搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压力调控材料光电响应特性研究进展

程鹏 叶婷婷 潘孝美 薛二巧 姚德元 丁俊峰

引用本文:
Citation:

压力调控材料光电响应特性研究进展

程鹏, 叶婷婷, 潘孝美, 薛二巧, 姚德元, 丁俊峰

Research progress of pressure-modulated photoelectric properties of materials

CHENG Peng, YE Tingting, PAN Xiaomei, XUE Erqiao, YAO Deyuan, DING Junfeng
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 光电子技术领域的快速发展对半导体材料在光电特性上提出了更高要求, 推动了对更加高效、可控的调控手段的深入探索. 高压技术作为一种“干净”的外场调控手段, 能够有效地调控材料晶体结构与电子态, 激发新奇物理现象, 实现性能的优化. 近年来, 高压技术在光电功能材料领域迅速崭露头角, 为光电特性的优化提供了全新视角, 展现出不俗的研究价值和应用潜力. 本文概述了近年来二维过渡金属硫化物、金属与非金属卤化物等材料体系在高压条件下光电响应特性演化的研究进展. 总结了高压对材料晶体结构、电子能带、光谱响应拓展、自驱动响应、极性反转等效应的影响规律, 分析了结构与性能的内在关联, 并探讨了高压调控所揭示的新机制和新效应. 最后, 针对当前压力调控光电特性领域存在的科学问题与技术瓶颈, 提出了未来可能的研究方向与前景, 以期为开发新型高性能光电器件提供理论基础和实验依据.
    The rapid development of optoelectronic technologies has raised increasingly requirements for the photoelectric properties of semiconductor materials, thereby promoting the exploration of more efficient and controllable modulation strategies. High-pressure technology, as a clean and effective external-field method, can accurately modulate the crystal structure and electronic states of materials. This modulation can induce novel phase transitions and physical effects, thereby significantly improving performance. In recent years, high-pressure technique has emerged as a powerful tool for optimizing photoelectric properties of semiconductor materials, providing new perspectives for enhancing performance and demonstrating significant research value and application potential.This review paper comprehensively summarizes recent research progress of pressure-induced evolution of photoelectric properties in various material systems, such as two-dimensional transition metal dichalcogenides, metal and non-metal halides, perovskites, and other representative semiconductors. These materials exhibit a wide variety of pressure-induced structural transformations, accompanied by photocurrent enhancement, broadband spectral response, self-powered photoresponse, and polarity reversal. Furthermore, the intrinsic links between these structural evolutions and the corresponding photoelectric behaviors are systematically examined.Scientific issues and development bottlenecks in this area are also discussed. Despite notable advances, there are still several challenges, including the insufficient understanding of intrinsic correlations between structure and photoelectric properties, the lack of comprehensive evaluation parameters. How to realize pressure-enhanced photoelectric properties for applications under ambient conditions is another key challenge. Addressing these issues will be essential for advancing both fundamental understanding and practical applications.Overall, pressure modulated photoelectric properties present both significant challenges and exciting opportunities, providing valuable guidance for designing advanced optoelectronic materials and devices.
  • 图 1  高压调控光电响应特性研究中的典型材料分类示意图

    Fig. 1.  Schematic classification of representative material systems for high-pressure tuning of photoresponse properties.

    图 2  TMDs材料高压下的光电响应行为 (a) PtS2在高压下的光电流[41]; (b) 块状和单晶ReS2样品的光电流-压力依赖性关系[42]; (c) 980, 1270, 1450和1650 nm近红外波长下层状WS2的光电流-压力依赖性关系[43]; (d) 不同近红外波长照射下, WS2的响应度和外量子效率与压力的变化关系[43]. 图片已获得授权

    Fig. 2.  The photoelectric response behavior of TMDs materials under high pressure: (a) Photocurrent of the PtS2 at elevated pressures[41]; (b) photocurrent-pressure dependence of bulk and single-crystal ReS2 samples[42]; (c) photocurrent-pressure dependence of layered WS2 with 980, 1270, 1450, and 1650 nm NIR wavelengths[43]; (d) R and EQE of WS2 as a function of pressure under illumination of selected near-infrared wavelengths[43]. Reproduced with permission.

