搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地基激光干涉引力波探测器的升级与改造

黄小曼 刘见 郭越凡 马怡秋 马宇波 王浩宇 王梦瑶 吴斌 杨圣 尤志强 张帆 张腾 肇宇航 朱兴江

引用本文:
Citation:

地基激光干涉引力波探测器的升级与改造

黄小曼, 刘见, 郭越凡, 马怡秋, 马宇波, 王浩宇, 王梦瑶, 吴斌, 杨圣, 尤志强, 张帆, 张腾, 肇宇航, 朱兴江

Upgrades andimprovements of laser interferometric gravitational wave detectors

HUANG Xiaoman, LIU Jian, GUO Yuefan, MA Yiqiu, MA Yubo, WANG Haoyu, WANG Mengyao, WU Bin, YANG Sheng, YOU Zhiqiang, ZHANG Fan, ZHANG Teng, ZHAO Yuhang, ZHU Xingjiang
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 地基激光干涉引力波探测器不仅首次发现引力波、开创了一个观测天文学的全新分支—引力波天文学, 同时也是物理学相关领域前沿科学与先进技术的成功典范. 为了实现引力波探测的目标, 使引力波成为一个常态化的天文观测手段, 全球主要地基引力波探测器经历了持续数十年的技术升级与改造. 本文重点介绍LIGO、Virgo和KAGRA等探测器的升级历程, 详细分析了其关键技术改进, 包括激光功率增强、悬挂与隔振系统优化以及量子噪声抑制等方面进展. 这些技术进步显著提升了探测器在10至几千赫兹的灵敏度, 使其成功探测到数以百计的致密天体并合引力波信号. 展望未来, 第三代地基引力波探测器的建设将大幅度拓展引力波的探测能力, 为物理学和天文学研究开辟新的视野.
    Gravitational wave astronomy has rapidly developed into a powerful means of probing compact objects and understanding the evolution of the Universe. To improve sensitivity and extend the detection band, ground-based laser interferometers such as LIGO, Virgo, and KAGRA have undergone continuous upgrades. This review summarizes their systematic development with an emphasis on noise sources and mitigation strategies. After outlining the principle of gravitational wave detection with laser interferometry, we analyze dominant noise sources including quantum vacuum fluctuations, thermal noise, and seismic disturbances, and introduce techniques such as frequency-dependent squeezed light, advanced seismic isolation, multi-stage suspensions, and cryogenic mirrors. For LIGO, we highlight the transition from the Initial to Advanced configurations, which enabled strain sensitivities of the order of $10^{-24}/\sqrt{\text{Hz}}$ and led directly to the first detection GW150914 and over one hundred subsequent events during O1 to O4. The unique superattenuator system of Virgo and its recent implementation of squeezed light, as well as the underground design of KAGRA and the use of cryogenic sapphire test masses, represent different approaches to suppress low-frequency and thermal noise. In addition, we compare the technical routes adopted by different detectors and summarize the lessons learned from their upgrades, which provide valuable guidance for future detector designs. Finally, we present next-generation projects, including LIGO Voyager, the Cosmic Explorer and the Einstein Telescope, which aim to achieve up to orders of magnitude improvements in sensitivity and provide new research opportunities for gravitational-wave cosmology and fundamental physics. Overall, the evolution of detector technologies has been the key driver of progress in gravitational wave astronomy, and the forthcoming facilities will transform our ability to explore the Universe.
  • 图 1  激光干涉引力波探测器简化结构图

    Fig. 1.  Simplified schematic diagram of a laser interferometric gravitational wave detector.

    图 2  Advanced LIGO噪声灵敏度曲线由引力波探测器噪声计算器Gwinc给出. (https://git.ligo.org/gwinc/pygwinc)

    Fig. 2.  Advanced LIGO noise budget, given by gravitational wave interferometer noise calculator Gwinc (https://git.ligo.org/gwinc/pygwinc).

    图 3  LIGO鸟瞰图[39]

    Fig. 3.  Aerial view of LIGO.

