搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于频率纠缠双光子和级联Hong-Ou-Mandel干涉的量子陀螺仪理论研究

翟艺伟 潘展鹏 薛胜春

引用本文:
Citation:

基于频率纠缠双光子和级联Hong-Ou-Mandel干涉的量子陀螺仪理论研究

翟艺伟, 潘展鹏, 薛胜春
cstr: 32037.14.aps.74.20250077

Theoretical research on quantum gyroscope based on frequency entangled biphoton and cascaded Hong-Ou-Mandel interference

ZHAI Yiwei, PAN Zhanpeng, XUE Shengchun
cstr: 32037.14.aps.74.20250077
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 高时延分辨率的Hong-Ou-Mandel(HOM)干涉仪一直是量子精密测量领域的研究热点, 将其应用到量子陀螺仪中可以实现突破经典理论极限的角速度测量. 本文提出了基于频率纠缠双光子和级联HOM干涉仪的量子陀螺仪方案. 利用信号光和闲置光之间由于旋转存在的Sagnac效应, 将三轴角速度分别引入到级联HOM干涉仪中的对应测量臂, 利用级联HOM干涉图谱中凹陷位置与多个独立时延差之间的对应关系, 结合干涉可见度与量子Fisher信息理论, 得到3个独立时延差($ {\tau }_{1} $, $ {\tau }_{2} $, $ {\tau }_{3} $)的最大量子Fisher信息分别为(2, 0.1, 0.006). 通过引入测量不确定度, 得出时延值测量精度可以突破散粒噪声极限, 并结合时延差与旋转角速度的关系, 可实现三轴角速度的测量, 且测量精度可以超越经典光学陀螺仪, 方案可为后续量子陀螺仪在全球导航传感领域的进一步应用提供理论支持.
    The optical gyroscope for measuring the attitude information of spatial carriers, has emerged as a research hotspot in inertial navigation system. Real-time measurement of rotation angular velocity is crucial for obtaining accurate attitude information. However, the measurement accuracy of traditional optical gyroscope is limited by the short noise limit (SNL), which restricts its further applications. Existing research indicates that the quantum technology is needed to address the measurement limitations of traditional optical gyroscopes. A triaxial rotation angular velocity measurement scheme based on frequency entangled biphoton and cascaded Hong-Ou-Mandel (HOM) interference is proposed in this study. By using the Sagnac effect induced by the rotation between signal and idler photons, the triaxial angular velocity is introduced into the corresponding measurement arm of a cascaded HOM interferometer. The cascaded HOM interferogram is obtained using a coincidence measurement device, and the relationship between the symmetric dip position and the three independent time delay difference is analyzed. The characteristic parameters of HOM interferogram, including a half-height full width (FWHM) of 0.3 ps and visibilities of 1, 0.25 and 0.06, respectively, are obtained. According to quantum Fisher information theory, the maximum quantum Fisher information values of the three independent time delay differences ($ {\tau }_{1} $, $ {\tau }_{2} $, $ {\tau }_{3} $) are calculated to be 1, 0.1, and 0.006, respectively. Furthermore, by incorporating measurement uncertainty, it is demonstrated that the accuracy of the time delay measurement can exceed the SNL. Combined with the relationship between time delay and angular velocity, the results show that the angular velocity measurement accuracy exceeds that of classical optical gyroscopes. Therefore, this scheme provides a theoretical foundation for further applying quantum gyroscopes to global navigation sensing and precision measurement systems.
      通信作者: 翟艺伟, zhaiyiwei@sust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12205178)资助的课题.
      Corresponding author: ZHAI Yiwei, zhaiyiwei@sust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12205178).
    [1]

    Toland J R E, Search C P 2013 Appl. Phys. B 114 333Google Scholar

    [2]

    Aghaie K Z, Digonnet M J F 2015 J. Opt. Soc. Am. B 32 339Google Scholar

    [3]