    图 3  BiI3在高压下的自驱动光电流极性反转行为 (a), (b) 在520 nm波长激光照射下, BiI3在零偏压下的高压光响应[48]; (c) 在24.0 GPa时, 激光在两电极间移动时BiI3的光电流分布[48]; (d) 不同光照强度下BiI3的光电流响应[48]; (e) 不同光照区域下光电流随压力的变化[48]; (f) 位置A(电极与样品接触区域)处光热电压随压力的变化[48]; (g) BiI3的霍尔系数随压力的变化关系[48]. 图片已获得授权

    Fig. 3.  Pressure-induced polarity reversal of self-driven photocurrent in BiI3: (a), (b) Photoresponse of BiI3 under 520 nm laser illumination a with zero bias under pressure[48]; (c) photocurrent distribution of BiI3 at 24.0 GPa as the laser moves between the two electrodes[48]; (d) photocurrent of BiI3 at 24.0 GPa with varying illumination intensity[48]; (e) variation in photocurrent with pressure at different illumination positions[48]; (f) changes in photothermoelectric voltage with pressure at illumination position A[48]; (g) pressure-dependent Hall coefficient of BiI3[48]. Reproduced with permission.

    图 4  不同波长激光照射下Cs3Bi2I9在高压下的光电响应特性[61]  (a) 在1650 nm 激光与10 V偏压下, Cs3Bi2I9样品在位置A加压过程中的光电流变化; (b) 不同位置在1650 nm 激光照射下的高压光电流密度; (c) 在26.3 GPa和10 V偏压下, 在不同波长光照下位置A处的光电流响应. 图片已获得授权

    Fig. 4.  Photoresponse properties of Cs3Bi2I9 under laser illumination of different wavelengths[61]: (a) Photocurrent evolution of Cs3Bi2I9 during compression with 1650 nm laser illumination and 10 V bias at position A; (b) pressure-dependent photocurrent density Jph of Cs3Bi2I9 under 1650 nm laser illumination at different positions; (c) photocurrent of Cs3Bi2I9 under laser illumination of different wavelengths at position A under a 10 V bias at 26.3 GPa[]. Reproduced with permission.

    图 5  NbOI2半导体-半导体相变过程中压力诱导的n-p导电类型可逆切换[62] (a) NbOI2加压过程中温度-电阻关系; (b) 在300 K时NbOI2的电阻随压强的变化关系, 插图为样品和电极在金刚石对顶砧中的光学图像; (c) 光学带隙值随压强的变化; (d)在6.2 GPa和14.0 GPa时, NbOI2在300 K下的霍尔电阻随磁场的变化; (e) 霍尔系数随压强的变化; (f) NbOI2的载流子密度随压强的变化. 图片已获得授权

    Fig. 5.  Pressure-induced n-p conduction type switching in semiconductor-to-semiconductor transition of NbOI2[62]: (a) Representative temperature-dependent resistance curves of NbOI2 during compression; (b) pressure-dependent resistance of NbOI2 measured at 300 K. Inset: the optical photo of the sample and electrodes in Diamond anvil cell; (c) optical bandgap as a function of pressure. (d) Hall resistance of NbOI2 as a function of the magnetic field at 300 K under pressures of 6.2 and 14.0 GPa; (e) derived Hall coefficient as a function of pressure; (f) carrier density of NbOI2 as a function of pressure]. Reproduced with permission.

    图 6  (a), (b) SbSI分别在0和5 V偏置电压下的高压光电流[63]; (c) 不同偏置电压下的光电流与压力的关系[63]; (d) SbSI在高压下的电阻率[63]. 图片已获得授权

    Fig. 6.  (a), (b) Pressure-dependent photocurrent of SbSI at 0 and 5 V bias voltages[63]; (c) photocurrent as a function of pressure at different bias voltages[63]; (d) the resistivity of SbSI under high pressures[63]. Reproduced with permission.

    图 7  (a), (b) g-C3N4在15 V电压可见光照射下的高压光电流[66]. 图片已获得授权

    Fig. 7.  (a), (b) Photocurrent of g-C3N4 under visible light illumination at a 15 V bias voltage under pressure[66]. Reproduced with permission.