    图 4  LIGO激光系统中的环形振荡器[39]

    Fig. 4.  the ring oscillator in the LIGO laser system.

    图 5  LIGO部分输入光学组件的悬挂系统[39]

    Fig. 5.  the suspension system of some input optical components of LIGO.

    图 6  初代LIGO和Advanced LIGO应变灵敏度对比. 数据来源: https://gwosc.org/data/

    Fig. 6.  Strain Sensitivity Comparison between Initial LIGO and Advanced LIGO. Data sources: https://gwosc.org/data/

    图 7  真空态光场与压缩真空态光场 (a) 真空态光场; (b) 压缩真空态光场

    Fig. 7.  Vacuum state and squeezed vacuum state of light: (a) vacuum; (b) squeezed.

    图 8  LIGO Hanford在O4前调试期间的应变灵敏度曲线[19]

    Fig. 8.  Strain sensitivity of the LIGO Hanford measured during the pre-O4 commissioning phase.

    图 9  Virgo鸟瞰图[82]

    Fig. 9.  Aerial view of Virgo.

    图 10  Virgo采用的熔融石英材料的镜面悬挂丝[87]

    Fig. 10.  Mirror suspension of fused silica fibers.

    图 11  KAGRA鸟瞰图[95]

    Fig. 11.  Aerial view of KAGRA.

    图 12  KAGRA悬挂系统的示意图[99]

    Fig. 12.  Schematic diagram of KAGRA suspension system.

    图 13  各观测阶段不同引力波探测器的BNS范围

    Fig. 13.  BNS range of different gravitational wave detectors in various observing runs.

    图 14  第二代与第三代引力波探测器应变灵敏度对比. 数据来源: https://git.ligo.org/gwinc/pygwinc, https://www.et-gw.eu/index.php/etsensitivities

    Fig. 14.  Comparison of sensitivity curves for second and third generation gravitational wave detectors. Data sources: https://git.ligo.org/gwinc/pygwinc, https://www.et-gw.eu/index.php/etsensitivities

    表 1  初代LIGO(S1阶段)与Advanced LIGO的主要参数

    Table 1.  Key Parameters of Initial LIGO (S1 Phase) and Advanced LIGO.

    参数 Initial LIGO (S1) Advanced LIGO
    臂长 3995 m 3995 m
    臂腔精细度 220 450
    激光种类及波长 Nd:YAG, $ \lambda = 1064\ {\rm{nm}} $ Nd:YAG, $ \lambda = 1064\ {\rm{nm}} $
    功率循环镜处的输入功率 4.5 W 125 W
    测试质量所用材料 熔融石英 熔融石英
    测试质量尺寸及质量 直径25 cm, 厚度10 cm, 质量10.7 kg 直径34 cm, 厚度20 cm, 质量 40 kg
    光束半径 ITM/ETM 3.9 cm / 4.5 cm 5.3 cm / 6.2 cm
    输入清模器长度及精细度 24 m, 1350 32.9 m, 500
    循环腔长度 PRC/SRC 9 m / - 57.6 m / 56.0 m
    注1: ITM 表示输入测试质量, ETM 表示末端测试质量; PRC 为功率循环腔, SRC 为信号循环腔
    下载: 导出CSV
    Baidu
  • [1]

    Einstein A 1915 Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 831 1915

    [2]

    Danzmann K, Team L S, et al 1996 Class. Quantum Grav. 13 A247Google Scholar

    [3]

    Luo J, Chen L S, Duan H Z, Gong Y G, Hu S, Ji J, Liu Q, Mei J, Milyukov V, Sazhin M, et al 2016 Class. Quantum Grav. 33 035010Google Scholar

    [4]

    Luo Z, Guo Z, Jin G, Wu Y, Hu W 2020 Results Phys. 16 102918Google Scholar

    [5]

    Weber J 1969 Phys. Rev. Lett. 22 1320Google Scholar

    [6]