    陈坤, 陈树新, 吴德伟, 杨春燕, 吴昊 2016 65 054203Google Scholar

    Chen K, Chen S X, Wu D W, Yang C Y, Wu H 2016 Acta Phys. Sin. 65 054203Google Scholar

    [4]

    Lefèvre H C 2014 C. R. Physique 15 851Google Scholar

    [5]

    Sultana J 2014 Gen. Relat. Gravti. 46 1710Google Scholar

    [6]

    Courtney T L, Park S D, Hill R J, Cho B, Jonas D M 2014 Opt. Lett. 39 513Google Scholar

    [7]

    Giovannetti V, Lloyd S, Maccone L 2001 Nature 412 417Google Scholar

    [8]

    Dowling J P 2008 Contemp. Phys. 49 125Google Scholar

    [9]

    Kura N, Ueda M 2020 Phys. Rev. Lett. 124 010507Google Scholar

    [10]

    Fink M, Rodriguez-Aramendia A, Handsteiner J, Ziarkash A, Steinlechner F, Scheidl T, Fuentes I, Pienaar J, Ralph T C, Ursin R 2016 Nat. Commun. 8 15304Google Scholar

    [11]

    O'Donnell K A 2011 Phys. Rev. Lett. 106 063601Google Scholar

    [12]

    Baek S Y, Cho Y W, Kim Y H 2009 Opt. Express 17 19241Google Scholar

    [13]

    Kolkiran A, Agarwal G S 2007 Opt. Express 15 6798Google Scholar

    [14]

    Fink M, Steinlechner F, Handsteiner J, Dowling J P, Scheidl T, Ursin R 2019 New J. Phys. 21 053010Google Scholar

    [15]

    Silvestri R, Yu H C, Stromeberg T, Hilweg C, Peterson R W, Walther P 2024 Sci. Adv. 10 0215Google Scholar

    [16]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge University Press) pp271–290

    [17]

    Lyons A, Knee G C, Bolduc E, Thomas R, Leach J, Gauger E M, Faccio D 2018 Sci. Adv. 4 9416Google Scholar

    [18]

    Chen Y Y, Fink M, Steinlechner F, Torres J P, Ursin R 2019 npj Quantum Inform. 5 43Google Scholar

    [19]

    Valencia A, Scarcelli G, Shih Y H 2004 Appl. Phys. Lett. 85 2655Google Scholar

    [20]

    徐耀坤, 孙仕海, 曾瑶源, 杨俊刚, 盛卫东, 刘伟涛 2023 72 214207Google Scholar

    Xu Y K, Sun S H, Zeng Y Y, Yang J G, Sheng W D, Liu W T 2023 Acta Phys. Sin. 72 214207Google Scholar

    [21]

    罗一振, 马洛嘉, 孙铭烁, 吴思睿, 邱丽华, 王禾, 王琴 2024 73 240302Google Scholar

    Luo Y Z, Ma L J, Sun M S, Wu S R, Qiu L H, Wang H, Wang Q 2024 Acta Phys. Sin. 73 240302Google Scholar

    [22]

    Liu R, Kong L J, Wang Z X, Si Y, Qi W R, Huang S Y, Tu C H, Li Y N, Wang H T 2018 Chin. Phys. Lett. 35 090303Google Scholar

    [23]

    Ma L J, Sun M S, Zhang C H, Ding H J, Zhou X Y, Li J, Wang Q 2025 Chin. Phys. B 34 010301Google Scholar

    [24]

    Gao W L, Xu L P, Zhang H, Yan B, Li P X, Hu G T 2023 Chin. Phys. B 32 050304Google Scholar

    [25]

    Yang Y, Xu L P, Giovannetti V 2019 Phys. Rev. A 100 063810Google Scholar

    [26]

    Post E J 1967 Rev. Mod. Phys. 39 475Google Scholar

    [27]

