搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气环境下纳米线-基底界面黏附能测量的新方法: 交叉堆叠拱形测试*

李金锴 宋小东 侯丽珍 王世良

引用本文:
Citation:

大气环境下纳米线-基底界面黏附能测量的新方法: 交叉堆叠拱形测试*

李金锴, 宋小东, 侯丽珍, 王世良

A novel method of measuring nanowire-substrate interface adhesion energy in ambient atmosphere: Cross-stacked arch testing

LI Jinkai, SONG Xiaodong, HOU Lizhen, WANG Shiliang
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 纳米线-基底界面黏附能对微纳器件的性能至关重要. 然而, 现有测量方法普遍存在操作复杂、误差大等问题. 本文提出一种基于光学显微镜微纳操纵技术的交叉堆叠拱形测试法, 实现了大气环境下纳米线-基底界面黏附能的定量测量. 利用该方法, 成功测定了SiC, ZnO和ZnS纳米线与Si基底之间的界面黏附能. 测试结果显示: SiC纳米线/Si基底的界面黏附能测量值((0.154 ± 0.030) J/m2)与范德瓦耳斯力理论预测值(~0.148 J/m2)吻合良好; 而ZnO纳米线/Si基底((0.120 ± 0.034) J/m2)和ZnS纳米线/Si基底((0.192 ± 0.043) J/m2)的测量值, 则显著高于其对应的范德瓦耳斯理论预测值(分别为~0.090 J/m2和~0.122 J/m2). 分析表明, 这种差异源于ZnO和ZnS表面极化产生的附加静电吸附作用. 本文提出的方法操作简便、准确性高、普适性强, 为研究一维纳米结构与基底间的界面黏附行为提供了一种高效可靠的新途径.
    Adhesion at the nanowire-substrate interface plays a critical role in determining the performance, integration density, and long-term reliability of micro/nano devices. However, existing measurement techniques, such as peeling tests based on atomic force microscopy and in-situ electron microscopy techniques, often suffer from operational complexity, limited environmental applicability, and large measurement uncertainties. To solve these problems, this study proposes a cross-stacked bridge testing method based on optical microscopy nanomanipulation (OMNM), which can directly and quantitatively measure nanowire–substrate interfacial adhesion energy under ambient conditions. In this method, nanowires are precisely stacked on the target substrate to form a grid structure, where miniature bridges spontaneously appear at the intersections. The bridge geometry is governed by the mechanical balance between nanowire bending deformation and interfacial adhesion. By combining Euler–Bernoulli beam theory with the principle of energy conservation, a quantitative model is established to correlate arch geometry with adhesion energy, thereby realizing reliable measurement. Using this method, we measure the adhesion energies of SiC, ZnO, and ZnS nanowires on Si substrates. The SiC/Si system yields an adhesion energy of (0.154 ± 0.030) J/m2, which is in excellent agreement with the van der Waals (vdW) theoretical value (~0.148 J/m2), confirming that its interfacial behavior is dominated by vdW forces. In contrast, the measured adhesion energies for ZnO/Si ((0.120 ± 0.034) J/m2) and ZnS/Si ((0.192 ± 0.043) J/m2) are significantly higher than their corresponding vdW predictions (0.090 J/m2 and 0.122 J/m2, respectively). This discrepancy is attributed to surface polarization in ZnO and ZnS nanowires, which induces additional electrostatic attraction and thus enhances interfacial adhesion. These findings not only reveal the coupling mechanism between vdW forces and electrostatic interactions in polar nanowire systems but also provide new experimental evidence for understanding complex interfacial phenomena. The proposed OMNM-based cross-stacked bridge testing method offers advantages of operational simplicity, high accuracy, and broad applicability. In addition to nanowires, it can be extended to other low-dimensional nanostructures, such as nanotubes and two-dimensional materials. Looking forward, this approach holds promise as an efficient platform for building adhesion energy databases of realistic systems and for advancing mechanistic insights into interfacial adhesion. Furthermore, it can provide valuable guidance for the design, optimization, and reliability evaluation of next-generation nanoelectronic and optoelectronic devices, thereby contributing to micro/nano fabrication and functional device engineering.
  • 图 1  在基底表面通过OM微纳操纵技术构建纳米线网格的示意图

    Fig. 1.  Schematic illustration of nanowire grid fabrication on a substrate via optical microscopy (OM)-based micro/nanomanipulation technique.

    图 2  基底表面的纳米线网格在格点处所形成的微拱形的剖面图

    Fig. 2.  Cross-sectional view of micro-arches formed at the grid points of the nanowire mesh on the substrate.