    Whitcomb S E 2008 Class. Quantum Grav. 25 114013Google Scholar

    [7]

    Chen C M, Nester J M, Ni W T 2017 Chin. J. Phys. 55 142Google Scholar

    [8]

    Sigg D, for the LIGO Science Collaboration, et al 2006 Class. Quantum Grav. 23 S51Google Scholar

    [9]

    Acernese F, Amico P, Arnaud N, Babusci D, Ballardin G, Barille R, Barone F, Barsuglia M, Beauville F, Bellachia F, et al 2003 Class. Quantum Grav. 20 S609Google Scholar

    [10]

    Somiya K, KAGRA Collaboration, et al 2012 Class. Quantum Grav. 29 124007Google Scholar

    [11]

    Saulson P R 1994 Fundamentals of interferometric gravitational wave detectors (World Scientific

    [12]

    Harms J, Chen Y, Chelkowski S, Franzen A, Vahlbruch H, Danzmann K, Schnabel R 2003 Phys. Rev. D 68 042001Google Scholar

    [13]

    Harms J, Venkateswara K 2016 Class. Quantum Grav. 33 234001Google Scholar

    [14]

    Trozzo L, Badaracco F 2022 Galaxies 10 20Google Scholar

    [15]

    Harms J, Slagmolen B J, Adhikari R X, Miller M C, Evans M, Chen Y, Müller H, Ando M 2013 Phys. Rev. D 88 122003Google Scholar

    [16]

    Driggers J C, Harms J, Adhikari R X 2012 Phys. Rev. D 86 102001Google Scholar

    [17]

    Creighton J D, Anderson W G 2012 Gravitational-wave physics and astronomy: An introduction to theory, experiment and data analysis (John Wiley & Sons

    [18]

    M C 1981 Phys. Rev. D 23 1693Google Scholar

    [19]

    Ganapathy D, Jia W, Nakano M, Xu V, Aritomi N, Cullen T, Kijbunchoo N, Dwyer S, Mullavey A, McCuller L, et al 2023 Phys. Rev. X 13 041021

    [20]

    LIGO Scientific Collaboration 2011 Nat. Phys. 7 962Google Scholar

    [21]

    Yu H, McCuller L, Tse M, Kijbunchoo N, Barsotti L, Mavalvala N 2020 Nature 583 43Google Scholar

    [22]

    Shapiro B, Adhikari R X, Aguiar O, Bonilla E, Fan D, Gan L, Gomez I, Khandelwal S, Lantz B, MacDonald T, et al 2017 Cryogenics 81 83Google Scholar

    [23]

    Saulson P R 1990 Phys. Rev. D 42 2437Google Scholar

    [24]

    Hammond G, Cumming A, Hough J, Kumar R, Tokmakov K, Reid S, Rowan S 2012 Class. Quantum Grav. 29 124009Google Scholar

    [25]

    Cumming A, Bell A, Barsotti L, Barton M, Cagnoli G, Cook D, Cunningham L, Evans M, Hammond G, Harry G, et al 2012 Class. Quantum Grav. 29 035003Google Scholar

    [26]

    Harry G M, Gretarsson A M, Saulson P R, Kittelberger S E, Penn S D, Startin W J, Rowan S, Fejer M M, Crooks D, Cagnoli G, et al 2002 Class. Quantum Grav. 19 897Google Scholar

    [27]

    Hong T, Yang H, Gustafson E K, Adhikari R X, Chen Y 2013 Phys. Rev. D 87 082001Google Scholar

    [28]

    Cole G D, Zhang W, Martin M J, Ye J, Aspelmeyer M 2013 Nat. Photonics 7 644Google Scholar

    [29]

    Kondratiev N, Gurkovsky A, Gorodetsky M 2011 Phys. Rev. D 84 022001Google Scholar

    [30]

    Zhou R, Molina-Ruiz M, Hellman F 2023 Class. Quantum Grav. 40 144001Google Scholar

    [31]

