搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气中子在电荷俘获型3D NAND闪存中引起的单粒子翻转特性及机理研究

李鸿德 张鸿 焦扬 雷志锋 杨炜坤 李惠 路国光 张战刚

引用本文:
Citation:

大气中子在电荷俘获型3D NAND闪存中引起的单粒子翻转特性及机理研究

李鸿德, 张鸿, 焦扬, 雷志锋, 杨炜坤, 李惠, 路国光, 张战刚

Characteristics and Mechanisms of Single Event Upset Induced by Atmospheric Neutrons in Charge Trap 3D NAND Flash Memory

Li Hongde, Zhang Hong, Jiao Yang, Lei Zhifeng, Yang Weikun, Li Hui, Lu Guoguang, Zhang Zhangang
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 基于中国散裂中子源大气中子辐照谱仪提供的meV-GeV宽能谱中子束流,对128层电荷俘获型(Charge Trap,CT)3D NAND闪存开展中子辐照实验和仿真.研究发现,CT型3D NAND闪存在宽能谱中子辐照下的主要失效模式为单位翻转(Single Bit Upset,SBU)、多单元翻转(Multiple Cell Upset,MCU),其中SBU占比为82.6%.通过构建单粒子翻转(Single Event Upset,SEU)事件的三维空间分布图发现,不同于重离子SEU的“串型”分布,中子SEU表现出显著的随机空间分布特点,仅存在少量“串型”分布的MCU事件.在MCU事件中,2位MCU占比最高,达到MCU事件的83.6%,高于2位的大尺寸MCU占比为14.3%,最大的MCU位数为7位.MCU图形以沿中子入射方向分布为主.进一步的中子输运仿真结果表明,中子在器件灵敏区内产生的二次粒子主要为N离子和Si离子.其中,LET<10 MeV·cm2·mg-1的短射程二次粒子占主导,是诱发SBU的主要因素.少量LET(Linear Energy Transfer,LET)值大、射程长的二次粒子是MCU的产生诱因.
    Based on the Atmospheric Neutron Irradiation Spectrometer (ANIS) at the China Spallation Neutron Source (CSNS), this paper conducts an experimental study on the atmospheric neutron single-event effects in 128-layer charge trapping (CT) 3D NAND flash memory. By integrating irradiation experiments, reverse analysis, and Monte Carlo neutron transport simulations, this research aims to investigate the impact of atmospheric neutron irradiation on the multiple-cell upset (MCU) susceptibility of CT 3D NAND flash memory and analyze the underlying mechanisms, including the distribution of secondary particles within the sensitive volume and the characteristics of deposited charge.
    The results indicate that under broad-spectrum neutron irradiation, the primary failure modes in CT 3D NAND flash memory are single-bit upsets (SBU) and MCU, with SBU accounting for 82.55% of the total events. By constructing a three-dimensional spatial distribution map of single-event upset (SEU), it was observed that, compared to the dense "string-like" distribution formed by 78Kr ion irradiation (LET=11.4MeV·cm2·mg-1), neutron-induced SEU exhibit a significantly more random spatial distribution, with only a small number of MCU showing a "string-like" pattern. Among the MCU events, 2-bit MCUs dominate, constituting 83.6% of all MCUs, while larger sized MCUs (>2 bits) account for 14.3%. The maximum observed MCU size was 7 bits. Furthermore, the spatial distribution of MCUs is primarily aligned along the direction of neutron incidence.
    Based on the reverse analysis results, a device model was constructed, and Monte Carlo neutron transport simulations were performed. The simulation results reveal that secondary particles generated in the sensitive volume (SV) of the device by neutrons with energy E > 1 MeV are predominantly silicon ions (37.98%) and nitrogen ions (27.95%). Since the SV material is nitride, the interaction between neutrons and the SV is mainly elastic scattering, during which secondary particles are produced. Among the secondary particles generated in the SV, most propagate along the direction of neutron incidence, with a small number of secondary particles in the central region producing oblique tracks. The majority of secondary particles generated in the SV exhibit low LET values (<5 MeV·cm2·mg-1) and short ranges (<100 nm), and these secondary particles are the primary cause of SBU. However, approximately 1.2% of the ions exhibit high LET values (>10 MeV·cm2·mg-1), with the maximum LET value of secondary particles inthe SV reaching 12.05 MeV·cm2·mg-1. A small number of secondary particles with high LET values and long ranges are responsible for the generation of MCUs.
  • [1]

    Marinella M J 2021 IEEE Trans. Nucl. Sci. 68 546

    [2]

    Righetti G P N 2017 IEEE International Integrated Circuit Reliability Workshop (IIRW) South Lake Tahoe, CA, USA, October 8-12, 2017 p51

    [3]

    Mizoguchi K, Takahashi T, Aritome S, Takeuchi K 2017 IEEE International Memory Workshop (IMW) Monterey, CA, USA, May 14-17,2017 p119

    [4]

    Bagatin M, Gerardin S, Paccagnella A, Beltrami S, Camerlenghi E, Bertuccio M, Costantino A, Zadeh A, Ferlet-Cavrois V, Santin G, Daly E 2018 IEEE Trans. Nucl. Sci. 65 318

    [5]

    Bagatin M, Gerardin S, Paccagnella A, Beltrami S 2024 IEEE Trans. Nucl. Sci. 71 412

    [6]

    Wilcox E P, Campola M J 2019 IEEE Radiation Effects Data Workshop (REDW) San Antonio, TX, USA, July 8-12, 2019 p238

    [7]

    Coïc L, Augustin G, Serrano L, Guillermin J, Chatry N, Carron J, Ecoffet R 2022 Radiation Effects on Components and Systems Conference (RADECS) Venice, Italy, October 3-7, 2022 p1

    [8]

    Oldham T R, Ladbury R L, Friendlich M, Kim H S, Berg M D, Irwin T L, Seidleck C, LaBel K A 2006 IEEE Trans. Nucl. Sci. 53 3217

    [9]

    Schmidt H, Walter D, Gliem F, Nickson B, Harboe-Sorensen R, Virtanen A 2008 IEEE Radiation Effects Data Workshop (REDW) Tempe,AZ,USA, July 14-18, 2008 p38

    [10]

    Irom F, Nguyen D N, Bagatin M, Cellere G, Gerardin S, Paccagnella A 2010 IEEE Trans. Nucl. Sci. 57 266

    [11]

    Bagatin M, Gerardin S, Paccagnella A, Ferlet-Cavrois V 2013 IEEE Trans. Nucl. Sci. 60 2675

    [12]

    Wilcox E P, Breeding M L, Casey M C, Pellish J A, Reed R A, Alles M L, Schrimpf R D 2021 IEEE Trans. Nucl. Sci. 68 835

    [13]

    Conway P M, Gadlage M J, Ingalls J D, Williams A M, Bruce D I, Bossev D P 2019 IEEE Trans. Nucl. Sci. 66 466

    [14]

    Chen D, Wilcox E, Ladbury R L, Kim H, Phan A, Seidleck C, LaBel K A 2017 IEEE Trans. Nucl. Sci. 64 332

    [15]

    Chen D, Wilcox E, Ladbury R L, Seidleck C, Kim H, Phan A, LaBel K A 2018 IEEE Trans. Nucl. Sci. 65 19

    [16]

    Jiao Y, Yang J, Wang Q, Xi K, Li X, Liu Y, Chen Q, Li Z, Sun Y, Zhao P, Liu J 2025 IEEE Trans. Nucl. Sci. 72 2689

    [17]

    Bagatin M, Gerardin S, Paccagnella A, Beltrami S, Cazzaniga C, Frost C D 2019 IEEE Trans. Nucl. Sci. 66 1361

    [18]

    Zheng X, Wang Y, Mo R, Wei Z, Mei B, Liu C, Huo M, Xiao L 2025 6th International Conference on Radiation Effects of Electronic Devices (ICREED) Yangzhou, China, April 16-18,2025, p1

    [19]

    Yu Q Z, Yin W, Liang T J 2011 Acta Phys.Sin, 60 052501(in Chinese)[于全芝, 殷雯,梁天骄2011 60 052501]

    [20]

    Shen F, Liang T R, Yin W,Yu Q Z,Zuo T S,Yao Z E,Zhu T,Liang T J. 2014 ActaPhys.Sin. 63 152801(in Chinese)[沈飞,梁泰然,殷雯,于全芝,左太森, 姚泽恩,朱涛,梁天骄2014 63 152801]

    [21]

    Wang X, Zhang F Q, Chen W, Guo X Q,Ding L L,Luo Y H 2019 Acta Phys.Sin. 68 052901(in Chinese)[王勋,张凤祁,陈伟,郭晓强,丁李利,罗尹虹物 理学报2019 68 052901]

    [22]

    YU Q.2024 Applied Radiation and Isotopes:Including Data, Instrumentation and Methods for Use in Agriculture, Industry and Medicine 203 111075

    [23]

    Zhang Z, Lei Z F, Tong T, Li X H, Xi K, Peng C, Shi Q, He Y J, Huang Y, En Y F 2019 IEEE Trans. Nucl. Sci. 66 1368

    [24]

    Park J, Han J-W, Yoon G, Go D, Kim D, Kim J, Lee J-S 2022 IEEE Trans. Electron Dev. 69 6089

    [25]

    TechInsights,https://www.techinsights.com/blog/ymtcs-xtacking-30-not-what-tec hinsights-was-expecting-see[2025-11-27]

    [26]

    Zhang Z G, Liu J,Sun Y M, Hou M D, Tong T,Gu S, Liu T Q, Geng C, Xi K, Yao H J, Luo J, Duan J L, Mo D, Su H, Lei Z F, En Y F, Huang Y 2014 10th International Conference on Reliability, Maintainability and Safety (ICRAMS) Guangzhou,China,August 6-8,2014 p114

