搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多量子比特WW态在白噪声环境下的纠缠判定与分类研究

李岩 任志红

引用本文:
Citation:

多量子比特WW态在白噪声环境下的纠缠判定与分类研究

李岩, 任志红

Quantum entanglement detection and classification of the multipartite WW state under the white noise environment

Li Yan, Ren Zhi-Hong
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 多体系统的纠缠判定与分类是当前量子信息领域人们研究的重点课题. 本文利用量子Fisher信息(quantum Fisher information, QFI)可以判定多体纠缠这一特性, 对多量子比特WW态在白噪声环境下的量子纠缠进行了判定与分类研究. 在局域操作下, 结合已知量子态的信息, 我们给出了判定真正多体纠缠和含有量子纠缠的可见度判据.特别地, 对于5比特WW态和6比特WW态, 由于其拆分结构态的QFI最大值大于其本身的QFI, 所以无法严格地给出判定其真正多体纠缠的判据, 但给出了判定其可能是哪种纠缠结构的范围. 另外, 研究还发现随着量子比特数目的增加, 判定WW态真正多体纠缠的条件变得越来越严苛, 而判定其含有纠缠的条件变得相对宽松. 考虑实验上对多体系统进行局域操作时, 紧邻量子比特间容易发生串扰现象, 我们借助Lipkin-Meshkov-Glick模型对不同多量子比特WW态的纠缠分类进行了研究, 发现随着相互作用强度的增加, 即使在白噪声占比较大的情况下,不同量子比特数的WW态也可以区分, 解决了局域操作下区分困难的问题, 且随着相互作用强度的增大, 纠缠分类越容易实现. 这一点也充分展现了非局域操作相较于局域操作在纠缠分类方面的优势.
    Entanglement detection and classification of multipartite systems remain the key topics in the field of quantum information and science. In this work, we take advantage of the nature that quantum Fisher information (QFI) can witness multipartite entanglement to comprehensively investigate the entanglement detection and classification of multi-qubit WW states immersed in a white noise environment. In the situation of local operation, by combining the information of the known quantum state, we have presented a criterion with visibility for witnessing the genuine multipartite entanglement and another for identifying the presence of quantum entanglement. Specifically, with respect to the 5-qubit WW state and 6-qubit WW state, due to the fact that the maximum QFI of their splitting-structure states exceeds that of the original states, it is infeasible to strictly establish a criterion for detecting the genuine multipartite entanglement. However, we delineate the scope for inferring the possible entanglement structures. Furthermore, it is found that as the number of qubits increases, the conditions for witnessing the genuine multipartite entanglement become increasingly strict, while those for detecting the existence of entanglement grow relatively more relaxed. Taking into account the likelihood of the crosstalk between neighboring qubits during the local operations on the multipartite systems in experiments, we employ the Lipkin-Meshkov-Glick (LMG) model to explore the entanglement classification of diverse multi-qubit multipartite states. It is found that with the increasing interaction strength, even for the strong white noise, the WW states can still be distinguished, thereby resolving the challenge of managing the entanglement classification under local operation. Besides, as the interaction strength continues to increase, the task of entanglement classification becomes more straightforward. This fully shows the superiority of nonlocal operations over local operations in the aspect of entanglement classification.
  • 图 1  在局域操作下, 判定含白噪声的多量子比特$ W{\overline{W}} $态是真正多体纠缠的判据与含有纠缠的判据随粒子数目$ N $的变化情况. 红色圆点代表真正多体纠缠的可见度判据, 其中, $ 5, 6 $量子比特属于特殊情况, 用空心圆点表示, 其无法确定真正多体纠缠判定, 但缩小了可能的范围, 详见文中叙述. 蓝色实心圆点代表含有纠缠的可见度判据

    Fig. 1.  The criteria for witnessing genuine multipartite entanglement and the presence of entanglement with respect to the number of qubits under local operations for multi-qubit $ W{\overline{W}} $ states in the white noise environment. Red solid dots represent the visibility criterion for genuine multipartite entanglement. The $ 5 $-qubit case and $ 6 $-qubit case are the special ones and represented by hollow red dots. For the both, it is impossible to witness the genuine multipartite entanglement, but the possible scope has been narrowed down, and the details can be found in the main context. Blue solid dots represent the visibility criterion for the presence of entanglement.

