搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应变调控下Zr掺杂石墨烯中鲁棒的拓扑性质

王娅童 胡岳芳 袁丹文 陈巍 张坦 张薇

引用本文:
Citation:

应变调控下Zr掺杂石墨烯中鲁棒的拓扑性质

王娅童, 胡岳芳, 袁丹文, 陈巍, 张坦, 张薇

The robust topological properties in Zr-doped graphene under strain regulation

Wang Ya-Tong, Hu Yue-Fang, Yuan Dan-Wen, Chen Wei, Zhang Tan, Zhang Wei
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 二维拓扑材料因其无耗散的边界态成为低功耗电子器件的理想候选材料.作为典型的二维体系,理论预言石墨烯在自旋-轨道耦合相互作用下存在量子自旋霍尔效应,但其能隙仅为微电子伏量级,这严重制约了其在实际器件中的应用.本文基于第一性原理计算,研究了ⅣB族4d过渡金属元素Zr晶格掺杂石墨烯形成的Zr2C12体系在应变调控下的电子结构和拓扑性质.声子谱计算表明,处于自由状态的Zr2C12具有良好的动力学稳定性.电子结构研究表明,在不考虑自旋-轨道耦合相互作用时,处于自由状态的Zr2C12呈现出狄拉克半金属相,其狄拉克点处的费米速度比石墨烯的略低.考虑自旋-轨道耦合相互作用后,狄拉克点打开了4.09 meV的能隙,该能隙比未掺杂的石墨烯大三个数量级.通过宇称计算确认Z2拓扑不变量为1,体系转变为二维拓扑绝缘体.在-5%至6%的大范围应变内,体系始终保持动力学稳定,且仍为Z2=1的拓扑绝缘体相,展现出鲁棒的拓扑性质.其能隙大小随拉伸应变的增加而增加,当施加6%拉伸应变时,能隙达到最大值8.41 meV.计算发现在6%拉伸应变下体系有非平庸的拓扑边界态,这进一步验证了应变调控下体系的非平庸拓扑性质.本研究拓展了过渡金属掺杂石墨烯体系的研究范畴,为低能耗电子器件以及量子计算和通信等领域的进一步研究提供了良好的材料平台.
    Two-dimensional topological materials are ideal candidates for low-dissipation electronic devices due to their non-dissipative edge states. As a typical two-dimensional system, graphene is theoretically predicted to exhibit the quantum spin Hall effect under the spin-orbit coupling interaction. However, the band gap in graphene is only in the order of micro-electron volt, which seriously restricts its practical applications. In this work, based on the first-principles calculations, we investigate the electronic structures and topological properties of strained Zr2C12, which is formed by substitutional doping graphene with the group ⅣB 4d transition metal Zr. The phonon spectrum calculation confirms that the freestanding Zr2C12 exhibits excellent dynamic stability. When the spin-orbit coupling is excluded, the bands cross linearly at the K point near the Fermi level, indicating the Dirac semimetal phase of freestanding Zr2C12. The Fermi velocity of the Dirac point is 0.677 × 106 m/s, which is approximately two-thirds of that in graphene (~ 1.00 × 106 m/s). When the spin-orbit coupling is considered, the Dirac point opens a gap of 4.09 meV, which is three orders of magnitude higher than that of undoped graphene. The parity analysis reveals that the Z2 topological invariant of the freestanding Zr2C12 is 1, indicating the system transits into a two-dimensional topological insulator. We also study the properties of Zr2C12 under strain regulation. The calculation results show that the system remains dynamically stable over a wide strain range of -5% to 6%. When the spin-orbit coupling is absent, the conduction band energy at the Γ point continuously rises with increasing strain, and the system maintains the Dirac semimetal phase. After including the spin-orbit coupling, the system remains the nontrivial topological insulator phase over a wide strain range of -5% to 6%, showing robust topological properties. The band gap at the Dirac point first decreases and then increases with increasing strain. When applying -1.6% compression strain, this band gap decreases to the minimum value of 0.059 meV. When the strain further increases to 6%, this gap increases to the maximum value of 8.41 meV. The edge states calculations of Zr2C12 under 6% expansion strain show that the gapless edge states connect the conduction bands and the valence bands, which further verify the non-trivial topological properties of this system under strain regulation. This study expands the research on transition-metal-doped graphene systems, providing a good material platform for further study of low-dissipation electronic devices and quantum computing and communication.
  • [1]

