-
近零场磁共振波谱和成像是一个快速发展的前沿领域, 其在化学样品快速分析和便携式磁共振诊断方面拥有巨大的应用潜力, 伴随着其核心部件原子磁力计的成熟, 国际上许多学者已提出相关的临床应用方案与计划. 近年来, 超极化技术的快速发展弥补了近零场磁共振信号强度不足的问题. 溶解动态核极化(dDNP)、仲氢超极化(PHIP/SABRE)、化学诱导动态核极化(CIDNP)以及自旋交换光抽运(SEOP)等超极化技术在近零场磁共振中已得到初步应用. 结合极化技术, 可以摆脱磁铁, 显著提高磁共振信号强度, 从而推动近零场磁共振在化学分析与人体成像中的应用, 为快速的化学样品分析和基于磁共振成像的快速诊断提供更便携的工具. 本文将综述近零场磁共振与超极化技术的相关研究进展.
Near-zero-field nuclear magnetic resonance (NMR) has become a rapidly developing spectroscopic and imaging method, providing promising opportunities for portable diagnostics and fast chemical analysis. A key technology is the atomic magnetometer, and its ongoing improvements have sparked growing interest in potential clinical applications. The near-zero-field NMR has long been limited by weak signal strength, but recent developments in the hyperpolarization method have provided an effective solution to this problem. Dissolution dynamic nuclear polarization (dDNP), parahydrogen-based polarization schemes (PHIP/SABRE), chemically induced dynamic nuclear polarization (CIDNP), and spin-exchange optical pumping (SEOP) have all demonstrated preliminary feasibility in this context. By combining such hyperpolarization strategies with near-zero-field detection, strong signals can be obtained without the need of traditional high-field magnets. This capability opens new pathways for applying near-zero-field NMR to both chemical sensing and biomedical imaging, enabling compact tools for rapid analysis and diagnostic applications. Here, we review the recent progress of the intersection of near-zero-field NMR and hyperpolarization techniques. -
Keywords:
- near-zero-field NMR /
- hyperpolarization /
- magnetometer /
- MRI
-
图 2 零场到超低场(ZULF)核磁共振中的化学交换场景[9] (a) 影响整个J耦合网络的化学交换, 分子中的所有原子的相互作用都可以破坏化学键, 例如对称分子(如H2O和$ {\text{NH}}_{4}^{+} $); (b) 影响J耦合网络子系统的化学交换, 其中自旋系统的一部分交换, 而分子的其余部分保持完整, 如具有多个耦合核的分子中的质子交换, 一旦解离, 氢(浅蓝色表示)可以附着在不同的分子上, 使交换发生分子间
Fig. 2. Chemical exchange scenarios in zero- to ultralow-field (ZULF) NMR[9]: (a) Exchange affecting the entire J-coupled network, where all atoms in a molecule can break chemical bonds. Examples include symmetric molecules like H2O and $ {\text{NH}}_{4}^{+} $; (b) exchange affecting a subsystem of the J-coupled network, where part of the spin system exchanges while the rest of the molecule remains intact. An example is proton exchange in molecules with multiple coupled nuclei. Once dissociated, hydrogen (light blue) can attach to a different molecule, making the exchange intermolecular.
图 12 连续仲氢诱导超极化与近零场磁共振的结合[44] (a) 以吡啶为底物的SABRE反应; (b) 计算机控制仲氢通过SABRE样品的实验装置
Fig. 12. Combination of continuous parahydrogen-induced hyperpolarization and near-zero-field NMR[44]: (a) SABRE reaction scheme with pyridine as substrate; (b) experimental setup of computer controlled p-H2 bubbling through a SABRE sample.
图 14 129Xe的弱自旋交换光泵浦示意图[58] (a) 含有400 Torr N2和200 Torr Xe(129Xe为26.4%)的气体混合物通过泵室和探针室, 最终从出口室流出; 进入泵室的非极化129Xe通过与光泵浦87Rb的自旋交换变得极化, 并随后进入探针室; (b) 硅芯片尺寸为3 cm×1 cm, 厚度1 mm; (c) 129Xe的泵浦和探测序列
Fig. 14. Schematic diagram of weak spin-exchange optical pumping of 129Xe (a) A gas mixture containing 400 Torr N2 and 200 Torr Xe (with 129Xe at 26.4%) flows through the pumping chamber and probe chamber, and eventually exits the output chamber. The depolarized 129Xe entering the pumping chamber becomes polarized through spin exchange with optical pumping of 87Rb, and then moves into the probe chamber. (b) The silicon chip has dimensions of 3 cm×1 cm and a thickness of 1 mm. (c) Pumping and detection sequence for 129Xe.