    图 3  通过OM微纳操纵技术在Si基底表面搭建的SiC纳米线网格 (a) OM照片, (b) SEM图片

    Fig. 3.  SiC nanowire grid assembled on a Si substrate via OM-based micro/nanomanipulation: (a) OM image, (b) SEM image

    图 4  Si基底上SiC纳米线拱形 (a) 拱形的低倍AFM照片; (b) 纳米线横截面的2D AFM照片; (c) 纳米线拱形轮廓的2D AFM照片以及拟合的轮廓曲线; (d), (e) 纳米线拱形的低倍SEM照片和纳米线的高倍SEM图片

    Fig. 4.  Arched SiC nanowire on Si substrate: (a) Low-magnification AFM image of the arched nanowire; (b) 2D AFM image of the nanowire cross-section; (c) 2D AFM profile of the arched nanowire and the fitted contour curve; (d), (e) low-magnification and high-magnification SEM images of the arched nanowire, respectively.

    图 5  大气环境下三种纳米线与Si基底之间的黏附能与纳米线厚度的关系. 图中的三条虚线对应于三种纳米线与Si基底之间的vdW黏附能的理论值

    Fig. 5.  Relationship between adhesion energy and nanowire thickness for three types of nanowires on Si substrate under ambient conditions. The three dashed lines in the figure correspond to the theoretical values of van der Waals (vdW) adhesion energy between the three types of nanowires and Si substrate.

    图 6  Si基底上ZnO纳米线拱形 (a) 拱形的低倍AFM照片; (b) 纳米线拱形轮廓的2D AFM照片以及拟合的轮廓曲线; (c) 纳米线横截面的2D AFM照片; (d) 纳米线的高倍SEM图片

    Fig. 6.  Arching profile of a ZnO nanowire on a Si substrate: (a) Low-magnification AFM image of the arched nanowire; (b) 2D AFM profile of the arched contour with fitted curve; (c) 2D AFM image of the nanowire cross-section; (d) high-magnification SEM image of the nanowire.

    Baidu
  • [1]

    Torkashvand Z, Shayeganfar F, Ramazani A 2024 Micromachines 15 175Google Scholar

    [2]

    Gu J L, Shen Y F, Tian S J, Xue Z G, Meng X H 2023 Biosensors 13 1025Google Scholar

    [3]

    Kong L D, Zhang T Z, Liu X Y, Zhao X, Xiong J M, Li H, Wang Z, Xie X M, You L X 2025 Nat. Photonics 19 407Google Scholar

    [4]

    Wu L, Hu Z Y, Liang L, Hu R J, Wang J Z, Yu L W 2025 Nat. Commun. 16 965Google Scholar

    [5]

    段聪, 刘俊杰, 陈永杰, 左慧玲, 董健生, 欧阳钢 2024 73 056801Google Scholar

    Duan C, Liu J J, Chen Y J, Zuo H L, Dong J S, Ouyang G 2024 Acta Phys. Sin. 73 056801Google Scholar

    [6]

    Sunwoo S H, Han S I, Jung D J, Kim M, Nam S, Lee H, Choi S, Kang H, Cho Y S, Yeom D H, Cha M J, Lee S, Lee S P, Hyeon T, Kim D H 2023 ACS Nano 17 7550Google Scholar

    [7]

    He H L, Qin Y, Liu J R, Wang Y S, Wang J F, Zhao Y H, Zhu Z Y, Jiang Q, Wan Y H, Qu X R, Yu Z C 2023 Chem. Eng. J. 460 141661Google Scholar

    [8]

    Zhao Z Q, Li Q J, Dong Y, Gong J X, Li Z, Zhang J F 2022 ACS Appl. Mater. Interfaces 14 18884Google Scholar

    [9]

    Chen C, Wang R, Li X L, Zhao B, Wang H, Zhou Z, Zhu J H, Liu J W 2022 Nano Lett. 22 4131Google Scholar

    [10]

    Wang K X, Yap L W, Gong S, Wang R, Wang S J, Cheng W L 2021 Adv. Funct. Mater. 31 2008347Google Scholar

    [11]

    Liu X L, Feng T, Meng X Y, Wen S F, Hou W H, Ding J H, Lin H J, Yue Z F 2023 J. Alloys Compd. 960 170934Google Scholar

    [12]

    Zhou L, Fu Y W, Yin T, Tian X F, Qi L H 2019 Ceram. Int. 45 22571Google Scholar

    [13]

    Shah M, Wu Y X, Chen S L, Mead J L, Hou L Z, Liu K, Tao S H, Fatikow S, Wang S L 2025 J. Phys. D: Appl. Phys. 58 083001Google Scholar