    图 2  (a) 不同颜色的实线(绿色到蓝色)从下到上依次表示$ 3,\ 4,\ 5,\ 6,\ 7,\ 8,\ 9,\ 10 $量子比特$ W{\overline{W}} $态的量子Fisher信息$ F_{\rm{lmg}}^{(N)} $在无噪声情况下随相互作用强度$ \gamma $的变化情况; (b) 蓝色实心圆点表示转折点$ \gamma_t^{(N)} $随粒子数目$ N $的变化情况, 红色实线代表$ \gamma_t \simeq \dfrac{1}{\sqrt{3 N}} $

    Fig. 2.  (a) The colorful solid lines (from green to blue) respectively represent the variations of the QFI of the $ W{\overline{W}} $ state with $ 3,\ 4,\ 5,\ 6,\ 7,\ 8,\ 9,\ 10 $ qubits, with respect to the interaction strength $ \gamma $ in the absence of noise. (b) The blue dots represent the variation of the turning point $ \gamma_t^{(N)} $ with respect to the number of qubits, and the red line represents $ \gamma_t \simeq \dfrac{1}{\sqrt{3 N}} $.

    图 3  (a), (b), (c), (d)分别表示多量子比特$ W{\overline{W}} $态在噪声环境$ V=0.1,\ 0.3,\ 0.6,\ 0.9 $下的量子Fisher信息随相互作用强度$ \gamma $的变化. 以(d)为例, 不同颜色的实线(绿色到蓝色)从下到上依次代表$ 3,\ 4,\ 5,\ 6,\ 7,\ 8,\ 9,\ 10 $量子比特$ W{\overline{W}} $态的QFI的变化情况

    Fig. 3.  (a), (b), (c), (d) respectively show the quantum Fisher information of an $ N $-qubit $ W{\overline{W}} $ state with respect to $ \gamma $ under the white noise situation $ V=0.1,\ 0.3,\ 0.6,\ 0.9 $. Taking Fig. (d) as an example, the colorful solid lines (green to blue) from bottom to top respectively denote the variation trends of QFI from $ 3,\ 4,\ 5,\ 6,\ 7,\ 8,\ 9,\ 10 $-qubit $ W{\overline{W}} $ state.

    Baidu
  • [1]

    Nielsen M A, Chuang I L Quantum Computation and Quantum Information, Cambridge University Press, Cambridge (2000

    [2]

    范桁 2018 67 060302Google Scholar

    Fan H 2018 Acta Phys. Sin. 67 060302Google Scholar

    [3]

    Sheng Y B, Zhou L, Long G L 2022 Sci. Bull. 67 367Google Scholar

    [4]

    Athena K, Alasdair F, Gaetana S and Stefano P 2024 Rep. Prog. Phys. 87 094001Google Scholar

    [5]

    Pezzè L, Smerzi A, Oberthaler M K, Schmied R, and Treutlein P 2018 Rev. Mod. Phys. 90 035005Google Scholar

    [6]

    Pezzè L and Smerzi A 2020 Phys. Rev. Lett. 125 210503Google Scholar

    [7]

    Göel E O, Siegner U Quantum metrology: foundation of units and measurements, Wiley-VCH (2015

    [8]

    Gühne O, and Tòth G 2009 Phys. Rep. 474 1Google Scholar

    [9]

    Pezzè L, Li Y, Li W D and Smerzi A 2016 Proc. Natl. Acad. Sci. 113 11459Google Scholar

    [10]

    Lu H, Zhao Q, Li Z D, Yin X F, Yuan X, Hung J C, Chen L K, Li L, Liu N L, Peng C Z, Liang Y C, Ma X f, Chen Y A, and Pan J W 2018 Phys. Rev. X 8 021072