    翟艺伟, 董瑞芳, 权润爱, 项晓, 刘涛, 张首刚 2021 70 120302Google Scholar

    Zhai Y W, Dong R F, Quan R A, Xiang X, Liu T, Zhang S G 2021 Acta Phys. Sin. 70 120302Google Scholar

    [28]

    Braunstein S L, Caves C M 1994 Phys. Rev. Lett. 72 3439Google Scholar

    [29]

    任志红, 李岩, 李艳娜, 李卫东 2019 68 040601Google Scholar

    Ren Z H, Li Y, Li Y N, Li W D 2019 Acta Phys. Sin. 68 040601Google Scholar

    [30]

    Zwierz M, Pérez-Delgado C A, Kok P 2010 Phys. Rev. Lett. 105 180402Google Scholar

    [31]

    Giovannetti V, Lloyd S, Maccone L 2006 Phys. Rev. Lett. 96 010401Google Scholar

    [32]

    Guo Y, Yang Z X, Zeng Z Q, Ding C L, Shimizu R, Jin R B 2023 Opt. Express 31 32849Google Scholar

    [33]

    Kok P, Dunningham J, Ralph J F 2017 Phys. Rev. A 95 012326Google Scholar

  • 图 1  (a) 频率纠缠双光子源; (b) 旋转空间目标; (c) 基于频率纠缠双光子的级联HOM干涉仪原理框图

    Fig. 1.  (a) Frequency entangled biphoton source; (b) rotation space target; (c) diagram of cascaded HOM interferometer based on frequency entangled biphoton.

    图 2  (a) 频率纠缠双光子的标准HOM干涉图谱; (b) 级联HOM干涉图谱

    Fig. 2.  (a) Standard HOM interferogram of frequency entangled biphoton; (b) the cascaded HOM interferogram.

    图 3  $ \sigma =0.3\;{\mathrm{p}}{\mathrm{s}} $时, 不同干涉可见度$ \alpha $值下$ F $随$ \tau $的变化

    Fig. 3.  Variation of quantum Fisher information $ F $ with time delay $ \tau $ in different interference visibility $ \alpha $ at $ \sigma =0.3\;{\mathrm{p}}{\mathrm{s}} $.

    图 4  不确定度$ \xi $随时延$ \tau $的变化

    Fig. 4.  Variation of uncertainty ξ with time delay τ.

    Baidu
  • [1]

    Toland J R E, Search C P 2013 Appl. Phys. B 114 333Google Scholar

    [2]

    Aghaie K Z, Digonnet M J F 2015 J. Opt. Soc. Am. B 32 339Google Scholar

    [3]

    陈坤, 陈树新, 吴德伟, 杨春燕, 吴昊 2016 65 054203Google Scholar

    Chen K, Chen S X, Wu D W, Yang C Y, Wu H 2016 Acta Phys. Sin. 65 054203Google Scholar

    [4]

    Lefèvre H C 2014 C. R. Physique 15 851Google Scholar

    [5]

    Sultana J 2014 Gen. Relat. Gravti. 46 1710Google Scholar

    [6]

    Courtney T L, Park S D, Hill R J, Cho B, Jonas D M 2014 Opt. Lett. 39 513Google Scholar

    [7]

    Giovannetti V, Lloyd S, Maccone L 2001 Nature 412 417Google Scholar

    [8]

    Dowling J P 2008 Contemp. Phys. 49 125Google Scholar

    [9]

    Kura N, Ueda M 2020 Phys. Rev. Lett. 124 010507Google Scholar

    [10]

    Fink M, Rodriguez-Aramendia A, Handsteiner J, Ziarkash A, Steinlechner F, Scheidl T, Fuentes I, Pienaar J, Ralph T C, Ursin R 2016 Nat. Commun. 8 15304Google Scholar

    [11]

    O'Donnell K A 2011 Phys. Rev. Lett. 106 063601Google Scholar

    [12]

    Baek S Y, Cho Y W, Kim Y H 2009 Opt. Express 17 19241Google Scholar

    [13]