    E Z M, E W S 1996 In Proceedings of the Seventh Marcel Grossman Meeting on recent developments in theoretical and experimental general relativity, gravitation, and relativistic field theories (Springer-Verlag, Berlin), p 1434

    [32]

    Aasi J, Abbott B, Abbott R, Abbott T, Abernathy M, Ackley K, Adams C, Adams T, Addesso P, Adhikari R, et al 2015 Class. Quantum Grav. 32 074001Google Scholar

    [33]

    Abramovici A, Althouse W E, Drever R W, Gürsel Y, Kawamura S, Raab F J, Shoemaker D, Sievers L, Spero R E, Thorne K S, et al 1992 science 256 325Google Scholar

    [34]

    Accadia T, Acernese F, Antonucci F, Astone P, Ballardin G, Barone F, Barsuglia M, Basti A, Bauer T S, Bebronne M, et al 2011 Class. Quantum Grav. 28 114002Google Scholar

    [35]

    Willke B, Aufmuth P, Aulbert C, Babak S, Balasubramanian R, Barr B, Berukoff S, Bose S, Cagnoli G, Casey M M, et al 2002 Class. Quantum Grav. 19 1377Google Scholar

    [36]

    Takahashi R, collaboration T, et al 2004 Class. Quantum Grav. 21 S403Google Scholar

    [37]

    Acernese F, Agathos M, Agatsuma K, Aisa D, Allemandou N, Allocca A, Amarni J, Astone P, Balestri G, Ballardin G, et al 2014 Class. Quantum Grav. 32 024001

    [38]

    KAGRA Collaboration 2019 Nat. Astron. 3 35Google Scholar

    [39]

    LIGO Scientific Collaboration 2024. https://www.ligo.caltech.edu

    [40]

    Abbott B, Abbott R, Adhikari R, Ageev A, Allen B, Amin R, Anderson S, Anderson W, Araya M, Armandula H, et al 2004 Nucl. Instrum. Methods Phys. Res. 517 154Google Scholar

    [41]

    Adhikari R X, González G, Landry M, O’Reilly B 2003 Class. Quantum Grav. 20

    [42]

    Abbott B, Abbott R, Adhikari R, Ageev A, Agresti J, Allen B, Allen J, Amin R, Anderson S, Anderson W, et al 2005 Phys. Rev. D 72 062001Google Scholar

    [43]

    Aasi J, Abadie J, Abbott B, Abbott R, Abbott T, Abernathy M, Accadia T, Acernese F, Adams C, Adams T, et al 2015 Class. Quantum Grav. 32 115012Google Scholar

    [44]

    Ballmer S, Frolov V, Lawrence R, Kells W, Moreno G, Mason K, Ottaway D, Smith M, Vorvick C, Willems P, et al. 2005 LIGO-Document: LIGO-T050064-00-R

    [45]

    Fritschel P, Bork R, González G, Mavalvala N, Ouimette D, Rong H, Sigg D, Zucker M 2001 Appl. Opt. 40 4988Google Scholar

    [46]

    Fricke T T, Smith-Lefebvre N D, Abbott R, Adhikari R, Dooley K L, Evans M, Fritschel P, Frolov V V, Kawabe K, Kissel J S, et al 2012 Class. Quantum Grav. 29 065005Google Scholar

    [47]

    Driggers J, Frolov V, Atkinson D, Miao H, Landry M, Adhikari R, DeRosa R 2010 LIGO-Document: LIGO-P1000088

    Driggers J, Frolov V, Atkinson D, Miao H, Landry M, Adhikari R, DeRosa R 2010 LIGO-Document: LIGO-P1000088

    [48]

    Schofield 2010 LIGO-Document:LIGO-G1000923

    Schofield 2010 LIGO-Document:LIGO-G1000923

    [49]

    Smith N D 2012 Techniques for improving the readout sensitivity of gravitational wave antennae. Ph.d. dissertation, (Cambridge, MA: Massachusetts Institute of Technology

    [50]