    Liu C C, Feng W X, Yao Y G 2011 Phys. Rev. Lett.107 076802

    [2]

    Yuan D W, Hu Y F, Yang Y M, Zhang W 2021 Chin. Phys. Lett. 38 117301

    [3]

    Weng H M, Ranjbar A, Liang Y Y, et al. 2015 Phys. Rev. B 92 075436

    [4]

    Zhang W, Wu Q S, Yazyev O V, Weng H M, Guo Z X, Cheng W D, Chai G L 2018 Phys. Rev. B 98 115411

    [5]

    Yuan D W, Yue C M, Hu Y F, Zhang W 2024 Chin. Phys. Lett. 41 037304

    [6]

    Chen J, Qin H J, Yang F, et al. 2010 Phys. Rev. Lett. 105 176602

    [7]

    Li Z G, Zhang S, Song F L 2015 Acta. Phys. Sin. 64 097202 (in Chinese) [李兆国,张帅,宋凤麒 2015 64 097202]

    [8]

    Qu D X, Hor Y S, Xiong J, Cava R J, Ong N P 2010 Science 329 821

    [9]

    Yuan D W, Pi H Q, Jiang Y, et al. 2023 Sci. China-Phys. Mech. Astron. 66 247211

    [10]

    Weng H M, Ranjbar A, Liang Y Y, et al. 2015 Phys. Rev. B 92 075436

    [11]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [12]

    Novoselov K S, Geim A K, Morozov S V, et al. 2005 Nature 438 197

    [13]

    Zhang Y, Tan Y, Stormer H L, Kim P 2005 Nature 438 201

    [14]

    Kane C L, Mele E J 2005 Phys. Rev. Lett 95 226801

    [15]

    Kane C L, Mele E J 2005 Phys. Rev. Lett 95 146802

    [16]

    Yao Y G, Ye F, Qi X L, Zhang S C, Fang Z 2007 Phys. Rev. B 75 041401(R)

    [17]

    Gmitra M, Konschuh S, Ertler C, Ambrosch-Draxl C, Fabian J 2009 Phys. Rev. B 80 235431

    [18]

    Sichau J, Prada M, Anlauf T, et al. 2019 Phys. Rev. Lett. 122 046403

    [19]

    Zhang Y Q, Liang Y M, Zhou J X 2014 Acta Chim. Sinica 72 367 (in Chinese) [张芸秋,梁勇明,周建新 2014 化学学报 72 367]

    [20]

    Chan K T, Neaton J B, Cohen M L 2008 Phys. Rev. B 77 235430

    [21]

    Katsnelson M I, Guinea F, Geim A K 2009 Phys. Rev. B 79 195426

    [22]

    Uchoa B, Kotov V N, Peres N M R, Castro Neto A H 2008 Phys. Rev. Lett. 101 026805

    [23]

    Uchoa B, Castro Neto A H 2007 Phys. Rev. Lett. 98 146801

    [24]

    Hu Y F, Yue C M, Yuan D W, et al. 2022 Sci. China-Phys. Mech. Astron. 65 297211

    [25]

    Yuan D W, Zhang S, Chen J, Weng H M, Zhang W 2025 Phys. Rev. B 112 085122

    [26]

    Martins T B, Miwa R H, da Silva A J R, Fazzio A 2007 Phys. Rev. Lett. 98 196803

    [27]

    Wu M, Cao C, Jiang J Z 2010 Nanotechnology 21 505202

    [28]

    Hu Y F, Shao D X, Yuan D W, Zhang W 2025 Phys. Scr. 100 035913

    [29]