    Kolkiran A, Agarwal G S 2007 Opt. Express 15 6798Google Scholar

    [14]

    Fink M, Steinlechner F, Handsteiner J, Dowling J P, Scheidl T, Ursin R 2019 New J. Phys. 21 053010Google Scholar

    [15]

    Silvestri R, Yu H C, Stromeberg T, Hilweg C, Peterson R W, Walther P 2024 Sci. Adv. 10 0215Google Scholar

    [16]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge University Press) pp271–290

    [17]

    Lyons A, Knee G C, Bolduc E, Thomas R, Leach J, Gauger E M, Faccio D 2018 Sci. Adv. 4 9416Google Scholar

    [18]

    Chen Y Y, Fink M, Steinlechner F, Torres J P, Ursin R 2019 npj Quantum Inform. 5 43Google Scholar

    [19]

    Valencia A, Scarcelli G, Shih Y H 2004 Appl. Phys. Lett. 85 2655Google Scholar

    [20]

    徐耀坤, 孙仕海, 曾瑶源, 杨俊刚, 盛卫东, 刘伟涛 2023 72 214207Google Scholar

    Xu Y K, Sun S H, Zeng Y Y, Yang J G, Sheng W D, Liu W T 2023 Acta Phys. Sin. 72 214207Google Scholar

    [21]

    罗一振, 马洛嘉, 孙铭烁, 吴思睿, 邱丽华, 王禾, 王琴 2024 73 240302Google Scholar

    Luo Y Z, Ma L J, Sun M S, Wu S R, Qiu L H, Wang H, Wang Q 2024 Acta Phys. Sin. 73 240302Google Scholar

    [22]

    Liu R, Kong L J, Wang Z X, Si Y, Qi W R, Huang S Y, Tu C H, Li Y N, Wang H T 2018 Chin. Phys. Lett. 35 090303Google Scholar

    [23]

    Ma L J, Sun M S, Zhang C H, Ding H J, Zhou X Y, Li J, Wang Q 2025 Chin. Phys. B 34 010301Google Scholar

    [24]

    Gao W L, Xu L P, Zhang H, Yan B, Li P X, Hu G T 2023 Chin. Phys. B 32 050304Google Scholar

    [25]

    Yang Y, Xu L P, Giovannetti V 2019 Phys. Rev. A 100 063810Google Scholar

    [26]

    Post E J 1967 Rev. Mod. Phys. 39 475Google Scholar

    [27]

    翟艺伟, 董瑞芳, 权润爱, 项晓, 刘涛, 张首刚 2021 70 120302Google Scholar

    Zhai Y W, Dong R F, Quan R A, Xiang X, Liu T, Zhang S G 2021 Acta Phys. Sin. 70 120302Google Scholar

    [28]

    Braunstein S L, Caves C M 1994 Phys. Rev. Lett. 72 3439Google Scholar

    [29]

    任志红, 李岩, 李艳娜, 李卫东 2019 68 040601Google Scholar

    Ren Z H, Li Y, Li Y N, Li W D 2019 Acta Phys. Sin. 68 040601Google Scholar

    [30]

    Zwierz M, Pérez-Delgado C A, Kok P 2010 Phys. Rev. Lett. 105 180402Google Scholar

    [31]

    Giovannetti V, Lloyd S, Maccone L 2006 Phys. Rev. Lett. 96 010401Google Scholar

    [32]

    Guo Y, Yang Z X, Zeng Z Q, Ding C L, Shimizu R, Jin R B 2023 Opt. Express 31 32849Google Scholar

    [33]

    Kok P, Dunningham J, Ralph J F 2017 Phys. Rev. A 95 012326Google Scholar

计量
  • 文章访问数:  2744
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-16
  • 修回日期:  2025-02-20
  • 上网日期:  2025-02-25
  • 刊出日期:  2025-05-05

/

返回文章
返回
Baidu
map