    Abbott B P, Abbott R, Abbott T, Abernathy M, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari R X, et al 2016 Phys. Rev. Lett. 116 061102Google Scholar

    [51]

    Somiya K, Chen Y, Kawamura S, Mio N 2006 Phys. Rev. D 73 122005Google Scholar

    [52]

    Kwee P, Bogan C, Danzmann K, Frede M, Kim H, King P, Pld J, Puncken O, Savage R L, Seifert F, et al 2012 Opt. Express 20 10617Google Scholar

    [53]

    P F 2003 In Gravitational-Wave Detection, vol. 4856. p 282. (SPIE

    [54]

    Gretarsson A M, Harry G M, Penn S D, Saulson P R, Startin W J, Rowan S, Cagnoli G, Hough J 2000 Phys. Lett. A 270 108Google Scholar

    [55]

    Matichard F, Lantz B, Mittleman R, Mason K, Kissel J, Abbott B, Biscans S, McIver J, Abbott R, Abbott S, et al 2015 Class. Quantum Grav. 32 185003Google Scholar

    [56]

    De Rosa R, Garufi F, Milano L, Mosca S, Persichetti G 2010 In Journal of Physics: Conference Series, vol. 228 (IOP Publishing), p 012018

    [57]

    Martynov D V, Hall E, Abbott B, Abbott R, Abbott T, Adams C, Adhikari R, Anderson R, Anderson S, Arai K, et al 2016 Phys. Rev. D 93 112004Google Scholar

    [58]

    Evans M, Gras S, Fritschel P, Miller J, Barsotti L, Martynov D, Brooks A, Coyne D, Abbott R, Adhikari R X, et al 2015 Phys. Rev. Lett. 114 161102Google Scholar

    [59]

    Braginsky V B, Strigin S E, Vyatchanin S P 2002 Phys. Lett. A 305 111Google Scholar

    [60]

    Abbott B, Abbott R, Abbott T, Abernathy M, Acernese F, Ackley K, et al 2016 Class. Quantum Grav. 33 134001Google Scholar

    [61]

    Abbott B P, Abbott R, Abbott T D, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari R X, Adya V B, et al 2017 Phys. Rev. D 96 062002Google Scholar

    [62]

    Abbott B P, Abbott R, Abbott T, Abraham S, Acernese F, Ackley K, Adams C, Adhikari R, Adya V, Affeldt C, et al 2019 Phys. Rev. X 9 031040

    [63]

    Davis D, Massinger T, Lundgren A, Driggers J C, Urban A L, Nuttall L 2019 Class. Quantum Grav. 36 055011Google Scholar

    [64]

    Abbott B P, Abbott R, Abbott T, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari R X, Adya V B, et al 2017 Phys. Rev. Lett. 119 161101Google Scholar

    [65]

    Biscans S, Gras S, Blair C, Driggers J, Evans M, Fritschel P, Hardwick T, Mansell G 2019 Phys. Rev. D 100 122003Google Scholar

    [66]

    Mow-Lowry C M, Martynov D 2019 Class. Quantum Grav. 36 245006Google Scholar

    [67]

    Aasi J, Abadie J, Abbott B, Abbott R, Abbott T, Abernathy M, Adams C, Adams T, Addesso P, Adhikari R, et al 2013 Nat. Photonics 7 613Google Scholar

    [68]

    Zhao Y, Aritomi N, Capocasa E, Leonardi M, Eisenmann M, Guo Y, Polini E, Tomura A, Arai K, Aso Y, et al 2020 Phys. Rev. Lett. 124 171101Google Scholar

    [69]

    Dwyer S E 2013 Quantum noise reduction using squeezed states in LIGO. Ph.D. Dissertation, (Cambridge, MA: Massachusetts Institute of Technology

    [70]

    Billingsley G, Yamamoto H, Zhang L 2017 ASPE 66 78

    [71]

    Brooks A F, Vajente G, Yamamoto H, Abbott R, Adams C, Adhikari R X, Ananyeva A, Appert S, Arai K, Areeda J S, et al 2021 Appl. Opt. 60 4047Google Scholar