-
[1] Taraporewala I B 1990 J. Pharm. Sci. 79 553
[2] Shimizu Y, Blanchard J W, Pustelny S, Saielli G, Bagno A, Ledbetter M P, Budker D, Pines A 2015 J. Magn. Reson. 250 1
Google Scholar
[3] Nishiyama Y, Yamazaki T 2007 J. Chem. Phys. 126 134501
Google Scholar
[4] Barskiy D A, Tayler M C, Marco-Rius I, Kurhanewicz J, Vigneron D B, Cikrikci S, Aydogdu A, Reh M, Pravdivtsev A N, Hövener J B 2019 Nat. Commun. 10 3002
Google Scholar
[5] Picazo-Frutos R, Sheberstov K F, Blanchard J W, Van Dyke E, Reh M, Sjoelander T, Pines A, Budker D, Barskiy D A 2024 Nat. Commun. 15 4487
Google Scholar
[6] Jiang M, Bian J, Li Q, Wu Z, Su H W, Xu M X, Wang Y H, Wang X, Peng X H 2021 Fundam. Res. 1 68
Google Scholar
[7] Put P, Pustelny S, Budker D, Druga E, Sjolander T F, Pines A, Barskiy D A 2021 Anal. Chem. 93 3226
Google Scholar
[8] Sjolander T F, Blanchard J W, Budker D, Pines A 2020 J. Magn. Reson. 318 106781
Google Scholar
[9] Barskiy D A, Tayler M C D, Marco-Rius I, Kurhanewicz J, Vigneron D B, Cikrikci S, Aydogdu A, Reh M, Pravdivtsev A N, Hovener J B, Blanchard J W, Wu T, Budker D, Pines A 2019 Nat. Commun. 10 3002
Google Scholar
[10] Josemans S H, van der Post A S, Strijkers G J, Dawood Y, van den Hoff M J B, Jens S R J, Obdeijn M C, Oostra R J, Maas M 2023 Eur. Radiol. Exp. 7 28
Google Scholar
[11] Ganesan S, B A M, Van Dam N T, Lorenzetti V, Zalesky A 2023 Brain. Res. Bull. 203 110766
Google Scholar
[12] Dalitz F, Cudaj M, Maiwald M, Guthausen G 2012 Prog. Nucl. Magn. Reson. Spectrosc. 60 52
Google Scholar
[13] Cormie M A, Kaya B, Hadjis G E, Mouseli P, Moayedi M 2023 Cereb. Cortex 33 9787
Google Scholar
[14] Hennig J 2022 Radiologe 62 385
Google Scholar
[15] Blundell C D, Reed M A, Overduin M, Almond A 2006 Carbohydr. Res. 341 1985
Google Scholar
[16] Manu V S, Olivieri C, Pavuluri K, Veglia G 2022 Phys. Chem. Chem. Phys. 24 18477
Google Scholar
[17] Tayler M C D, Theis T, Sjolander T F, Blanchard J W, Kentner A, Pustelny S, Pines A, Budker D 2017 Rev. Sci. Instrum. 88 091101
Google Scholar
[18] Kato K, Sasakawa H, Kamiya Y, Utsumi M, Nakano M, Takahashi N, Yamaguchi Y 2008 Biochim. Biophys. Acta 1780 619
Google Scholar
[19] Blanchard J W, Budker D, Trabesinger A 2021 J. Magn. Reson. 323 106886
Google Scholar
[20] Jiang M, Wu T, Blanchard J W, Feng G, Peng X H, Budker D 2018 Sci. Adv. 4 eaar6327
Google Scholar
[21] Andrews B, Lai M, Wang Z, Kato N, Tayler M C, Druga E, Ajoy A 2025 Proc. Natl. Acad. Sci. Nexus 4 187
[22] Kononenko, E S, Skovpin I V, Kovtunova L M, Koptyug I V 2025 J. Phys. Chem. Lett. 16 650
Google Scholar