    [14]

    Mead J L, Wang S L, Zimmermann S, Fatikow S, Huang H 2023 Engineering 24 39Google Scholar

    [15]

    Yibibulla T, Hou L Z, Mead J L, Huang H, fatikow S, Wang S L 2024 Nanoscale Adv. 6 3251Google Scholar

    [16]

    Zhang W W, Yao Z J, Liu H, Liu J H, Li M Y, Li F Q, Chen H T 2023 Microelectron. Reliab. 151 115236Google Scholar

    [17]

    Kim J, Choi J S, Lim S, Moon S E, Im J P, Kim J H, Kang S M 2022 Small Struct. 3 2200023Google Scholar

    [18]

    Li W T, Zhang H, Shi S W, Xu J X, Qin X, He Q Q, Yang K, Dai W B, Liu G, Zhou Q G, Yu H Z, Silva S R, Fahlman M 2020 J. Mater. Chem. C 8 4636Google Scholar

    [19]

    Jia C C, Lin Z Y, Huang Y, Duan X F 2019 Chem. Rev. 119 9074Google Scholar

    [20]

    Zhao Y P, Wang L S, Yu T X 2003 J. Adhes. Sci. Technol. 17 519Google Scholar

    [21]

    He Y, Xu H K, Ouyang G 2022 Chin. Phys. B 31 110502Google Scholar

    [22]

    Mastrangelo C 1997 Tribol. Lett. 3 223Google Scholar

    [23]

    Israelachvili J N 2010 Intermolecular and Surface Forces (London, UK: Academic Press

    [24]

    Wei Z X, Lin K, Wang X H, Zhao Y P 2021 Compos. Part A Appl. Sci. Manuf. 150 106592Google Scholar

    [25]

    Mead J L, Wang S L, Zimmermann S, Huang H 2020 Nanoscale 12 8237Google Scholar

    [26]

    Klauser W, Nasrullayev T, Fatikow S 2023 J. Vac. Sci. Technol. B 41 052802Google Scholar

    [27]

    Manoharan M, Haque M 2009 J. Phys. D: Appl. Phys. 42 095304Google Scholar

    [28]

    Mead J L, Xie H T, Wang S L, Huang H 2018 Nanoscale 10 3410Google Scholar

    [29]

    Akhtar N, Song X D, Liu R Z, Asif M, Mead J L, Hou L Z, Wang S L 2024 Appl. Phys. Lett. 125 251601Google Scholar

    [30]

    Sychev D, Schubotz S, Besford Q A, Fery A, Auernhammer G K 2023 J. Colloid Interface Sci. 642 216Google Scholar

    [31]

    Strus M, Zalamea L, Raman A, Pipes R, Nguyen C, Stach E 2008 Nano Lett. 8 544Google Scholar

    [32]

    Roenbeck M R, Wei X, Beese A M, Naraghi M, Furmanchuk A o, Paci J T, Schatz G C, Espinosa H D 2014 ACS nano 8 124Google Scholar

    [33]

    Sui C, Luo Q T, He X D, Tong L Y, Zhang K, Zhang Y Y, Zhang Y, Wu J Y, Wang C 2016 Carbon 107 651Google Scholar

    [34]

    Kim D, Cha B J, Guo H, Gao G H, Pennington C, Wong M S, Getachew B A, Han Y M 2024 Nano Lett. 24 6038Google Scholar

    [35]

    Yibibulla T, Jiang Y J, Wang S L, Huang H 2021 Appl. Phys. Lett. 118 043103Google Scholar

    [36]

    Roy A, Ju S-p, Wang S L, Huang H 2019 Nanotechnology 30 065705Google Scholar

    [37]

    Ma L, Jiang Y J, Dai G Z, Mead J L, Yibibulla T, Lu M Y, Huang H, Fatikow S, Wang S L 2022 J. Phys. D: Appl. Phys. 55 364001Google Scholar

    [38]

    Mastrangelo C H, Hsu C H 1992 Technical Digest IEEE Solid-State Sensor and Actuator Workshop Hilton Head, USA, June 22–25, 1992 p208

    [39]

    DelRio F W, de Boer M P, Knapp J A, David Reedy E, Clews P J, Dunn M L 2005 Nat. Mater. 4 629Google Scholar

    [40]

    DelRio F W, Dunn M L, Phinney L M, Bourdon C J, De Boer M P 2007 Appl. Phys. Lett. 90 163104Google Scholar

    [41]