    [72]

    Abbott R, Abbott T, Abraham S, Acernese F, Ackley K, Adams A, Adams C, Adhikari R, Adya V, Affeldt C, et al 2021 Phys. Rev. X 11 021053

    [73]

    Dolesi R, Hueller M, Nicolodi D, Tombolato D, Vitale S, Wass P, Weber W J, Evans M, Fritschel P, Weiss R, et al 2011 Phys. Rev. D 84 063007Google Scholar

    [74]

    Mitrofanov V, Prokhorov L, Tokmakov K, Willems P 2004 Class. Quantum Grav. 21 S1083Google Scholar

    [75]

    Abbott R, Abbott T, Acernese F, Ackley K, Adams C, Adhikari N, Adhikari R, Adya V, Affeldt C, Agarwal D, et al 2023 Phys. Rev. X 13 041039

    [76]

    Capote E, Jia W, Aritomi N, Nakano M, Xu V, Abbott R, Abouelfettouh I, Adhikari R, Ananyeva A, Appert S, et al 2025 Phys. Rev. D 111 062002Google Scholar

    [77]

    Buikema A, Cahillane C, Mansell G, Blair C, Abbott R, Adams C, Adhikari R, Ananyeva A, Appert S, Arai K, et al 2020 Phys. Rev. D 102 062003Google Scholar

    [78]

    Soni S, Berger B, Davis D, Di Renzo F, Effler A, Ferreira T, Glanzer J, Goetz E, González G, Helmling-Cornell A, et al 2025 Class. Quantum Grav. 42 085016Google Scholar

    [79]

    Jia W, Xu V, Kuns K, Nakano M, Barsotti L, Evans M, Mavalvala N, Collaboration† L S, Abbott R, Abouelfettouh I, et al 2024 Science 385 1318Google Scholar

    [80]

    Collaboration L S 2022 LIGO-Document: LIGO-T2200287-v2

    Collaboration L S 2022 LIGO-Document: LIGO-T2200287-v2

    [81]

    Abbott B, Abbott R, Adhikari R, Ajith P, Allen B, Allen G, Amin R, Anderson S, Anderson W, Arain M, et al 2009 Rep. Prog. Phys. 72 076901Google Scholar

    [82]

    Virgo Collaboration 2024. https://www.virgo-gw.eu

    [83]

    Acernese F, Alshourbagy M, Amico P, Antonucci F, Aoudia S, Arun K, Astone P, Avino S, Baggio L, Ballardin G, et al 2008 Class. Quantum Grav. 25 184001Google Scholar

    [84]

    Accadia T, Swinkels B, forthe VIRGO Collaboration, et al 2010 Class. Quantum Grav. 27 084002Google Scholar

    [85]

    Braccini S, Barsotti L, Bradaschia C, Cella G, Di Virgilio A, Ferrante I, Fidecaro F, Fiori I, Frasconi F, Gennai A, et al 2005 Astropart. Phys. 23 557Google Scholar

    [86]

    Lorenzini M, on behalf ofthe Virgo Collaboration, et al 2010 Class. Quantum Grav. 27 084021Google Scholar

    [87]

    Bersanetti D, Patricelli B, Piccinni O J, Piergiovanni F, Salemi F, Sequino V 2021 Universe 7 322Google Scholar

    [88]

    Di Pace S, Collaboration V, et al 2021 Phys. Scr. 96 124054Google Scholar

    [89]

    Naticchioni L, Collaboration V, et al. 2018 In Journal of Physics: Conference Series, vol. 957 (IOP Publishing), p 012002

    [90]

    Rocchi A, Coccia E, Fafone V, Malvezzi V, Minenkov Y, Sperandio L 2012 In Journal of Physics: Conference Series, vol. 363 (IOP Publishing), p 012016

    [91]

