-
地基激光干涉引力波探测器不仅首次发现引力波、开创了一个观测天文学的全新分支—引力波天文学, 同时也是物理学相关领域前沿科学与先进技术的成功典范. 为了实现引力波探测的目标, 使引力波成为一个常态化的天文观测手段, 全球主要地基引力波探测器经历了持续数十年的技术升级与改造. 本文重点介绍LIGO、Virgo和KAGRA等探测器的升级历程, 详细分析了其关键技术改进, 包括激光功率增强、悬挂与隔振系统优化以及量子噪声抑制等方面进展. 这些技术进步显著提升了探测器在10至几千赫兹的灵敏度, 使其成功探测到数以百计的致密天体并合引力波信号. 展望未来, 第三代地基引力波探测器的建设将大幅度拓展引力波的探测能力, 为物理学和天文学研究开辟新的视野.Gravitational wave astronomy has rapidly developed into a powerful means of probing compact objects and understanding the evolution of the Universe. To improve sensitivity and extend the detection band, ground-based laser interferometers such as LIGO, Virgo, and KAGRA have undergone continuous upgrades. This review summarizes their systematic development with an emphasis on noise sources and mitigation strategies. After outlining the principle of gravitational wave detection with laser interferometry, we analyze dominant noise sources including quantum vacuum fluctuations, thermal noise, and seismic disturbances, and introduce techniques such as frequency-dependent squeezed light, advanced seismic isolation, multi-stage suspensions, and cryogenic mirrors. For LIGO, we highlight the transition from the Initial to Advanced configurations, which enabled strain sensitivities of the order of $10^{-24}/\sqrt{\text{Hz}}$ and led directly to the first detection GW150914 and over one hundred subsequent events during O1 to O4. The unique superattenuator system of Virgo and its recent implementation of squeezed light, as well as the underground design of KAGRA and the use of cryogenic sapphire test masses, represent different approaches to suppress low-frequency and thermal noise. In addition, we compare the technical routes adopted by different detectors and summarize the lessons learned from their upgrades, which provide valuable guidance for future detector designs. Finally, we present next-generation projects, including LIGO Voyager, the Cosmic Explorer and the Einstein Telescope, which aim to achieve up to orders of magnitude improvements in sensitivity and provide new research opportunities for gravitational-wave cosmology and fundamental physics. Overall, the evolution of detector technologies has been the key driver of progress in gravitational wave astronomy, and the forthcoming facilities will transform our ability to explore the Universe.
-
Keywords:
- gravitational wave /
- laser interferometer /
- ground-based gravitational wave detection /
- astrophysics
-
图 2 Advanced LIGO噪声灵敏度曲线由引力波探测器噪声计算器Gwinc给出. (https://git.ligo.org/gwinc/pygwinc)
Fig. 2. Advanced LIGO noise budget, given by gravitational wave interferometer noise calculator Gwinc (https://git.ligo.org/gwinc/pygwinc).
图 3 LIGO鸟瞰图[39]
Fig. 3. Aerial view of LIGO.
图 4 LIGO激光系统中的环形振荡器[39]
Fig. 4. the ring oscillator in the LIGO laser system.
图 5 LIGO部分输入光学组件的悬挂系统[39]
Fig. 5. the suspension system of some input optical components of LIGO.
图 6 初代LIGO和Advanced LIGO应变灵敏度对比. 数据来源: https://gwosc.org/data/
Fig. 6. Strain Sensitivity Comparison between Initial LIGO and Advanced LIGO. Data sources: https://gwosc.org/data/
图 8 LIGO Hanford在O4前调试期间的应变灵敏度曲线[19]
Fig. 8. Strain sensitivity of the LIGO Hanford measured during the pre-O4 commissioning phase.
图 9 Virgo鸟瞰图[82]
Fig. 9. Aerial view of Virgo.
图 10 Virgo采用的熔融石英材料的镜面悬挂丝[87]
Fig. 10. Mirror suspension of fused silica fibers.
图 11 KAGRA鸟瞰图[95]
Fig. 11. Aerial view of KAGRA.
图 12 KAGRA悬挂系统的示意图[99]
Fig. 12. Schematic diagram of KAGRA suspension system.
图 14 第二代与第三代引力波探测器应变灵敏度对比. 数据来源: https://git.ligo.org/gwinc/pygwinc, https://www.et-gw.eu/index.php/etsensitivities
Fig. 14. Comparison of sensitivity curves for second and third generation gravitational wave detectors. Data sources: https://git.ligo.org/gwinc/pygwinc, https://www.et-gw.eu/index.php/etsensitivities
表 1 初代LIGO(S1阶段)与Advanced LIGO的主要参数
Table 1. Key Parameters of Initial LIGO (S1 Phase) and Advanced LIGO.
参数 Initial LIGO (S1) Advanced LIGO 臂长 3995 m 3995 m 臂腔精细度 220 450 激光种类及波长 Nd:YAG, $ \lambda = 1064\ {\rm{nm}} $ Nd:YAG, $ \lambda = 1064\ {\rm{nm}} $ 功率循环镜处的输入功率 4.5 W 125 W 测试质量所用材料 熔融石英 熔融石英 测试质量尺寸及质量 直径25 cm, 厚度10 cm, 质量10.7 kg 直径34 cm, 厚度20 cm, 质量 40 kg 光束半径 ITM/ETM 3.9 cm / 4.5 cm 5.3 cm / 6.2 cm 输入清模器长度及精细度 24 m, 1350 32.9 m, 500 循环腔长度 PRC/SRC 9 m / - 57.6 m / 56.0 m 注1: ITM 表示输入测试质量, ETM 表示末端测试质量; PRC 为功率循环腔, SRC 为信号循环腔 -
[1] Einstein A 1915 Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 831 1915
[2] Danzmann K, Team L S, et al 1996 Class. Quantum Grav. 13 A247
Google Scholar
[3] Luo J, Chen L S, Duan H Z, Gong Y G, Hu S, Ji J, Liu Q, Mei J, Milyukov V, Sazhin M, et al 2016 Class. Quantum Grav. 33 035010
Google Scholar
[4] Luo Z, Guo Z, Jin G, Wu Y, Hu W 2020 Results Phys. 16 102918
Google Scholar
[5] Weber J 1969 Phys. Rev. Lett. 22 1320
Google Scholar
[6] Whitcomb S E 2008 Class. Quantum Grav. 25 114013
Google Scholar
[7] Chen C M, Nester J M, Ni W T 2017 Chin. J. Phys. 55 142
Google Scholar
[8] Sigg D, for the LIGO Science Collaboration, et al 2006 Class. Quantum Grav. 23 S51
Google Scholar
[9] Acernese F, Amico P, Arnaud N, Babusci D, Ballardin G, Barille R, Barone F, Barsuglia M, Beauville F, Bellachia F, et al 2003 Class. Quantum Grav. 20 S609
Google Scholar
[10] Somiya K, KAGRA Collaboration, et al 2012 Class. Quantum Grav. 29 124007
Google Scholar
[11] Saulson P R 1994 Fundamentals of interferometric gravitational wave detectors (World Scientific
[12] Harms J, Chen Y, Chelkowski S, Franzen A, Vahlbruch H, Danzmann K, Schnabel R 2003 Phys. Rev. D 68 042001
Google Scholar
[13] Harms J, Venkateswara K 2016 Class. Quantum Grav. 33 234001
Google Scholar
[14] Trozzo L, Badaracco F 2022 Galaxies 10 20
Google Scholar
[15] Harms J, Slagmolen B J, Adhikari R X, Miller M C, Evans M, Chen Y, Müller H, Ando M 2013 Phys. Rev. D 88 122003
Google Scholar
[16] Driggers J C, Harms J, Adhikari R X 2012 Phys. Rev. D 86 102001
Google Scholar
[17] Creighton J D, Anderson W G 2012 Gravitational-wave physics and astronomy: An introduction to theory, experiment and data analysis (John Wiley & Sons
[18] M C 1981 Phys. Rev. D 23 1693
Google Scholar
[19] Ganapathy D, Jia W, Nakano M, Xu V, Aritomi N, Cullen T, Kijbunchoo N, Dwyer S, Mullavey A, McCuller L, et al 2023 Phys. Rev. X 13 041021
[20] LIGO Scientific Collaboration 2011 Nat. Phys. 7 962
Google Scholar
[21] Yu H, McCuller L, Tse M, Kijbunchoo N, Barsotti L, Mavalvala N 2020 Nature 583 43
Google Scholar