    Panchakarla L S, Subrahmanyam K S, Saha S K, et al. 2009 Adv. Mater. 21 4726

    [30]

    Wang H, Zhou Y, Wu D, Liao L, Zhao S L, Peng H L, Liu Z F 2013 Small 9 1316

    [31]

    Jin Z, Yao J, Kittrell C, Tour J M 2011 ACS Nano 5 4112

    [32]

    Some S, Kim J, Lee K, Kulkarni A, Yoon Y, Lee S M, Kim T, Lee H 2012 Adv. Mater. 24 5481

    [33]

    Zhou L, Zhou L S, Yang M M, et al. 2013 Small 9 1388

    [34]

    Duplock E J, Scheffler M, Lindan P J D 2004 Phys. Rev. Lett. 92 225502

    [35]

    Balog R, Jørgensen B, Nilsson L, et al. 2010 Nat. Mater. 9 315

    [36]

    Son J, Lee S, Kim S J, et al. 2016 Nat. Commun. 7 13261

    [37]

    Weeks C, Hu J, Alicea J, Franz M, Wu R 2011 Phys. Rev. X 1 021001

    [38]

    Calleja F, Ochoa H, Garnic M, et al. 2015 Nat. Phys. 11 43

    [39]

    Dyck O, Zhang L Z, Yoon M, et al. 2021 Carbon 173 205

    [40]

    Villarreal R, Zarkua Z, Kretschmer S, et al. 2024 ACS Nano 18 17815

    [41]

    Li W Q, Amiinu I S, Zhang B W, et al. 2018 Carbon 139, 1144

    [42]

    Chen Z D, Hu Y F, Zhu Z M, Zhang W 2020 New J. Phys. 22 093055

    [43]

    Zhang W, Luo K F, Chen Z D, Zhu Z M, Yu R, Fang C, Weng H M 2019 npj Comput. Mater. 5 105

    [44]

    Wu M S, Xu B, Liu G, Ou Yang C Y 2012 Acta. Phys. Sin. 61 227102 (in Chinese) [吴木生,徐波,刘刚,欧阳楚英 2012 61 227102]

    [45]

    Xu S L, Hu Y F, Yuan D W, Chen W, Zhang W 2023 Acta. Phys. Sin. 72 127102 (in Chinese) [徐诗琳,胡岳芳,袁丹文,陈巍,张薇 2023 72 127102]

    [46]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nat. Photon. 4 611

    [47]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15

    [48]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [49]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [50]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [51]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [52]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1

    [53]

    Marzari N, Vanderbilt D 1997 Phys. Rev. B 56 12847

    [54]

    Souza I, Marzari N, Vanderbilt D 2001 Phys. Rev. B 65 035109

    [55]

    Wu Q S, Zhang S N, Song H F, Troyer M, Soluyano A A 2018 Comput. Phys. Commun. 224 405

    [56]

    Pauling L 1947 J. Am. Chem. Soc. 69 3

    [57]

    Yu R, Qi X L, Bernevig A, Fang Z, Dai X 2011 Phys. Rev. B 84 075119

    [58]