    De Rossi C, Brooks J, Casanueva Diaz J, Chiummo A, Genin E, Gosselin M, Leroy N, Mantovani M, Montanari B, Nocera F, Pillant G 2020 Galaxies 8 87Google Scholar

    [92]

    Collette C, Boudart V, Cudell J R, Collaboration L S, Collaboration V, et al. 2023 In yes (Institute of Physics

    [93]

    Garufi F 2024 Ground-based and Airborne Telescopes X 13094 573

    [94]

    Acernese F, Agathos M, Ain A, Albanesi S, Alléné C, Allocca A, Amato A, Andia M, Andrade T, Andres N, et al. 2023 In J. Phys.: Conf. Ser., vol. 2429 (IOP Publishing), p 012040

    [95]

    KAGRA Collaboration 2024. https://gwcenter.icrr.u-tokyo.ac.jp

    [96]

    Wang H, Aso Y, Leonardi M, Eisenmann M, Hirose E, Billingsley G, Kokeyama K, Ushiba T, Tamaki M, Michimura Y 2024 Phys. Rev. D 110 082007Google Scholar

    [97]

    Michimura Y, Wang H, Salces-Carcoba F, Wipf C, Brooks A, Arai K, Adhikari R X 2024 Phys. Rev. D 109 022009Google Scholar

    [98]

    Y I, Collaboration K 2024 In 38 th International Cosmic Ray Conference. p 1555

    [99]

    Akiyama Y, Akutsu T, Ando M, Arai K, Arai Y, Araki S, Araya A, Aritomi N, Asada H, Aso Y, et al 2019 Class. Quantum Grav. 36 095015Google Scholar

    [100]

    Abac A, Abbott R, Abouelfettouh I, Acernese F, Ackley K, Adhicary S, Adhikari N, Adhikari R, Adkins V, Agarwal D, et al. 2024 arXiv: 2410.16565[astro-ph.HE]

    [101]

    Akutsu T, Ando M, Aoumi M, Araya A, Aso Y, Baiotti L, Bajpai R, Cannon K, Chen A Y, Chen D, et al. 2025 arXiv: 2508.03392[astro-ph.HE]

    [102]

    Adhikari R X, Arai K, Brooks A, Wipf C, Aguiar O, Altin P, Barr B, Barsotti L, Bassiri R, Bell A, et al 2020 Class. Quantum Grav. 37 165003Google Scholar

    [103]

    Adhikari R, Arai K, Brooks A, Salces-Carcoba F, Wipf C 2023 LIGO-Document: LIGO-G1601461

    [104]

    Team L V 2016 LIGO-Document: LIGO-G1602258-v1

    [105]

    Adhikari R X, Brooks A 2024 LIGO-Document: LIGO-T1400226

    [106]

    Hall E D 2022 Galaxies 10 90Google Scholar

    [107]

    Reitze D, Adhikari R X, Ballmer S, Barish B, Barsotti L, Billingsley G, Brown D A, Chen Y, Coyne D, Eisenstein R, et al. 2019 arXiv: 1907.04833

    [108]

    Evans M, Adhikari R X, Afle C, Ballmer S W, Biscoveanu S, Borhanian S, Brown D A, Chen Y, Eisenstein R, Gruson A, et al. 2021 arXiv: 2109.09882

    [109]

    Branchesi M, Maggiore M, Alonso D, Badger C, Banerjee B, Beirnaert F, Belgacem E, Bhagwat S, Boileau G, Borhanian S, et al 2023 JCAP 2023 068

    [110]

    Committee E S 2020 ET-Document: Design Report Update 2020 Technical Report

    [111]

    Brown D D, Miao H, Collins C, Mow-Lowry C, Tyr D, Freise A 2017 Phys. Rev. D 96 062003Google Scholar