    图 8  (a), (b) 20 V电压下CuInP2S6的高压光电流、光电流密度和响应度[68]. 图片已获得授权

    Fig. 8.  (a), (b) Pressure-dependent photocurrent, current density (Jph) and responsivity (R) of CuInP2S6 at a voltage of 20 V[68]. Reproduced with permission.

    图 9  在1 V氙灯照射下 (a)加压和(b)卸压时的NiPS3光电流对比[69] (1 atm = 1.013×105 Pa) 图片已获得授权

    Fig. 9.  Photocurrent of NiPS3 during (a) compression and (b) decompression under illumination by Xe lamp at 1 V[69] (1 atm = 1.013×105 Pa). Reproduced with permission.

    表 1  相关材料在高压下的光电响应特性.

    Table 1.  Optoelectronic response characteristics of selected materials under high pressure.

    材料名称 压力范围/GPa 光电流较常压数值 其他现象 参考文献
    多层MoS2 0—35.0 光电流增益–7.5%/GPa、金属化 [40]
    PtS2 0—26.8 约6倍 [41]
    块状ReS2 0—50.0 2个数量级 金属化 [42]
    WS2 0—17.2 2个数量级 宽谱响应 [43]
    ZrSe2 0—26.5 3个数量级 金属化、负光电导 [44]
    PbI2 0—32.6 2个数量级 宽谱响应、自驱动光响应 [46,47]
    BiI3 0—30.0 3个数量级 宽谱响应、自驱动光响应 [48]
    SbI3 0—10.0 近10倍 自驱动光响应 [49,50]
    CsI3 0—16.7 近5个数量级 宽谱响应 [51]
    SnI4 0—11.5 约5个数量级 金属化 [52]
    RhI3 0—30.0 约5个数量级 金属化 [53]
    AsI3 0—12.0 约2倍 [54]
    (C6H5CH2NH3)2CuBr4 0—40.0 28 GPa光电导率达到峰值* [55]
    Cs2PbI2Cl2 0—26.9 3个数量级 [24]
    CH3NH3PbBr3 0—5.6 0.7 GPa达到峰值* [56]
    CH3NH3PbI3 0—8.3 4.5倍 “记忆效应” [57]
    CsPbBr3 0—9.2 1.4 GPa达到峰值* [58]
    CsPbCl3 0—22.1 近2倍 [59]
    CH3NH3SnI3 0—31.0 约1-2个数量级 非晶化 [60]
    Cs3Bi2I9 0—26.7 5个数量级 非晶化、宽谱响应 [61]
    NbOI2 0—23.8 3个数量级 宽谱响应、导电类型切换 [62]
    SbSI 0—28.5 14 GPa达到峰值* 自驱动光响应 [63]
    g-C3N4 0—46.0 约50% 带隙减小、非晶化、“记忆效应” [66,67]
    CuInP2S6 0—23.5 2个数量级 金属化、自驱动光响应 [68]
    NiPS3 0—50.1 5个数量级 宽谱响应、“记忆效应” [69]
    Bi9O7.5S6 0—58.1 4个数量级 [70]
    BiOBr 0—25.0 1个数量级 [71]
    KBiFe2O5 0—35.0 2个数量级 [72]
    WO3/CuO异质结 0—33.0 负光电导 [73]
    CrSb2 0—41.0 负光电导 [74]
    Cr2Se3 0—31.8 3.7倍 负光电导 [75]
    块状Si 0—20.8 1—2个数量级 金属化、负光电导 [76]
    CuInS2纳米晶 0—50.2 近4倍 带隙增大 [77]
    Bi2S3 0—34.3 5.6倍 宽谱响应、负光电导 [84]
    注: *代表文献中未提及光电流具体变化数值.
    下载: 导出CSV
    Baidu
  • [1]

    Wang X M, Cheng Z Z, Xu K, Tsang H K, Xu J B 2013 Nat. Photonics 7 888Google Scholar

    [2]

    Youngblood N, Chen C, Koester S J, Li M 2015 Nat. Photonics 9 247Google Scholar

    [3]

    Koepfli S M, Baumann M, Koyaz Y, Gadola R, Güngör A, Keller K, Horst Y, Nashashibi S, Schwanninger R, Doderer M, Passerini E, Fedoryshyn Y, Leuthold J 2023 Science 380 1169Google Scholar

    [4]

    Chetia A, Bera J, Betal A, Sahu S 2022 Mater. Today Commun. 30 103224Google Scholar

    [5]

    Wang H Y, Li Z X, Li D Y, Chen P, Pi L J, Zhou X, Zhai T Y 2021 Adv. Funct. Mater. 31 2103106Google Scholar

    [6]

    Liu C Y, Guo J S, Yu L W, Li J, Zhang M, Li H, Shi Y C, Dai D X 2021 Light Sci. Appl. 10 123Google Scholar

    [7]

    Li C Y, Li W J, Cheng M M, Yang W Y, Tan Q H, Wang Q J, Liu Y K 2021 Adv. Opt. Mater. 9 2100927Google Scholar

    [8]

    Liu J, Xia F N, Xiao D, Garcia de Abajo F J, Sun D 2020 Nat. Mater. 19 830Google Scholar

    [9]

    Rao G F, Wang X P, Wang Y, Wangyang P H, Yan C Y, Chu J W, Xue L X, Gong C H, Huang J W, Xiong J, Li Y R 2019 InfoMat 1 272Google Scholar

    [10]

    Tian W, Liu D, Cao F R, Li L 2017 Adv. Opt. Mater. 5 1600468Google Scholar

    [11]

    Ezhilmaran B, Patra A, Benny S, M. R S, V. V A, Bhat S V, Rout C S 2021 J. Mater. Chem. C 9 6122Google Scholar

    [12]

    Allain A, Kang J, Banerjee K, Kis A 2015 Nat. Mater. 14 1195Google Scholar

    [13]

    Cheng P, Wang Y F, Ye T T, Chu L Q, Yang J, Zeng H, Yao D Y, Pan X M, Zhang J, Jiang H C, Su F H, Ding J F 2022 Appl. Phys. Lett. 120 212104Google Scholar

    [14]

    Pan X M, Xin B J, Zeng H, Cheng P, Ye T T, Yao D Y, Xue E Q, Ding J F, Wang W H 2023 J. Phys. Chem. Lett. 14 3320Google Scholar

    [15]

    Pan X M, Xue E Q, Li W G, Pan W J, Yao D Y, Zhang X, Yin Y W, Cheng P, Liu Q J, Ding J F 2025 Phys. Rev. B 111 115104Google Scholar

    [16]

    Mao H K, Chen X J, Ding Y, Li B, Wang L 2018 Rev. Mod. Phys. 90 015007Google Scholar

    [17]

    Jiang S Q, Holtgrewe N, Lobanov S S, Su F H, Mahmood M F, McWilliams R S, Goncharov A F 2018 Nat. Commun. 9 2624Google Scholar

    [18]

    Cheng P, Ye T T, Zeng H, Ding J F 2020 AIP Adv. 10 045110Google Scholar

    [19]

    尤悦, 李尚升, 宿太超, 胡美华, 胡强, 王君卓, 高广进, 郭明明, 聂媛 2020 69 238101Google Scholar

    You Y, Li S S, Su T C, Hu M H, Hu Q, Wang J Z, Gao G J, Guo M M, Nie Y 2020 Acta Phys. Sin. 69 238101Google Scholar

    [20]

    秦晓玲, 朱栩量, 曹靖雯, 王浩诚, 张鹏 2021 70 146301Google Scholar

    Qin X L, Zhu X L, Cao J W, Wang H C, Zhang P 2021 Acta Phys. Sin. 70 146301Google Scholar

    [21]

    Li Q, Zhang Y J, Xiang Z N, Zhang Y H, Zhu X Y, Wen H H 2024 Chin. Phys. Lett. 41 017401Google Scholar

    [22]

    Hou J, Yang P T, Liu Z Y, Li J Y, Shan P F, Ma L, Wang G, Wang N N, Guo H Z, Sun J P, Uwatoko Y, Wang M, Zhang G M, Wang B S, Cheng J G 2023 Chin. Phys. Lett. 40 117302Google Scholar

    [23]

    Zhang L J, Wang Y C, Lv J, Ma Y M 2017 Nat. Rev. Mater. 2 17005Google Scholar

    [24]

    Guo S H, Bu K J, Li J W, Hu Q Y, Luo H, He Y H, Wu Y H, Zhang D Z, Zhao Y S, Yang W G, Kanatzidis M G, Lü X J 2021 J. Am. Chem. Soc. 143 2545Google Scholar

    [25]

    Shi Y, Zhou Y, Ma Z W, Xiao G J, Wang K, Zou B 2020 J. Mater. Chem. C 8 12755Google Scholar

    [26]

    Attique S, Ali N, Imran T, Rauf S, Khesro A, Ali S, Wang W J, Khatoon R, Abbas A, Ullah khan E, Yang S K, Wu H Z 2022 Sol. Energy 239 198Google Scholar

    [27]

    Wang L R, Yao P P, Wang F, Li S F, Chen Y P, Xia T Y, Guo E J, Wang K, Zou B, Guo H Z 2020 Adv. Sci. 7 1902900Google Scholar

    [28]

    An C, Du X L, Chen X L, Zhou Y, Zhang M, Zhou Y H, Zhou J, Yang Z R 2023 Phys. Rev. B 107 134501Google Scholar

    [29]

    Qi M Y, Ye M Y, Ma S L, Feng J M, Du M Y, Huang H Y, Song H, Cui T 2024 J. Mater. Chem. C 12 12372Google Scholar

    [30]

    Shen Z W, Wu Z Y, Wang S J, Wang H C, Li H K, Song J, Gao G Y, Wang L, Tian Y J 2024 Chin. Phys. Lett. 41 117101Google Scholar

    [31]

    Shi Y Y, Wu M, Yue L, Wang K, Li Q J, Wu Y, Ye G L, Huang H J 2024 Appl. Phys. Lett. 124 094103Google Scholar

    [32]

    Wang N, Zhang G Z, Wang G Y, Feng Z B, Li Q, Zhang H W, Li Y W, Liu C L 2024 Small 20 e2400216Google Scholar

    [33]

    Feng J M, Qi M Y, Song H, Ye M Y, Runowski M, Hu Z Y, Huang L K, Lian M, Zhao X B, Dan Y Q, Ma S L, Cui T 2025 Chem. Eng. J. 515 163611Google Scholar

    [34]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [35]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [36]

    Song X F, Guo Z X, Zhang Q C, Zhou P, Bao W Z, Zhang D W 2017 Small 13 1700098Google Scholar

    [37]

    Khan K, Tareen A K, Aslam M, Wang R H, Zhang Y P, Mahmood A, Ouyang Z B, Zhang H, Guo Z Y 2020 J. Mater. Chem. C 8 387Google Scholar

    [38]

    Liu Y, Duan X D, Huang Y, Duan X F 2018 Chem. Soc. Rev. 47 6388Google Scholar

    [39]

    Choi W, Choudhary N, Han G H, Park J, Akinwande D, Lee Y H 2017 Mater. Today 20 116Google Scholar

    [40]

    Nayak A P, Bhattacharyya S, Zhu J, Liu J, Wu X, Pandey T, Jin C Q, Singh A K, Akinwande D, Lin J F 2014 Nat. Commun. 5 3731Google Scholar

    [41]

    Yuan Y F, Zhang Z T, Wang W K, Zhou Y H, Chen X L, An C, Zhang R R, Zhou Y, Gu C C, Li L, Li X J, Yang Z R 2018 Chin. Phys. B 27 066201Google Scholar

    [42]

    Wang P, Wang Y G, Qu J Y, Zhu Q, Yang W G, Zhu J L, Wang L P, Zhang W W, He D W, Zhao Y S 2018 Phys. Rev. B 97 235202Google Scholar

    [43]

    Zhang X T, Dong Q, Li Z L, Jing X L, Liu R, Liu B, Zhao T T, Lin T, Li Q J, Liu B B 2022 Mater. Res. Lett. 10 547Google Scholar

    [44]

    Wang N, Moutaabbid H, Feng Z B, Wang G Y, Zhang H W, Zhang G Z, Cao Z Y, Li Y W, Liu C L 2024 Appl. Phys. Lett. 125 093904Google Scholar

    [45]

    Aji Suleiman A, Zhou X, Zhai T Y 2020 J. Phys. D: Appl. Phys. 54 013002

    [46]

    Cheng P, Ye T T, Yan J W, Zhang K, Yao D Y, Pan X M, Wang Y F, Xue E, Su F H, Zhang J, Ding J F 2023 Adv. Opt. Mater. 11 2300316Google Scholar

    [47]

    Li Z, Li Q, Li H, Tian F, Du M, Fang S, Liu R, Zhang L, Liu B 2022 Small Methods 6 2201044Google Scholar

    [48]

    Yue L, Tian F Y, Liu R, Li Z L, Li R X, Li C Y, Li Y C, Yang D L, Li X D, Li Q J, Zhang L J, Liu B B 2025 Natl. Sci. Rev. 12 nwae419

    [49]

    Li Z L, Chen S X, Tian F Y, Fang S X, Li Q J, Du M Y, Yuan B, Kang L, Zhang L J, Liu B B 2024 Acta Mater. 278 120263Google Scholar

    [50]

    Xing S Y, Chen S X, Fang S X, Tian F Y, Li Z L, Jin X L, Li Q J, Liu B B 2024 Adv. Opt. Mater. 12 202401433

    [51]

    Li Z L, Li Q J, Li H Y, Yue L, Zhao D L, Tian F Y, Dong Q, Zhang X T, Jin X L, Zhang L J, Liu R, Liu B B 2021 Adv. Funct. Mater. 32 2108636

    [52]

    Lu R H, Li Z L, Yue L, Song L Y, Fang S X, Liu T Y, Shen P F, Li Q J, Jin X L, Liu B B 2024 Mater. Today Phys. 42 101381Google Scholar

    [53]

    Fang Y Q, Kong L P, Wang R Q, Zhang Z, Li Z Y, Wu Y H, Bu K J, Liu X Q, Yan S, Hattori T, Li N N, Li K, Liu G, Huang F Q 2023 Mater. Today Phys. 34 101083Google Scholar

    [54]

    Li Z L, Gao D X, Chen S X, Yue L, Yuan B, Shen X D, Kang L, Li Q J, Liu B B 2025 J. Mater. Chem. A 13 9801Google Scholar

    [55]

    Zhan X H, Jiang X M, Lv P, Xu J, Li F J, Chen Z L, Liu X B 2022 Angew. Chem. Int. Ed. 61 e202205491Google Scholar

    [56]

    Yan H C, Ou T J, Jiao H, Wang T Y, Wang Q L, Liu C L, Liu X Z, Han Y H, Ma Y Z, Gao C X 2017 J. Phys. Chem. Lett. 8 2944Google Scholar

    [57]

    Zhang H F, Yang J Z, Li Q J, You W W, Mao Y L 2023 Appl. Phys. Lett. 123 021107Google Scholar

    [58]

    Ou T J, Liu C L, Yan H C, Han Y H, Wang Q L, Liu X Z, Ma Y Z, Gao C X 2019 Appl. Phys. Lett. 114 062105Google Scholar

    [59]

    Jing X L, Zhou D L, Sun R, Zhang Y, Li Y C, Li X D, Li Q J, Song H W, Liu B B 2021 Adv. Funct. Mater. 31 2100930Google Scholar

    [60]

    Lü X J, Wang Y G, Stoumpos C C, Hu Q Y, Guo X F, Chen H J, Yang L X, Smith J S, Yang W G, Zhao Y S, Xu H W, Kanatzidis M G, Jia Q X 2016 Adv. Mater. 28 8663Google Scholar

    [61]

    Li Z L, Jia B X, Fang S X, Li Q J, Tian F Y, Li H Y, Liu R, Liu Y C, Zhang L J, Liu S Z, Liu B B 2022 Adv. Sci. 10 2205837

    [62]

    Yue L, Li Z L, Yu L C, Xu K B, Liu R, Li C Y, Li Y C, Yang D L, Li X D, Li Q J, Liu B B 2024 J. Am. Chem. Soc. 146 25245Google Scholar

    [63]

    Liu T B, Bu K J, Zhang Q, Zhang P J, Guo S H, Liang J Y, Wang B H, Zheng H Y, Wang Y G, Yang W G, Lü X J 2022 Materials 15 3845Google Scholar

    [64]

    Yu H, Shi R, Zhao Y, Bian T, Zhao Y, Zhou C, Waterhouse G I N, Wu L Z, Tung C H, Zhang T 2017 Adv. Mater. 29 1605148Google Scholar

    [65]

    Cheng P, Ye T, Yi M, Cheng W, Zhang L, Hong P, Sun C, Xie Y, Yao D, Pan X, Xue E, Zhang X, Shen C, Ding J 2025 Appl. Phys. Lett. 126 251902Google Scholar

    [66]

    Cheng P, Yao D Y, Yan J W, Ye T T, Liu H H, Zeng H, Pan X M, Zhang G Q, Ding J F 2023 Phys. Rev. Appl. 19 024048Google Scholar

    [67]

    Li Y Z, Yang X G, Lü C F, Qin J X, Zhang C, Zhang Z F, Chen X X, Zang J H, Lou Q, Dong L, Shan C X 2022 Carbon 199 453Google Scholar

    [68]

    Fang S X, Dong Q, Li Z L, Tian H, Liu T Y, Li R X, Jing X L, Yue L, Li C Y, Liu R, Li Q J, Liu B B 2023 J. Phys. Chem. C 127 8383

    [69]

    Fang S X, Li Q J, Li Z L, Dong Q, Jing X L, Li C Y, Li H Y, Liu B, Liu R, Liu B B 2022 Mater. Res. Lett. 11 134

    [70]

    Zhang G H, Zhang Q, Hu Q Y, Wang B H, Yang W G 2019 J. Mater. Chem. A 7 4019Google Scholar

    [71]

    Yue L, Cui D D, Tian F B, Liu S, Li Z L, Liu R, Yao Z, Li Y C, Yang D L, Li X D, Li Q J, Du Y, Liu B B 2024 Acta Mater. 263 119529Google Scholar

    [72]

    Zhang G H, Liu F L, Gu T T, Zhao Y S, Li N N, Yang W G, Feng S H 2017 Adv. Electron. Mater. 3 600498

    [73]

    Rahman S, Samanta S, Kuzmin A, Errandonea D, Saqib H, Brewe D L, Kim J, Lu J L, Wang L 2019 Adv. Sci. 6 1901132Google Scholar

    [74]

    Li C, Liu K, Peng S, Feng Q, Jiang D Q, Wen T, Xiao H, Yue B B, Wang Y G 2023 Chem. Mater. 35 1449Google Scholar

    [75]

    Li C, Liu K, Jiang D Q, Wen T, Chen E, Ma Y Y, Yue B B, Chu S Q, Wang Y G 2023 Chem. Mater. 35 4821Google Scholar

    [76]

    Li C Y, Liu R, Zhao T T, Li Z L, Yue L, Lin T, Zhang X T, Li Q J, Liu B B 2022 Appl. Phys. Lett. 121 042102Google Scholar

    [77]

    Ye M Y, Li Y, Tang R L, Liu S Y, Ma S L, Liu H Z, Tao Q, Yang B, Wang X, Yue H J, Zhu P W 2022 Nanoscale 14 2668Google Scholar

    [78]

    Wang L R, Wang K, Xiao G J, Zeng Q S, Zou B 2016 J. Phys. Chem. Lett. 7 5273Google Scholar

    [79]

    Wang L, Wang K, Zou B 2016 J. Phys. Chem. Lett. 7 2556Google Scholar

    [80]

    Wang F, Tan M P, Li C, Niu C Y, Zhao X 2019 Org. Electron. 67 89Google Scholar

    [81]

    Morana M, Malavasi L 2021 Sol. RRL 5 2100550Google Scholar

    [82]

    Zhang W W, Tang G, Sahoo M P K, Liang Y T, Zhang Y J 2022 Phys. Rev. B 105 075150Google Scholar

    [83]

    Mączka M, Dybała F, Herman A P, Paraguassu W, Barros dos Santos A J, Kudrawiec R 2024 RSC Adv. 14 38514Google Scholar

    [84]

    Feng H C, Zhang G Z, Feng Z B, Li Q, Wang G Y, Li Y W, Fang Y Y, Liu C L 2024 Appl. Phys. Lett. 124 043902Google Scholar