  • [1] 方语萱, 杨益, 夏志良, 霍宗亮. 3D NAND闪存中TiN与氧化表面F吸附作用的第一性原理研究.  , doi: 10.7498/aps.73.20240254
    [2] 方语萱, 夏志良, 杨涛, 周文犀, 霍宗亮. 3D NAND闪存中氟攻击问题引起的字线漏电的改进.  , doi: 10.7498/aps.73.20231557
    [3] 杨卫涛, 胡志良, 何欢, 莫莉华, 赵小红, 宋伍庆, 易天成, 梁天骄, 贺朝会, 李永宏, 王斌, 吴龙胜, 刘欢, 时光. 近存计算架构AI芯片中子单粒子效应.  , doi: 10.7498/aps.73.20240430
    [4] 张战刚, 杨少华, 林倩, 雷志锋, 彭超, 何玉娟. 基于青藏高原的14 nm FinFET和28 nm平面CMOS工艺SRAM单粒子效应实时测量试验.  , doi: 10.7498/aps.72.20230161
    [5] 刘晔, 郭红霞, 琚安安, 张凤祁, 潘霄宇, 张鸿, 顾朝桥, 柳奕天, 冯亚辉. 质子辐照作用下浮栅单元的数据翻转及错误退火.  , doi: 10.7498/aps.71.20212405
    [6] 张战刚, 叶兵, 姬庆刚, 郭金龙, 习凯, 雷志锋, 黄云, 彭超, 何玉娟, 刘杰, 杜广华. 纳米级静态随机存取存储器的α粒子软错误机理研究.  , doi: 10.7498/aps.69.20201796
    [7] 罗尹虹, 张凤祁, 郭红霞, Wojtek Hajdas. 基于重离子试验数据预测纳米加固静态随机存储器质子单粒子效应敏感性.  , doi: 10.7498/aps.69.20190878
    [8] 黎华梅, 侯鹏飞, 王金斌, 宋宏甲, 钟向丽. HfO2基铁电场效应晶体管读写电路的单粒子翻转效应模拟.  , doi: 10.7498/aps.69.20200123
    [9] 张战刚, 雷志锋, 童腾, 李晓辉, 王松林, 梁天骄, 习凯, 彭超, 何玉娟, 黄云, 恩云飞. 14 nm FinFET和65 nm平面工艺静态随机存取存储器中子单粒子翻转对比.  , doi: 10.7498/aps.69.20191209
    [10] 王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹. 基于中国散裂中子源的商用静态随机存取存储器中子单粒子效应实验研究.  , doi: 10.7498/aps.69.20200265
    [11] 王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹. 中国散裂中子源在大气中子单粒子效应研究中的应用评估.  , doi: 10.7498/aps.68.20181843
    [12] 张战刚, 雷志锋, 岳龙, 刘远, 何玉娟, 彭超, 师谦, 黄云, 恩云飞. 空间高能离子在纳米级SOI SRAM中引起的单粒子翻转特性及物理机理研究.  , doi: 10.7498/aps.66.246102
    [13] 罗尹虹, 郭晓强, 陈伟, 郭刚, 范辉. 欧空局监测器单粒子翻转能量和角度相关性.  , doi: 10.7498/aps.65.206103
    [14] 罗尹虹, 张凤祁, 王燕萍, 王圆明, 郭晓强, 郭红霞. 纳米静态随机存储器低能质子单粒子翻转敏感性研究.  , doi: 10.7498/aps.65.068501
    [15] 王晓晗, 郭红霞, 雷志锋, 郭刚, 张科营, 高丽娟, 张战刚. 基于蒙特卡洛和器件仿真的单粒子翻转计算方法.  , doi: 10.7498/aps.63.196102
    [16] 丁李利, 郭红霞, 陈伟, 闫逸华, 肖尧, 范如玉. 累积辐照影响静态随机存储器单粒子翻转敏感性的仿真研究.  , doi: 10.7498/aps.62.188502
    [17] 蔡明辉, 韩建伟, 李小银, 李宏伟, 张振力. 临近空间大气中子环境的仿真研究.  , doi: 10.7498/aps.58.6659
    [18] 张科营, 郭红霞, 罗尹虹, 何宝平, 姚志斌, 张凤祁, 王园明. 静态随机存储器单粒子翻转效应三维数值模拟.  , doi: 10.7498/aps.58.8651
    [19] 李 华. 静态随机存储器单粒子翻转的Monte Carlo模拟.  , doi: 10.7498/aps.55.3540
    [20] 张庆祥, 侯明东, 刘 杰, 王志光, 金运范, 朱智勇, 孙友梅. 静态随机存储器单粒子效应的角度影响研究.  , doi: 10.7498/aps.53.566
计量
  • 文章访问数:  30
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-03

/

返回文章
返回
Baidu
map