    [11]

    Ren Z H, Li W D, Smerzi A and Gessner M 2021 Phys. Rev. Lett. 126 080502Google Scholar

    [12]

    Friis N, Vitagliano G, Malik M and Huber M 2019 Nat. Rev. Phys. 1 72

    [13]

    Wineland D J, Bollinger J J, Itano W M, Moore F L and Heinzen D J 1992 Phys. Rev. A 4 6

    [14]

    Strobel H, Muessel W, Linnemann D, Zibold T, Hume D B, Pezzè L, Smerzi A, and Oberthaler M K 2014 Science 345 424

    [15]

    Sperling J, Vogel W 2013 Phys. Rev. Lett. 111 110503Google Scholar

    [16]

    Barreiro J T, Bancal J D, Schindler P, Nigg D, Hennrich M, Monz T, Gisin N and Blatt R 2013 Nat. Phys. 9 559Google Scholar

    [17]

    Pezzè L and Smerzi A 2009 Phys. Rev. Lett. 102 100401Google Scholar

    [18]

    Hyllus P, Laskowski W, Krischek R, Schwemmer C, Wieczorek W, Weinfurter H, Pezzè L and Smerzi A 2012 Phys. Rev. A 85 022321Google Scholar

    [19]

    Das D, Dogra S, Dorai K and Arvind 2015 Phys. Rev. A 92 022307Google Scholar

    [20]

    Sudha, Usha Devi A R and Rajagopal A K, 2012 Phys. Rev. A 85 012103Google Scholar

    [21]

    Usha Devi A R, Sudha, Rajagopal A K, 2010 arXiv: 1002 2820

    [22]

    Li Y, Ren Z H 2023 Phys. Rev. A 107 012403Google Scholar

    [23]

    Ren Z H, Li Y 2023 Results in Physics 53 106954Google Scholar

    [24]

    Zou Y Q, Wu L N, Liu Q, Luo X Y, Guo S F, Cao J H, Tey M K, You L 2018 Proc. Natl. Acad. Sci. 115 6381Google Scholar

    [25]

    Manoj K J, Christian K, Rick v B, Florian K, Torsten V Z, Rainer B, Christian F R, Peter Z 2023 Nature 624 539Google Scholar

    [26]

    Pratt J S and Eberly J H 2001 Phys. Rev. B 64 195314Google Scholar

    [27]

    Parrado-Rodríguez P, Ryan-Anderson C, Bermudez A, and Müller M 2021 Quantum 5 487Google Scholar

    [28]

    Li Y, Ren Z H 2022 Physica A 596 127137Google Scholar

    [29]

    Lipkin H J, Meshkov N and Glick A 1965 Nucl. Phys. 62 188Google Scholar

    [30]

    任志红, 李岩, 李艳娜, 李卫东 2019 68 040601Google Scholar

    Ren Z H, Li Y, Li Y N, Li W D 2019 Acta. Phys. Sin. 68 040601Google Scholar

    [31]

    Huang J H, Zhuang M, and Lee C H 2024 Appl. Phys. Rev. 11 031302Google Scholar

    [32]

    Holevo A S Probabilistic and Statistical Aspects of Quantum Theory, North-Holland, Amsterdam (1982

    [33]

    Bohnet J G, Sawyer B C, Britton J W, Wall M L, Rey A M, Foss-Feig M, Bollinger J J 2016 Science 352 1297Google Scholar

    [34]

    Hauke P, Heyl M, Tagliacozzo L, Zoller P 2016 Nat. Phys. 12 778Google Scholar

    [35]

    刘然, 吴泽, 李宇晨, 陈昱全, 彭新华 2023 72 110305Google Scholar

    Liu R, Wu Z, Li Y C, Chen Y Q, Peng X H 2023 Acta. Phys. Sin. 72 110305Google Scholar

    [36]

    Braunstein S L, Caves C M 1994 Phys. Rev. Lett. 72 3439Google Scholar

    [37]

    Werner R F 1989 Phys. Rev. A 40 4277Google Scholar

    [38]