[22] Shapiro B, Adhikari R X, Aguiar O, Bonilla E, Fan D, Gan L, Gomez I, Khandelwal S, Lantz B, MacDonald T, et al 2017 Cryogenics 81 83
Google Scholar
[23] Saulson P R 1990 Phys. Rev. D 42 2437
Google Scholar
[24] Hammond G, Cumming A, Hough J, Kumar R, Tokmakov K, Reid S, Rowan S 2012 Class. Quantum Grav. 29 124009
Google Scholar
[25] Cumming A, Bell A, Barsotti L, Barton M, Cagnoli G, Cook D, Cunningham L, Evans M, Hammond G, Harry G, et al 2012 Class. Quantum Grav. 29 035003
Google Scholar
[26] Harry G M, Gretarsson A M, Saulson P R, Kittelberger S E, Penn S D, Startin W J, Rowan S, Fejer M M, Crooks D, Cagnoli G, et al 2002 Class. Quantum Grav. 19 897
Google Scholar
[27] Hong T, Yang H, Gustafson E K, Adhikari R X, Chen Y 2013 Phys. Rev. D 87 082001
Google Scholar
[28] Cole G D, Zhang W, Martin M J, Ye J, Aspelmeyer M 2013 Nat. Photonics 7 644
Google Scholar
[29] Kondratiev N, Gurkovsky A, Gorodetsky M 2011 Phys. Rev. D 84 022001
Google Scholar
[30] Zhou R, Molina-Ruiz M, Hellman F 2023 Class. Quantum Grav. 40 144001
Google Scholar
[31] E Z M, E W S 1996 In Proceedings of the Seventh Marcel Grossman Meeting on recent developments in theoretical and experimental general relativity, gravitation, and relativistic field theories (Springer-Verlag, Berlin), p 1434
[32] Aasi J, Abbott B, Abbott R, Abbott T, Abernathy M, Ackley K, Adams C, Adams T, Addesso P, Adhikari R, et al 2015 Class. Quantum Grav. 32 074001
Google Scholar
[33] Abramovici A, Althouse W E, Drever R W, Gürsel Y, Kawamura S, Raab F J, Shoemaker D, Sievers L, Spero R E, Thorne K S, et al 1992 science 256 325
Google Scholar
[34] Accadia T, Acernese F, Antonucci F, Astone P, Ballardin G, Barone F, Barsuglia M, Basti A, Bauer T S, Bebronne M, et al 2011 Class. Quantum Grav. 28 114002
Google Scholar
[35] Willke B, Aufmuth P, Aulbert C, Babak S, Balasubramanian R, Barr B, Berukoff S, Bose S, Cagnoli G, Casey M M, et al 2002 Class. Quantum Grav. 19 1377
Google Scholar
[36] Takahashi R, collaboration T, et al 2004 Class. Quantum Grav. 21 S403
Google Scholar
[37] Acernese F, Agathos M, Agatsuma K, Aisa D, Allemandou N, Allocca A, Amarni J, Astone P, Balestri G, Ballardin G, et al 2014 Class. Quantum Grav. 32 024001
[38] KAGRA Collaboration 2019 Nat. Astron. 3 35
Google Scholar
[39] LIGO Scientific Collaboration 2024. https://www.ligo.caltech.edu
[40] Abbott B, Abbott R, Adhikari R, Ageev A, Allen B, Amin R, Anderson S, Anderson W, Araya M, Armandula H, et al 2004 Nucl. Instrum. Methods Phys. Res. 517 154
Google Scholar
[41] Adhikari R X, González G, Landry M, O’Reilly B 2003 Class. Quantum Grav. 20
[42] Abbott B, Abbott R, Adhikari R, Ageev A, Agresti J, Allen B, Allen J, Amin R, Anderson S, Anderson W, et al 2005 Phys. Rev. D 72 062001
Google Scholar
[43] Aasi J, Abadie J, Abbott B, Abbott R, Abbott T, Abernathy M, Accadia T, Acernese F, Adams C, Adams T, et al 2015 Class. Quantum Grav. 32 115012
Google Scholar
[44] Ballmer S, Frolov V, Lawrence R, Kells W, Moreno G, Mason K, Ottaway D, Smith M, Vorvick C, Willems P, et al. 2005 LIGO-Document: LIGO-T050064-00-R
[45] Fritschel P, Bork R, González G, Mavalvala N, Ouimette D, Rong H, Sigg D, Zucker M 2001 Appl. Opt. 40 4988
Google Scholar
[46] Fricke T T, Smith-Lefebvre N D, Abbott R, Adhikari R, Dooley K L, Evans M, Fritschel P, Frolov V V, Kawabe K, Kissel J S, et al 2012 Class. Quantum Grav. 29 065005
Google Scholar
[47] Driggers J, Frolov V, Atkinson D, Miao H, Landry M, Adhikari R, DeRosa R 2010 LIGO-Document: LIGO-P1000088
Driggers J, Frolov V, Atkinson D, Miao H, Landry M, Adhikari R, DeRosa R 2010 LIGO-Document: LIGO-P1000088
[48] Schofield 2010 LIGO-Document:LIGO-G1000923
Schofield 2010 LIGO-Document:LIGO-G1000923
[49] Smith N D 2012 Techniques for improving the readout sensitivity of gravitational wave antennae. Ph.d. dissertation, (Cambridge, MA: Massachusetts Institute of Technology
[50] Abbott B P, Abbott R, Abbott T, Abernathy M, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari R X, et al 2016 Phys. Rev. Lett. 116 061102
Google Scholar
[51] Somiya K, Chen Y, Kawamura S, Mio N 2006 Phys. Rev. D 73 122005
Google Scholar
[52] Kwee P, Bogan C, Danzmann K, Frede M, Kim H, King P, Pld J, Puncken O, Savage R L, Seifert F, et al 2012 Opt. Express 20 10617
Google Scholar
[53] P F 2003 In Gravitational-Wave Detection, vol. 4856. p 282. (SPIE
[54] Gretarsson A M, Harry G M, Penn S D, Saulson P R, Startin W J, Rowan S, Cagnoli G, Hough J 2000 Phys. Lett. A 270 108
Google Scholar
[55] Matichard F, Lantz B, Mittleman R, Mason K, Kissel J, Abbott B, Biscans S, McIver J, Abbott R, Abbott S, et al 2015 Class. Quantum Grav. 32 185003
Google Scholar
[56] De Rosa R, Garufi F, Milano L, Mosca S, Persichetti G 2010 In Journal of Physics: Conference Series, vol. 228 (IOP Publishing), p 012018
[57] Martynov D V, Hall E, Abbott B, Abbott R, Abbott T, Adams C, Adhikari R, Anderson R, Anderson S, Arai K, et al 2016 Phys. Rev. D 93 112004
Google Scholar
[58] Evans M, Gras S, Fritschel P, Miller J, Barsotti L, Martynov D, Brooks A, Coyne D, Abbott R, Adhikari R X, et al 2015 Phys. Rev. Lett. 114 161102
Google Scholar
[59] Braginsky V B, Strigin S E, Vyatchanin S P 2002 Phys. Lett. A 305 111
Google Scholar
[60] Abbott B, Abbott R, Abbott T, Abernathy M, Acernese F, Ackley K, et al 2016 Class. Quantum Grav. 33 134001
Google Scholar
[61] Abbott B P, Abbott R, Abbott T D, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari R X, Adya V B, et al 2017 Phys. Rev. D 96 062002
Google Scholar
[62] Abbott B P, Abbott R, Abbott T, Abraham S, Acernese F, Ackley K, Adams C, Adhikari R, Adya V, Affeldt C, et al 2019 Phys. Rev. X 9 031040
[63] Davis D, Massinger T, Lundgren A, Driggers J C, Urban A L, Nuttall L 2019 Class. Quantum Grav. 36 055011
Google Scholar
[64] Abbott B P, Abbott R, Abbott T, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari R X, Adya V B, et al 2017 Phys. Rev. Lett. 119 161101
Google Scholar
