议比较

    Table 1.  Compare the protocols in Refs. [25-29] with our protocol.

    协议 [25] [26] [27] [28] [29] 提出的协议
    量子态 广义GHZ态 Bell态 GHZ态 Bell态 Bell态 正交乘积态
    参与者测量 单粒子测量 单粒子测量 单粒子测量 Bell态测量 Bell态/单粒子测量 单粒子测量
    量子比特数(QR) $N(n - 1)$ $2 n-2$ $N(n+1)$ $2 nm$ $2 N(n - 1)$ $Nn$
    量子效率 $ \dfrac{1}{n - 1} $ $ \dfrac{1}{2 n - 2} $ $ \dfrac{1}{n + 1} $ $ \dfrac{1}{2 n} $ $ \dfrac{1}{2 n - 2} $ $\dfrac{\lfloor\log_2 n\rfloor + 1}{n}$
    窃听检测资源 诱饵粒子 诱饵粒子 GHZ 诱饵粒子 诱饵粒子 诱饵粒子
    准备量子位以添加代理 单光子 Bell态 d级GHZ态 Bell态 Bell态 随机量子态序列
    易受合谋攻击 No No No No No No
    是否对粒子执行变换操作 No Yes Yes Yes No Yes
    下载: 导出CSV
    Baidu
  • [1]

    Hellman M, Diffie W 1976 IEEE Trans. Inf. Theory 22 644Google Scholar

    [2]

    Fujisaki E, Okamoto T 1999 Annual international cryptology conference Santa Barbara, California, USA, August 15–19, 1999 p537

    [3]

    Bellare M, Desai A, Jokipii E, Rogaway P 1997 Proceedings 38 th Annual Symposium on Foundations of Computer Science Miami Beach, FL, USA, October 20–22, 1997 p394

    [4]

    Feistel H 1973 Sci. Amer. 228 15

    [5]

    Shor P W 1999 SIAM Rev. 41 303Google Scholar

    [6]

    Grover L K 1996 Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing Philadelphia, Pennsylvania, May 22–24, 1996 p212

    [7]

    Bennett C H, Brassard G 1984 Proc. Workshop on the Theory and Application of Cryptographic Techniques Santa Barbara, California, USA, August 19–22, 1984 p475

    [8]

    冯发勇, 张强 2007 4 1924Google Scholar

    Feng F Y, Zhang Q 2007 Acta Phys. Sin. 4 1924Google Scholar

    [9]

    Zhao Z, Chen Y A, Zhang A N, Yang T, Briegel H J, Pan J W 2004 Nature 430 54Google Scholar

    [10]

    Wang T Y, Wen Q Y 2011 Chin. Phys. B 20 040307Google Scholar

    [11]

    Jiang S X, Zhao B, Liang X Z 2021 Chin. Phys. B 30 060303Google Scholar

    [12]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317Google Scholar

    [13]

    赵宁, 江英华, 周贤韬 2022 71 150304Google Scholar

    Zhao N, Jiang Y H, Zhou X T 2022 Acta Phys. Sin. 71 150304Google Scholar

    [14]

    Deng F G, Zhou H Y, Long G L 2006 J. Phys. A: Math. Gen. 39 14089Google Scholar

    [15]

    孙莹, 杜建忠, 秦素娟, 温巧燕, 朱甫臣 2008 08 4689Google Scholar

    Sun Y, Du J Z, Qin S J, Wen Q Y, Zhu F C 2008 Acta Phys. Sin. 08 4689Google Scholar

    [16]

    Dai Y W, Qin H Y 2015 Chin. Phys. Lett. 32 100301Google Scholar

    [17]

    Hillery M, Bužek V, Berthiaume A 1999 Phys. Rev. A 59 1829Google Scholar

    [18]

    Karlsson A, Koashi M, Imoto N 1999 Phys. Rev. A 59 162Google Scholar

    [19]

    Xiao L, Lu Long G, Deng F G, Pan J W 2004 Phys. Rev. A 69 052307Google Scholar

    [20]

    Yang Y, Wen Q, Zhu F 2007 Sci. China Ser. G-Phys. Mech. Astron. 50 331Google Scholar

    [21]

    Wang T Y, Wen Q Y, Chen X B, Guo F Z, Zhu F C 2008 Opt. Commun. 281 6130Google Scholar

    [22]

    Wang C, Zhang Y 2009 Chin. Phys. B 18 3238Google Scholar

    [23]

    Jia H Y, Wen Q Y, Gao F, Qin S J, Guo F Z 2012 Phys. Lett. A 376 1035Google Scholar

    [24]

    Hsu J L, Chong S K, Hwang T, Tsai C W 2013 Quantum Inf. Process. 12 331Google Scholar

    [25]

    Du Y T, Bao W S 2018 Chin. Phys. B 27 080304Google Scholar

    [26]

    Yang C W, Tsai C W 2020 Quantum Inf. Process. 19 1Google Scholar

    [27]

    Hu W, Zhou R G, Li X, Fan P, Tan C 2021 Quantum Inf. Process. 20 1Google Scholar

    [28]

    Tian Y, Wang J, Bian G, Chang J, Li J 2024 Adv. Quantum Technol. 7 2400116Google Scholar

    [29]

    Lin J, Chen C C, Huang C Y 2024 Physica A 638 129615Google Scholar

    [30]

    Yu S, Oh C H 2015 arXiv: 1502.01274 [quant-ph]

    [31]