    Chen S L, Li W J, Li X X, Yang W Y 2019 Prog. Mater. Sci 104 138Google Scholar

    [42]

    Ozgur U, Alivov Y I, Liu C, Teke A, Reshchikov M A, Dogan S, Avrutin V, Cho S J, Morkoc H 2005 J. Appl. Phys. 98 041301Google Scholar

    [43]

    Fang X S, Zhai T Y, Gautam U K, Li L, Wu L M, Bando Y, Golberg D 2011 Prog. Mater. Sci 56 175Google Scholar

    [44]

    Bergstrom L 1997 Adv. Colloid Interface Sci. 70 125Google Scholar

  • [1] 殷雪彤, 廖敦渊, 潘东, 王鹏, 刘冰冰. 高压下GaAsSb纳米线室温光致发光特性研究.  , doi: 10.7498/aps.74.20250042
    [2] 尚帅朋, 陆勇俊, 王峰会. 表面效应对纳米线电极屈曲失稳的影响.  , doi: 10.7498/aps.71.20211864
    [3] 高凤菊. 弯曲Cu纳米线相干X射线衍射图的计算.  , doi: 10.7498/aps.64.138102
    [4] 李静, 冯妍卉, 张欣欣, 黄丛亮, 杨穆. 考虑界面散射的金属纳米线热导率修正.  , doi: 10.7498/aps.62.186501
    [5] 周渝, 张蜡宝, 郏涛, 赵清源, 顾敏, 邱健, 康琳, 陈健, 吴培亨. 超导纳米线多光子响应特性研究.  , doi: 10.7498/aps.61.208501
    [6] 周国荣, 滕新营, 王艳, 耿浩然, 许甫宁. 尺寸效应对Al纳米线凝固行为的影响.  , doi: 10.7498/aps.61.066101
    [7] 张蜡宝, 康琳, 陈健, 赵清源, 郏涛, 许伟伟, 曹春海, 金飚兵, 吴培亨. 超导纳米线单光子探测器.  , doi: 10.7498/aps.60.038501
    [8] 张富春, 张威虎, 董军堂, 张志勇. Cr掺杂ZnO纳米线的电子结构和磁性.  , doi: 10.7498/aps.60.127503
    [9] 孟利军, 肖化平, 唐超, 张凯旺, 钟建新. 碳纳米管-硅纳米线复合结构的形成和热稳定性.  , doi: 10.7498/aps.58.7781
    [10] 徐振海, 袁林, 单德彬, 郭斌. 单晶铜纳米线屈服机理的原子模拟研究.  , doi: 10.7498/aps.58.4835
    [11] 张凯旺, 孟利军, 李 俊, 刘文亮, 唐 翌, 钟建新. 碳纳米管内金纳米线的结构与热稳定性.  , doi: 10.7498/aps.57.4347
    [12] 吕惠民, 陈光德, 颜国君, 耶红刚. 低温条件下单晶氮化铝纳米线生长机理的研究.  , doi: 10.7498/aps.56.2808
    [13] 杨 炯, 张文清. Se,Te纳米线系统的结构稳定性研究.  , doi: 10.7498/aps.56.4017
    [14] 雷 达, 曾乐勇, 夏玉学, 陈 松, 梁静秋, 王维彪. 带栅极纳米线冷阴极的场增强因子研究.  , doi: 10.7498/aps.56.6616
    [15] 胡利勤, 林志贤, 郭太良, 姚 亮, 王晶晶, 杨春建, 张永爱, 郑可炉. 取向和非取向In2O3纳米线的场发射研究.  , doi: 10.7498/aps.55.6136
    [16] 袁淑娟, 周仕明, 鹿 牧. Ni纳米线阵列的铁磁共振研究.  , doi: 10.7498/aps.55.891
    [17] 李志杰, 潘学铃, 孙维民, 曲家惠, 王 福. Al3O3N纳米线的制备与表征.  , doi: 10.7498/aps.54.450
    [18] 孟凡斌, 胡海宁, 李养贤, 陈贵锋, 陈京兰, 吴光恒. 一维Co单晶纳米线的x射线研究.  , doi: 10.7498/aps.54.384
    [19] 孙劲鹏, 王太宏. 一种基于碳纳米管的随机存储器.  , doi: 10.7498/aps.51.2096
    [20] 肖君军, 孙超, 薛德胜, 李发伸. 铁纳米线磁行为的微磁学模拟与研究.  , doi: 10.7498/aps.50.1605
计量
  • 文章访问数:  268
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-04
  • 修回日期:  2025-09-16
  • 上网日期:  2025-09-24

/

返回文章
返回
Baidu
map