    Grusdt F, Abanin D, Demler E 2014 Phys. Rev. A 89 043621

  • [1] 李鹏飞, 韩丽君, 张琳, 惠宁菊. 石墨烯狄拉克等离激元调控的第一性原理研究.  , doi: 10.7498/aps.74.20250913
    [2] 张敏, 唐桂华, 史晓磊, 李一斐, 赵欣, 黄滇, 陈志刚. 双轴应变对单层Janus过渡金属硫族化合物热输运和热电性能的影响.  , doi: 10.7498/aps.74.20250295
    [3] 卢文强, 易颖婷, 宋前举, 周自刚, 易有根, 曾庆栋, 易早. 基于狄拉克半金属纳米线的太赫兹可调七波段完美吸收器的模拟仿真.  , doi: 10.7498/aps.74.20241516
    [4] 胡军平, 梁丝思, 段惠贤, 田俊程, 陈硕, 戴柏杨, 黄春来, 刘宇, 吕营, 万利佳, 欧阳楚英. 氮氧锚定的单原子铜掺杂石墨烯作为碱离子电池负极的理论预测研究.  , doi: 10.7498/aps.74.20241461
    [5] 栾迦淇, 张亚杰, 陈羽, 郜定山, 李培丽, 李嘉琦, 李佳琪. 基于遗传算法的太赫兹多功能可重构狄拉克半金属编码超表面.  , doi: 10.7498/aps.73.20240225
    [6] 徐诗琳, 胡岳芳, 袁丹文, 陈巍, 张薇. 应变调控下Tl2Ta2O7中的拓扑相变.  , doi: 10.7498/aps.72.20230043
    [7] 张建国, 易早, 康永强, 任浩, 王文艳, 周婧璠, 郝慧珍, 常会东, 高英豪, 陈亚慧, 李艳娜. 局域表面等离子体谐振辅助的高效率宽频带可调谐偏振转换超表面.  , doi: 10.7498/aps.70.20220288
    [8] 张华林, 何鑫, 张振华. 过渡金属原子掺杂的锯齿型磷烯纳米带的磁电子学特性.  , doi: 10.7498/aps.70.20201408
    [9] 赵雯琪, 张岱, 崔明慧, 杜颖, 张树宇, 区琼荣. 等离子体对石墨烯的功能化改性.  , doi: 10.7498/aps.70.20202078
    [10] 汪建元, 林光杨, 王佳琪, 李成. 简并态锗在大注入下的自发辐射谱模拟.  , doi: 10.7498/aps.66.156102
    [11]
    1. 翟顺成, 郭平, 郑继明, 赵普举, 索兵兵, 万云, 
    第一性原理研究O和S掺杂的石墨相氮化碳(g-C3N4)6量子点电子结构和光吸收性质.  , doi: 10.7498/aps.66.187102
    [12] 宋建军, 包文涛, 张静, 唐昭焕, 谭开洲, 崔伟, 胡辉勇, 张鹤鸣. (100)Si基应变p型金属氧化物半导体[110]晶向电导率有效质量双椭球模型.  , doi: 10.7498/aps.65.018501
    [13] 肖美霞, 梁尤平, 陈玉琴, 刘萌. 应变对两层半氢化氮化镓薄膜电磁学性质的调控机理研究.  , doi: 10.7498/aps.65.023101
    [14] 杨光敏, 徐强, 李冰, 张汉壮, 贺小光. 不同N掺杂构型石墨烯的量子电容研究.  , doi: 10.7498/aps.64.127301
    [15] 刘伟峰, 宋建军. 应变(001)p型金属氧化物半导体反型层空穴量子化与电导率有效质量.  , doi: 10.7498/aps.63.238501
    [16] 黄诗浩, 李成, 陈城钊, 郑元宇, 赖虹凯, 陈松岩. N型掺杂应变Ge发光性质.  , doi: 10.7498/aps.61.036202
    [17] 顾芳, 张加宏, 杨丽娟, 顾斌. 应变石墨烯纳米带谐振特性的分子动力学研究.  , doi: 10.7498/aps.60.056103
    [18] 姚文杰, 俞重远, 刘玉敏, 芦鹏飞. 基于连续弹性理论分析量子线线宽对应变分布和带隙的影响.  , doi: 10.7498/aps.58.1185
    [19] 刘玉敏, 俞重远, 杨红波, 黄永箴. InAs/GaAs透镜形量子点超晶格材料的纵向和横向周期对应变场分布的影响.  , doi: 10.7498/aps.55.5023
    [20] 王焕友, 曹晓平, 蒋亦民, 刘 佑. 静止颗粒体的应变与弹性.  , doi: 10.7498/aps.54.2784
计量
  • 文章访问数:  41
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2026-01-05

/

返回文章
返回
Baidu
map