    Wiesław L, Tamás V and Marcin W 2015 J. Phys. A 48 465301Google Scholar

    [39]

    Li Y and Li P F 2020 Phys. Lett. A 384 126413Google Scholar

    [40]

    Dorner U 2012 New J. Phys. 14 043011Google Scholar

  • [1] 李岩, 任志红. 多量子比特GHZ态,$W\overline{W}$态,SGT态在单轴旋转模型下的纠缠判定区分.  , doi: 10.7498/aps.74.20250715
    [2] 任亚雷, 周涛. 运动参考系中量子Fisher信息.  , doi: 10.7498/aps.73.20231394
    [3] 刘然, 吴泽, 李宇晨, 陈昱全, 彭新华. 基于量子Fisher信息测量的实验多体纠缠刻画.  , doi: 10.7498/aps.72.20230356
    [4] 李竞, 丁海涛, 张丹伟. 非厄米哈密顿量中的量子Fisher信息与参数估计.  , doi: 10.7498/aps.72.20230862
    [5] 李岩, 任志红. 多量子比特WV纠缠态在Lipkin-Meshkov-Glick模型下的量子Fisher信息.  , doi: 10.7498/aps.72.20231179
    [6] 胡强, 曾柏云, 辜鹏宇, 贾欣燕, 樊代和. 退相干条件下两比特纠缠态的量子非局域关联检验.  , doi: 10.7498/aps.71.20211453
    [7] 贺志, 蒋登魁, 李艳. 一种与开放系统初态无关的非马尔科夫度量.  , doi: 10.7498/aps.71.20221053
    [8] 牛明丽, 王月明, 李志坚. 基于量子Fisher信息的耗散相互作用光-物质耦合常数的估计.  , doi: 10.7498/aps.71.20212029
    [9] 任志红, 李岩, 李艳娜, 李卫东. 基于量子Fisher信息的量子计量进展.  , doi: 10.7498/aps.68.20181965
    [10] 喻益湘, 宋凝芳, 刘伍明. Lipkin-Meshkov-Glick模型中的能级劈裂与宇称振荡研究.  , doi: 10.7498/aps.67.20181069
    [11] 武莹, 李锦芳, 刘金明. 基于部分测量增强量子隐形传态过程的量子Fisher信息.  , doi: 10.7498/aps.67.20180330
    [12] 赵军龙, 张译丹, 杨名. 噪声对一种三粒子量子探针态的影响.  , doi: 10.7498/aps.67.20180040
    [13] 潘健, 余琦, 彭新华. 多量子比特核磁共振体系的实验操控技术.  , doi: 10.7498/aps.66.150302
    [14] 郭红. Bose-Hubbard模型中系统初态对量子关联的影响.  , doi: 10.7498/aps.64.220301
    [15] 常锋, 王晓茜, 盖永杰, 严冬, 宋立军. 光与物质相互作用系统中的量子Fisher信息和自旋压缩.  , doi: 10.7498/aps.63.170302
    [16] 李玉叶, 贾冰, 古华光. 白噪声诱发Morris-Lecar模型构成的Ⅱ型兴奋网络产生多次空间相干共振.  , doi: 10.7498/aps.61.070504
    [17] 宋立军, 严冬, 刘烨. 玻色-爱因斯坦凝聚系统的量子Fisher信息与混沌.  , doi: 10.7498/aps.60.120302
    [18] 王永生, 姜文志, 赵建军, 范洪达. 一种Duffing弱信号检测新方法及仿真研究.  , doi: 10.7498/aps.57.2053
    [19] 胡爱花, 徐振源. 利用白噪声实现混沌系统线性广义同步的研究.  , doi: 10.7498/aps.56.3132
    [20] 宋 杨, 赵同军, 刘金伟, 王向群, 展 永. 高斯白噪声对神经元二维映射模型动力学的影响.  , doi: 10.7498/aps.55.4020
计量
  • 文章访问数:  222
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-08-25

/

返回文章
返回
Baidu
map