[23] Burueva D B, Eills J, Blanchard J W, Garcon A, Picazo‐Frutos R, Kovtunov K V, Budker D 2020 Angew. Chem. Int. Ed. 59 17026
Google Scholar
[24] Eills J, Picazo-Frutos R, Bondar O, Cavallari E, Carrera C, Barker S J, Utz M, Herrero-Gomez A, Marco-Rius I, Tayler M C D, Aime S, Reineri F, Budker D, Blanchard J W 2023 Anal. Chem. 95 17997
Google Scholar
[25] Guo J C, Zhou H Y, Zeng J, Wang K J, Lai J, Liu Y X 2020 Pet. Sci. 17 1281
Google Scholar
[26] Li B K, Wang H, Trakic A, Engstrom C, Weber E, Crozier S 2012 NMR Biomed. 25 835
Google Scholar
[27] Komu M, Kormano M 1992 Magn. Reson. Med. 27 165
Google Scholar
[28] Schneider U, Giessler F, Nowak H, Logemann T, Grimm B, Haueisen J, Schleussner E 2004 Neurol. Clin. Neurophysiol. 2004 65
[29] Tayler M C D, Ward-Williams J, Gladden L F 2018 J. Magn. Reson. 297 1
Google Scholar
[30] Wyllie R, Kauer M, Smetana G S, Wakai R T, Walker T G 2012 Phys. Med. Biol. 57 2619
Google Scholar
[31] Fang J C, Wang T, Zhang H, Li Y, Zou S 2014 Rev. Sci. Instrum. 85 123104
Google Scholar
[32] Xing B Z, Sun C, Liu Z, Zhao J P, Lu J X, Han B C, Ding M 2021 Opt. Express 29 5055
Google Scholar
[33] Flower C, Freeman M S, Plue M, Driehuys B 2017 J. Appl. Phys. 122 024902
Google Scholar
[34] Brickwedde M, Anders P, Kuhn A A, Lofredi R, Holtkamp M, Kaindl A M, Grent-'t-Jong T, Kruger P, Sander T, Uhlhaas P J 2024 Transl. Psychiatry 14 341
Google Scholar
[35] Duckett S B, Mewis R E 2012 Acc. Chem. Res. 45 1247
Google Scholar
[36] Pravica M G, Weitekamp D P 1988 Chem. Phys. Lett. 145 255
Google Scholar
[37] Ledbetter M P, Theis T, Blanchard J W, Ring H, Ganssle P, Appelt S, Blumich B, Pines A, Budker D 2011 Phys. Rev. Lett. 107 107601
Google Scholar
[38] Tayler M C D, Sjolander T F, Pines A, Budker D 2016 J. Magn. Reson. 270 35
Google Scholar
[39] Van Dyke E T, Eills J, Picazo-Frutos R, Sheberstov K F, Hu Y, Budker D, Barskiy D A 2022 Sci. Adv. 8 eabp9242
Google Scholar
[40] Boeg P A, Duus J Ø, Ardenkjær-Larsen J H, Karlsson M, Mossin S 2019 J. Phys. Chem. C 123 9949
Google Scholar
[41] Green R A, Adams R W, Duckett S B, Mewis R E, Williamson D C, Green G G 2012 Prog. Nucl. Magn. Reson. Spectrosc. 67 1
Google Scholar
[42] Picazo-Frutos R, Stern Q, Blanchard J W, Cala O, Ceillier M, Cousin S F, Eills J, Elliott S J, Jannin S, Budker D 2023 Anal. Chem. 95 720
[43] Leutzsch M, Sederman A J, Gladden L F, Mantle M D 2019 Magn. Reson. Imaging 56 138
Google Scholar
[44] 王忻昌, 江文龙, 黄程达, 孙惠军, 曹晓宇, 田中群, 陈忠 2020 光谱学与光谱分析 40 665
Wang X C, Jiang W L, Huang C D, Sun H J, Cao X Y, Tian Z Q, Chen Z 2020 Spectrosc. Spectral Anal. 40 665
[45] Bowers C R, Weitekamp D P 1987 J. Am. