-
纳米线-基底界面黏附能对微纳器件的性能至关重要. 然而, 现有测量方法普遍存在操作复杂、误差大等问题. 本文提出一种基于光学显微镜微纳操纵技术的交叉堆叠拱形测试法, 实现了大气环境下纳米线-基底界面黏附能的定量测量. 利用该方法, 成功测定了SiC, ZnO和ZnS纳米线与Si基底之间的界面黏附能. 测试结果显示: SiC纳米线/Si基底的界面黏附能测量值((0.154 ± 0.030) J/m2)与范德瓦耳斯力理论预测值(~0.148 J/m2)吻合良好; 而ZnO纳米线/Si基底((0.120 ± 0.034) J/m2)和ZnS纳米线/Si基底((0.192 ± 0.043) J/m2)的测量值, 则显著高于其对应的范德瓦耳斯理论预测值(分别为~0.090 J/m2和~0.122 J/m2). 分析表明, 这种差异源于ZnO和ZnS表面极化产生的附加静电吸附作用. 本文提出的方法操作简便、准确性高、普适性强, 为研究一维纳米结构与基底间的界面黏附行为提供了一种高效可靠的新途径.Adhesion at the nanowire-substrate interface plays a critical role in determining the performance, integration density, and long-term reliability of micro/nano devices. However, existing measurement techniques, such as peeling tests based on atomic force microscopy and in-situ electron microscopy techniques, often suffer from operational complexity, limited environmental applicability, and large measurement uncertainties. To solve these problems, this study proposes a cross-stacked bridge testing method based on optical microscopy nanomanipulation (OMNM), which can directly and quantitatively measure nanowire–substrate interfacial adhesion energy under ambient conditions. In this method, nanowires are precisely stacked on the target substrate to form a grid structure, where miniature bridges spontaneously appear at the intersections. The bridge geometry is governed by the mechanical balance between nanowire bending deformation and interfacial adhesion. By combining Euler–Bernoulli beam theory with the principle of energy conservation, a quantitative model is established to correlate arch geometry with adhesion energy, thereby realizing reliable measurement. Using this method, we measure the adhesion energies of SiC, ZnO, and ZnS nanowires on Si substrates. The SiC/Si system yields an adhesion energy of (0.154 ± 0.030) J/m2, which is in excellent agreement with the van der Waals (vdW) theoretical value (~0.148 J/m2), confirming that its interfacial behavior is dominated by vdW forces. In contrast, the measured adhesion energies for ZnO/Si ((0.120 ± 0.034) J/m2) and ZnS/Si ((0.192 ± 0.043) J/m2) are significantly higher than their corresponding vdW predictions (0.090 J/m2 and 0.122 J/m2, respectively). This discrepancy is attributed to surface polarization in ZnO and ZnS nanowires, which induces additional electrostatic attraction and thus enhances interfacial adhesion. These findings not only reveal the coupling mechanism between vdW forces and electrostatic interactions in polar nanowire systems but also provide new experimental evidence for understanding complex interfacial phenomena. The proposed OMNM-based cross-stacked bridge testing method offers advantages of operational simplicity, high accuracy, and broad applicability. In addition to nanowires, it can be extended to other low-dimensional nanostructures, such as nanotubes and two-dimensional materials. Looking forward, this approach holds promise as an efficient platform for building adhesion energy databases of realistic systems and for advancing mechanistic insights into interfacial adhesion. Furthermore, it can provide valuable guidance for the design, optimization, and reliability evaluation of next-generation nanoelectronic and optoelectronic devices, thereby contributing to micro/nano fabrication and functional device engineering.
-
Keywords:
- nanowire /
- adhesion energy /
- micro/nanomanipulation /
- van der Waals force
-
图 4 Si基底上SiC纳米线拱形 (a) 拱形的低倍AFM照片; (b) 纳米线横截面的2D AFM照片; (c) 纳米线拱形轮廓的2D AFM照片以及拟合的轮廓曲线; (d), (e) 纳米线拱形的低倍SEM照片和纳米线的高倍SEM图片
Fig. 4. Arched SiC nanowire on Si substrate: (a) Low-magnification AFM image of the arched nanowire; (b) 2D AFM image of the nanowire cross-section; (c) 2D AFM profile of the arched nanowire and the fitted contour curve; (d), (e) low-magnification and high-magnification SEM images of the arched nanowire, respectively.
图 5 大气环境下三种纳米线与Si基底之间的黏附能与纳米线厚度的关系. 图中的三条虚线对应于三种纳米线与Si基底之间的vdW黏附能的理论值
Fig. 5. Relationship between adhesion energy and nanowire thickness for three types of nanowires on Si substrate under ambient conditions. The three dashed lines in the figure correspond to the theoretical values of van der Waals (vdW) adhesion energy between the three types of nanowires and Si substrate.
图 6 Si基底上ZnO纳米线拱形 (a) 拱形的低倍AFM照片; (b) 纳米线拱形轮廓的2D AFM照片以及拟合的轮廓曲线; (c) 纳米线横截面的2D AFM照片; (d) 纳米线的高倍SEM图片
Fig. 6. Arching profile of a ZnO nanowire on a Si substrate: (a) Low-magnification AFM image of the arched nanowire; (b) 2D AFM profile of the arched contour with fitted curve; (c) 2D AFM image of the nanowire cross-section; (d) high-magnification SEM image of the nanowire.
-
[1] Torkashvand Z, Shayeganfar F, Ramazani A 2024 Micromachines 15 175
Google Scholar
[2] Gu J L, Shen Y F, Tian S J, Xue Z G, Meng X H 2023 Biosensors 13 1025
Google Scholar
[3] Kong L D, Zhang T Z, Liu X Y, Zhao X, Xiong J M, Li H, Wang Z, Xie X M, You L X 2025 Nat. Photonics 19 407
Google Scholar
[4] Wu L, Hu Z Y, Liang L, Hu R J, Wang J Z, Yu L W 2025 Nat. Commun. 16 965
Google Scholar
[5] 段聪, 刘俊杰, 陈永杰, 左慧玲, 董健生, 欧阳钢 2024 73 056801
Google Scholar
Duan C, Liu J J, Chen Y J, Zuo H L, Dong J S, Ouyang G 2024 Acta Phys. Sin. 73 056801
Google Scholar
[6] Sunwoo S H, Han S I, Jung D J, Kim M, Nam S, Lee H, Choi S, Kang H, Cho Y S, Yeom D H, Cha M J, Lee S, Lee S P, Hyeon T, Kim D H 2023 ACS Nano 17 7550
Google Scholar
[7] He H L, Qin Y, Liu J R, Wang Y S, Wang J F, Zhao Y H, Zhu Z Y, Jiang Q, Wan Y H, Qu X R, Yu Z C 2023 Chem. Eng. J. 460 141661
Google Scholar
[8] Zhao Z Q, Li Q J, Dong Y, Gong J X, Li Z, Zhang J F 2022 ACS Appl. Mater. Interfaces 14 18884
Google Scholar
[9] Chen C, Wang R, Li X L, Zhao B, Wang H, Zhou Z, Zhu J H, Liu J W 2022 Nano Lett. 22 4131
Google Scholar
[10] Wang K X, Yap L W, Gong S, Wang R, Wang S J, Cheng W L 2021 Adv. Funct. Mater. 31 2008347
Google Scholar
[11] Liu X L, Feng T, Meng X Y, Wen S F, Hou W H, Ding J H, Lin H J, Yue Z F 2023 J. Alloys Compd. 960 170934
Google Scholar
[12] Zhou L, Fu Y W, Yin T, Tian X F, Qi L H 2019 Ceram. Int. 45 22571
Google Scholar
[13] Shah M, Wu Y X, Chen S L, Mead J L, Hou L Z, Liu K, Tao S H, Fatikow S, Wang S L 2025 J. Phys. D: Appl. Phys. 58 083001
Google Scholar
[14] Mead J L, Wang S L, Zimmermann S, Fatikow S, Huang H 2023 Engineering 24 39
Google Scholar
[15] Yibibulla T, Hou L Z, Mead J L, Huang H, fatikow S, Wang S L 2024 Nanoscale Adv. 6 3251
Google Scholar
[16] Zhang W W, Yao Z J, Liu H, Liu J H, Li M Y, Li F Q, Chen H T 2023 Microelectron. Reliab. 151 115236
Google Scholar
[17] Kim J, Choi J S, Lim S, Moon S E, Im J P, Kim J H, Kang S M 2022 Small Struct. 3 2200023
Google Scholar