[65] Biscans S, Gras S, Blair C, Driggers J, Evans M, Fritschel P, Hardwick T, Mansell G 2019 Phys. Rev. D 100 122003
Google Scholar
[66] Mow-Lowry C M, Martynov D 2019 Class. Quantum Grav. 36 245006
Google Scholar
[67] Aasi J, Abadie J, Abbott B, Abbott R, Abbott T, Abernathy M, Adams C, Adams T, Addesso P, Adhikari R, et al 2013 Nat. Photonics 7 613
Google Scholar
[68] Zhao Y, Aritomi N, Capocasa E, Leonardi M, Eisenmann M, Guo Y, Polini E, Tomura A, Arai K, Aso Y, et al 2020 Phys. Rev. Lett. 124 171101
Google Scholar
[69] Dwyer S E 2013 Quantum noise reduction using squeezed states in LIGO. Ph.D. Dissertation, (Cambridge, MA: Massachusetts Institute of Technology
[70] Billingsley G, Yamamoto H, Zhang L 2017 ASPE 66 78
[71] Brooks A F, Vajente G, Yamamoto H, Abbott R, Adams C, Adhikari R X, Ananyeva A, Appert S, Arai K, Areeda J S, et al 2021 Appl. Opt. 60 4047
Google Scholar
[72] Abbott R, Abbott T, Abraham S, Acernese F, Ackley K, Adams A, Adams C, Adhikari R, Adya V, Affeldt C, et al 2021 Phys. Rev. X 11 021053
[73] Dolesi R, Hueller M, Nicolodi D, Tombolato D, Vitale S, Wass P, Weber W J, Evans M, Fritschel P, Weiss R, et al 2011 Phys. Rev. D 84 063007
Google Scholar
[74] Mitrofanov V, Prokhorov L, Tokmakov K, Willems P 2004 Class. Quantum Grav. 21 S1083
Google Scholar
[75] Abbott R, Abbott T, Acernese F, Ackley K, Adams C, Adhikari N, Adhikari R, Adya V, Affeldt C, Agarwal D, et al 2023 Phys. Rev. X 13 041039
[76] Capote E, Jia W, Aritomi N, Nakano M, Xu V, Abbott R, Abouelfettouh I, Adhikari R, Ananyeva A, Appert S, et al 2025 Phys. Rev. D 111 062002
Google Scholar
[77] Buikema A, Cahillane C, Mansell G, Blair C, Abbott R, Adams C, Adhikari R, Ananyeva A, Appert S, Arai K, et al 2020 Phys. Rev. D 102 062003
Google Scholar
[78] Soni S, Berger B, Davis D, Di Renzo F, Effler A, Ferreira T, Glanzer J, Goetz E, González G, Helmling-Cornell A, et al 2025 Class. Quantum Grav. 42 085016
Google Scholar
[79] Jia W, Xu V, Kuns K, Nakano M, Barsotti L, Evans M, Mavalvala N, Collaboration† L S, Abbott R, Abouelfettouh I, et al 2024 Science 385 1318
Google Scholar
[80] Collaboration L S 2022 LIGO-Document: LIGO-T2200287-v2
Collaboration L S 2022 LIGO-Document: LIGO-T2200287-v2
[81] Abbott B, Abbott R, Adhikari R, Ajith P, Allen B, Allen G, Amin R, Anderson S, Anderson W, Arain M, et al 2009 Rep. Prog. Phys. 72 076901
Google Scholar
[82] Virgo Collaboration 2024. https://www.virgo-gw.eu
[83] Acernese F, Alshourbagy M, Amico P, Antonucci F, Aoudia S, Arun K, Astone P, Avino S, Baggio L, Ballardin G, et al 2008 Class. Quantum Grav. 25 184001
Google Scholar
[84] Accadia T, Swinkels B, forthe VIRGO Collaboration, et al 2010 Class. Quantum Grav. 27 084002
Google Scholar
[85] Braccini S, Barsotti L, Bradaschia C, Cella G, Di Virgilio A, Ferrante I, Fidecaro F, Fiori I, Frasconi F, Gennai A, et al 2005 Astropart. Phys. 23 557
Google Scholar
[86] Lorenzini M, on behalf ofthe Virgo Collaboration, et al 2010 Class. Quantum Grav. 27 084021
Google Scholar
[87] Bersanetti D, Patricelli B, Piccinni O J, Piergiovanni F, Salemi F, Sequino V 2021 Universe 7 322
Google Scholar
[88] Di Pace S, Collaboration V, et al 2021 Phys. Scr. 96 124054
Google Scholar
[89] Naticchioni L, Collaboration V, et al. 2018 In Journal of Physics: Conference Series, vol. 957 (IOP Publishing), p 012002
[90] Rocchi A, Coccia E, Fafone V, Malvezzi V, Minenkov Y, Sperandio L 2012 In Journal of Physics: Conference Series, vol. 363 (IOP Publishing), p 012016
[91] De Rossi C, Brooks J, Casanueva Diaz J, Chiummo A, Genin E, Gosselin M, Leroy N, Mantovani M, Montanari B, Nocera F, Pillant G 2020 Galaxies 8 87
Google Scholar
[92] Collette C, Boudart V, Cudell J R, Collaboration L S, Collaboration V, et al. 2023 In yes (Institute of Physics
[93] Garufi F 2024 Ground-based and Airborne Telescopes X 13094 573
[94] Acernese F, Agathos M, Ain A, Albanesi S, Alléné C, Allocca A, Amato A, Andia M, Andrade T, Andres N, et al. 2023 In J. Phys.: Conf. Ser., vol. 2429 (IOP Publishing), p 012040
[95] KAGRA Collaboration 2024. https://gwcenter.icrr.u-tokyo.ac.jp
[96] Wang H, Aso Y, Leonardi M, Eisenmann M, Hirose E, Billingsley G, Kokeyama K, Ushiba T, Tamaki M, Michimura Y 2024 Phys. Rev. D 110 082007
Google Scholar
[97] Michimura Y, Wang H, Salces-Carcoba F, Wipf C, Brooks A, Arai K, Adhikari R X 2024 Phys. Rev. D 109 022009
Google Scholar
[98] Y I, Collaboration K 2024 In 38 th International Cosmic Ray Conference. p 1555
[99] Akiyama Y, Akutsu T, Ando M, Arai K, Arai Y, Araki S, Araya A, Aritomi N, Asada H, Aso Y, et al 2019 Class. Quantum Grav. 36 095015
Google Scholar
[100] Abac A, Abbott R, Abouelfettouh I, Acernese F, Ackley K, Adhicary S, Adhikari N, Adhikari R, Adkins V, Agarwal D, et al. 2024 arXiv: 2410.16565[astro-ph.HE]
[101] Akutsu T, Ando M, Aoumi M, Araya A, Aso Y, Baiotti L, Bajpai R, Cannon K, Chen A Y, Chen D, et al. 2025 arXiv: 2508.03392[astro-ph.HE]
[102] Adhikari R X, Arai K, Brooks A, Wipf C, Aguiar O, Altin P, Barr B, Barsotti L, Bassiri R, Bell A, et al 2020 Class. Quantum Grav. 37 165003
Google Scholar
[103] Adhikari R, Arai K, Brooks A, Salces-Carcoba F, Wipf C 2023 LIGO-Document: LIGO-G1601461
[104] Team L V 2016 LIGO-Document: LIGO-G1602258-v1
[105] Adhikari R X, Brooks A 2024 LIGO-Document: LIGO-T1400226
[106] Hall E D 2022 Galaxies 10 90
Google Scholar
[107] Reitze D, Adhikari R X, Ballmer S, Barish B, Barsotti L, Billingsley G, Brown D A, Chen Y, Coyne D, Eisenstein R, et al. 2019 arXiv: 1907.04833
[108] Evans M, Adhikari R X, Afle C, Ballmer S W, Biscoveanu S, Borhanian S, Brown D A, Chen Y, Eisenstein R, Gruson A, et al. 2021 arXiv: 2109.09882
[109] Branchesi M, Maggiore M, Alonso D, Badger C, Banerjee B, Beirnaert F, Belgacem E, Bhagwat S, Boileau G, Borhanian S, et al 2023 JCAP 2023 068
[110] Committee E S 2020 ET-Document: Design Report Update 2020 Technical Report
[111] Brown D D, Miao H, Collins C, Mow-Lowry C, Tyr D, Freise A 2017 Phys. Rev. D 96 062003
Google Scholar
计量
- 文章访问数: 436
- PDF下载量: 13
- 被引次数: 0