  • [1] 李响, 王嘉伟, 李番, 黄天时, 党昊, 赵得胜, 田龙, 史少平, 李卫, 尹王保, 郑耀辉. 面向地基引力波探测频段的超低噪声激光强度噪声评估系统.  , doi: 10.7498/aps.74.20241319
    [2] 阮远东, 章志昊, 贾茳勰, 顾煜宁, 张善端, 崔旭高, 洪葳, 白彦峥, 田朋飞. 空间引力波探测中电荷管理系统的紫外光源应用.  , doi: 10.7498/aps.73.20241115
    [3] 郭禧庆, 周静, 王晨曦, 秦琛, 郭成哲, 李刚, 张鹏飞, 张天才. 地基引力波探测激光干涉仪的真空残余气体噪声分析.  , doi: 10.7498/aps.73.20231462
    [4] 王嘉伟, 李健博, 李番, 郑立昂, 高子超, 安炳南, 马正磊, 尹王保, 田龙, 郑耀辉. 面向空间引力波探测的程控低噪声高精度电压基准源.  , doi: 10.7498/aps.72.20222119
    [5] 王在渊, 王洁浩, 李宇航, 柳强. 面向空间引力波探测的毫赫兹频段低强度噪声单频激光器.  , doi: 10.7498/aps.72.20222127
    [6] 李番, 王嘉伟, 高子超, 李健博, 安炳南, 李瑞鑫, 白禹, 尹王保, 田龙, 郑耀辉. 面向空间引力波探测的激光强度噪声评估系统.  , doi: 10.7498/aps.71.20220841
    [7] 李庆回, 李卫, 孙瑜, 王雅君, 田龙, 陈力荣, 张鹏飞, 郑耀辉. 面向第三代地基引力波探测的激光源需求分析.  , doi: 10.7498/aps.71.20220552
    [8] 韩瑞龙, 蔡明辉, 杨涛, 许亮亮, 夏清, 韩建伟. 宇宙线高能粒子对测试质量充电机制.  , doi: 10.7498/aps.70.20210747
    [9] 唐远河, 崔进, 郜海阳, 屈欧阳, 段晓东, 李存霞, 刘丽娜. 地基气辉成像干涉仪探测高层大气风场的定标研究.  , doi: 10.7498/aps.66.130601
    [10] 王峰, 彭晓世, 梅鲁生, 刘慎业, 蒋小华, 丁永坤. 基于速度干涉仪的冲击波精密调速实验技术研究.  , doi: 10.7498/aps.61.135201
    [11] 胡华, 伍康, 申磊, 李刚, 王力军. 新型高精度绝对重力仪.  , doi: 10.7498/aps.61.099101
    [12] 王玉诏, 伍歆, 钟双英. 旋转致密双星的引力波特征.  , doi: 10.7498/aps.61.160401
    [13] 钟双英, 刘崧. 旋转致密双星后牛顿轨道的引力波研究.  , doi: 10.7498/aps.61.120401
    [14] 王峰, 彭晓世, 刘慎业, 蒋小华, 丁永坤. 利用成像型速度干涉仪进行聚苯乙烯材料中冲击波调速的实验研究.  , doi: 10.7498/aps.60.085203
    [15] 青心. 对-谐条件下不存在引力辐射和引力波的研究.  , doi: 10.7498/aps.49.194
    [16] 郑庆璋, 唐孟希, 胡恩科. 论引力波探测器方位与引力波源方位间的关系.  , doi: 10.7498/aps.39.685
    [17] 陶福臻. 引力孤立波.  , doi: 10.7498/aps.36.350
    [18] 徐步新, 秦荣先. 集中质量音叉式引力波天线与Vela星引力辐射探测的探讨.  , doi: 10.7498/aps.31.1097
    [19] 郑庆障, 崔世治. 扭摆——探测低频引力波的一种可能的天线.  , doi: 10.7498/aps.29.1204
    [20] 陆启铿, 刘煜奋, 邹振隆, 郭汉英. 标量-张量引力波.  , doi: 10.7498/aps.23.15
计量
  • 文章访问数:  436
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-29
  • 修回日期:  2025-08-11
  • 上网日期:  2025-09-02

/

返回文章
返回
Baidu
map