    Guo G P, Li C F, Shi B S, Li J, Guo G C 2001 Phys. Rev. A 64 042301Google Scholar

    [32]

    Jiang D H, Wang J, Liang X Q, Xu G B, Qi H F 2020 Int. J. Theor. Phys. 59 436Google Scholar

    [33]

    Jiang D H, Hu Q Z, Liang X Q, Xu G B 2020 Int. J. Theor. Phys. 59 1442Google Scholar

    [34]

    Walgate J, Hardy L 2002 Phys. Rev. Lett. 89 147901Google Scholar

    [35]

    Xu G B, Wen Q Y, Qin S J, Yang Y H, Gao F 2016 Phys. Rev. A 93 032341Google Scholar

    [36]

    Feng Y, Shi Y 2009 IEEE Trans. Inf. Theory 55 2799Google Scholar

    [37]

    Deng F G, Li X H, Zhou H Y, Zhang Z J 2005 Phys. Rev. A 72 044302Google Scholar

    [38]

    Li X H, Deng F G, Zhou H Y 2006 Phys. Rev. A 74 054302Google Scholar

    [39]

    Cabello A 2000 Phys. Rev. Lett. 85 5635Google Scholar

  • [1] 廖骎, 费焯迎, 王一军. 基于卡尔曼滤波的本地本振连续变量量子秘密共享.  , 2025, 74(16): 160303. doi: 10.7498/aps.74.20250227
    [2] 尹华磊, 沈建宇, 陈诺, 陈增兵. 量子秘密共享研究现状与展望.  , 2025, 74(16): 160301. doi: 10.7498/aps.74.20250586
    [3] 赖红, 万林春. 基于矩阵乘积压缩态的动态可扩展秘密共享方案.  , 2024, 73(18): 180302. doi: 10.7498/aps.73.20240191
    [4] 吴晓东, 黄端. 基于非理想量子态制备的实际连续变量量子秘密共享方案.  , 2024, 73(2): 020304. doi: 10.7498/aps.73.20230138
    [5] 关富荣, 李成乾, 邓敏艺. 动作电位动态变化对螺旋波演化行为的影响.  , 2022, 71(11): 110502. doi: 10.7498/aps.71.20220021
    [6] 翟淑琴, 康晓兰, 刘奎. 基于级联四波混频过程的量子导引.  , 2021, 70(16): 160301. doi: 10.7498/aps.70.20201981
    [7] 王秀娟, 李生好. 基于U(1)对称的无限矩阵乘积态张量网络算法提取Luttinger液体参数K .  , 2019, 68(16): 160201. doi: 10.7498/aps.68.20190379
    [8] 孙伟, 尹华磊, 孙祥祥, 陈腾云. 基于相干叠加态的非正交编码诱骗态量子密钥分发.  , 2016, 65(8): 080301. doi: 10.7498/aps.65.080301
    [9] 梁建武, 程资, 石金晶, 郭迎. 基于量子图态的量子秘密共享.  , 2016, 65(16): 160301. doi: 10.7498/aps.65.160301
    [10] 孙新梅, 查新未, 祁建霞, 兰倩. 基于非最大纠缠的五粒子Cluster态的高效量子态共享方案.  , 2013, 62(23): 230302. doi: 10.7498/aps.62.230302
    [11] 韦克金, 马海强, 汪龙. 一种基于双偏振分束器的量子秘密共享方案.  , 2013, 62(10): 104205. doi: 10.7498/aps.62.104205
    [12] 周媛媛, 周学军. 基于弱相干态光源的非正交编码被动诱骗态量子密钥分配.  , 2011, 60(10): 100301. doi: 10.7498/aps.60.100301
    [13] 肖海林, 欧阳缮, 谢武. 量子Turbo乘积码.  , 2011, 60(2): 020301. doi: 10.7498/aps.60.020301
    [14] 胡华鹏, 王金东, 黄宇娴, 刘颂豪, 路巍. 基于条件参量下转换光子对的非正交编码诱惑态量子密钥分发.  , 2010, 59(1): 287-292. doi: 10.7498/aps.59.287
    [15] 黄喜, 张新亮, 董建绩, 黄德修. 半导体光放大器超快折射率变化动态特性的研究.  , 2009, 58(5): 3185-3192. doi: 10.7498/aps.58.3185
    [16] 刘玉玲, 满忠晓, 夏云杰. 用非最大纠缠信道对任意二粒子纠缠态的量子秘密分享.  , 2008, 57(5): 2680-2686. doi: 10.7498/aps.57.2680
    [17] 孙 莹, 杜建忠, 秦素娟, 温巧燕, 朱甫臣. 具有双向认证功能的量子秘密共享方案.  , 2008, 57(8): 4689-4694. doi: 10.7498/aps.57.4689
    [18] 查新未. 量子隐形传送态的正交完备基展开与算符变换.  , 2007, 56(4): 1875-1880. doi: 10.7498/aps.56.1875
    [19] 杨宇光, 温巧燕, 朱甫臣. 单个N维量子系统的量子秘密共享.  , 2006, 55(7): 3255-3258. doi: 10.7498/aps.55.3255
    [20] 曾贵华, 诸鸿文. 基于非正交态的量子密钥验证方案.  , 2002, 51(4): 727-730. doi: 10.7498/aps.51.727
计量
  • 文章访问数:  511
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-27
  • 修回日期:  2025-06-27
  • 上网日期:  2025-07-08
  • 刊出日期:  2025-09-05

/

返回文章
返回
Baidu
map