  • [1] 郭宏伟, 贺苗苗, 姜云, 李会, 张金彦, 连敏, 崔田. 高压下无铅双钙钛矿Cs2AgInCl6的结构和光电性能.  , doi: 10.7498/aps.74.20250613
    [2] 陆康俊, 王一帆, 夏谦, 张贵涛, 陈乾. 结构相变引起单层RuSe2载流子迁移率的提高.  , doi: 10.7498/aps.73.20240557
    [3] 刘泽涛, 陈博, 令伟栋, 包南云, 康冬冬, 戴佳钰. 冲击压缩下金属钯的结构相变.  , doi: 10.7498/aps.71.20211511
    [4] 王碧涵, 李冰, 刘旭强, 王毫, 蒋升, 林传龙, 杨文革. 毫秒时间分辨同步辐射X射线衍射和高压快速加载装置及应用.  , doi: 10.7498/aps.71.20212360
    [5] 刘泽涛, 陈博, 令伟栋, 包南云, 康冬冬, 戴佳钰. 冲击压缩下金属钯的结构相变研究.  , doi: 10.7498/aps.70.20211511
    [6] 孙小伟, 宋婷, 刘子江, 万桂新, 张磊, 常文利. 氟化镁高压萤石结构稳定性及热物性的数值模拟.  , doi: 10.7498/aps.69.20200289
    [7] 宋婷, 孙小伟, 魏小平, 欧阳玉花, 张春林, 郭鹏, 赵炜. 方镁石高压结构预测和高温结构稳定性研究.  , doi: 10.7498/aps.68.20190204
    [8] 薛全喜, 江少恩, 王哲斌, 王峰, 赵学庆, 易爱平, 丁永坤, 刘晶儒. 基于神光III原型装置开展的激光直接驱动准等熵压缩研究进展.  , doi: 10.7498/aps.67.20172159
    [9] 于佳, 刘通, 赵康, 潘伯津, 穆青隔, 阮彬彬, 任治安. 112型铁基化合物EuFeAs2的单晶生长与表征.  , doi: 10.7498/aps.67.20181393
    [10] 胡永金, 吴云沛, 刘国营, 罗时军, 何开华. ZnTe结构相变、电子结构和光学性质的研究.  , doi: 10.7498/aps.64.227802
    [11] 濮春英, 王丽, 吕林霞, 于荣梅, 何朝政, 卢志文, 周大伟. NbSi2奇异高压相及其热力学性质的第一性原理研究.  , doi: 10.7498/aps.64.087103
    [12] 王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春. 高压下RhB的相变、弹性性质、电子结构及硬度的第一性原理计算.  , doi: 10.7498/aps.63.186401
    [13] 顾建军, 孙会元, 刘力虎, 岂云开, 徐芹. 结构相变对Fe掺杂TiO2薄膜室温铁磁性的影响.  , doi: 10.7498/aps.61.017501
    [14] 赵晶晶, 舒迪, 祁欣, 刘恩克, 朱伟, 冯琳, 王文洪, 吴光恒. Co50Fe50-xSix合金的结构相变和磁性.  , doi: 10.7498/aps.60.107203.1
    [15] 李晓兵, 赵祥永, 汪尧进, 王飞飞, 陈超, 罗豪甦. 由BaTiO3晶体结构相变时的介电特性研究其电场作用下的偶极子偏转路径.  , doi: 10.7498/aps.58.4225
    [16] 崔永锋, 袁志好. 表面修饰的二氧化钛纳米材料的结构相变和光吸收性质.  , doi: 10.7498/aps.55.5172
    [17] 孔令刚, 康晋锋, 王 漪, 刘力锋, 刘晓彦, 张 兴, 韩汝琦. CoxTi1-xO2-δ体材中氢退火引起的铁磁性及结构相变.  , doi: 10.7498/aps.55.1453
    [18] 孙立涛, 巩金龙, 朱志远, 朱德彰, 何绥霞, 王震遐. 等离子体诱导碳纳米管到纳米金刚石的相变.  , doi: 10.7498/aps.53.3467
    [19] 胡林华, 戴松元, 王孔嘉. 溶胶-凝胶法制备的纳米TiO2结构相变及晶体生长动力学.  , doi: 10.7498/aps.52.2135
    [20] 刘丽华, 董成, 邓冬梅, 陈镇平, 张金仓. Fe掺杂YBCO体系结构变化与团簇效应的正电子实验研究.  , doi: 10.7498/aps.50.769
计量
  • 文章访问数:  422
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-11
  • 修回日期:  2025-08-13
  • 上网日期:  2025-09-02

/

返回文章
返回
Baidu
map