[18] Li W T, Zhang H, Shi S W, Xu J X, Qin X, He Q Q, Yang K, Dai W B, Liu G, Zhou Q G, Yu H Z, Silva S R, Fahlman M 2020 J. Mater. Chem. C 8 4636
Google Scholar
[19] Jia C C, Lin Z Y, Huang Y, Duan X F 2019 Chem. Rev. 119 9074
Google Scholar
[20] Zhao Y P, Wang L S, Yu T X 2003 J. Adhes. Sci. Technol. 17 519
Google Scholar
[21] He Y, Xu H K, Ouyang G 2022 Chin. Phys. B 31 110502
Google Scholar
[22] Mastrangelo C 1997 Tribol. Lett. 3 223
Google Scholar
[23] Israelachvili J N 2010 Intermolecular and Surface Forces (London, UK: Academic Press
[24] Wei Z X, Lin K, Wang X H, Zhao Y P 2021 Compos. Part A Appl. Sci. Manuf. 150 106592
Google Scholar
[25] Mead J L, Wang S L, Zimmermann S, Huang H 2020 Nanoscale 12 8237
Google Scholar
[26] Klauser W, Nasrullayev T, Fatikow S 2023 J. Vac. Sci. Technol. B 41 052802
Google Scholar
[27] Manoharan M, Haque M 2009 J. Phys. D: Appl. Phys. 42 095304
Google Scholar
[28] Mead J L, Xie H T, Wang S L, Huang H 2018 Nanoscale 10 3410
Google Scholar
[29] Akhtar N, Song X D, Liu R Z, Asif M, Mead J L, Hou L Z, Wang S L 2024 Appl. Phys. Lett. 125 251601
Google Scholar
[30] Sychev D, Schubotz S, Besford Q A, Fery A, Auernhammer G K 2023 J. Colloid Interface Sci. 642 216
Google Scholar
[31] Strus M, Zalamea L, Raman A, Pipes R, Nguyen C, Stach E 2008 Nano Lett. 8 544
Google Scholar
[32] Roenbeck M R, Wei X, Beese A M, Naraghi M, Furmanchuk A o, Paci J T, Schatz G C, Espinosa H D 2014 ACS nano 8 124
Google Scholar
[33] Sui C, Luo Q T, He X D, Tong L Y, Zhang K, Zhang Y Y, Zhang Y, Wu J Y, Wang C 2016 Carbon 107 651
Google Scholar
[34] Kim D, Cha B J, Guo H, Gao G H, Pennington C, Wong M S, Getachew B A, Han Y M 2024 Nano Lett. 24 6038
Google Scholar
[35] Yibibulla T, Jiang Y J, Wang S L, Huang H 2021 Appl. Phys. Lett. 118 043103
Google Scholar
[36] Roy A, Ju S-p, Wang S L, Huang H 2019 Nanotechnology 30 065705
Google Scholar
[37] Ma L, Jiang Y J, Dai G Z, Mead J L, Yibibulla T, Lu M Y, Huang H, Fatikow S, Wang S L 2022 J. Phys. D: Appl. Phys. 55 364001
Google Scholar
[38] Mastrangelo C H, Hsu C H 1992 Technical Digest IEEE Solid-State Sensor and Actuator Workshop Hilton Head, USA, June 22–25, 1992 p208
[39] DelRio F W, de Boer M P, Knapp J A, David Reedy E, Clews P J, Dunn M L 2005 Nat. Mater. 4 629
Google Scholar
[40] DelRio F W, Dunn M L, Phinney L M, Bourdon C J, De Boer M P 2007 Appl. Phys. Lett. 90 163104
Google Scholar
[41] Chen S L, Li W J, Li X X, Yang W Y 2019 Prog. Mater. Sci 104 138
Google Scholar
[42] Ozgur U, Alivov Y I, Liu C, Teke A, Reshchikov M A, Dogan S, Avrutin V, Cho S J, Morkoc H 2005 J. Appl. Phys. 98 041301
Google Scholar
[43] Fang X S, Zhai T Y, Gautam U K, Li L, Wu L M, Bando Y, Golberg D 2011 Prog. Mater. Sci 56 175
Google Scholar
[44] Bergstrom L 1997 Adv. Colloid Interface Sci. 70 125
Google Scholar
计量
- 文章访问数: 268
- PDF下载量: 6
- 被引次数: 0








下载: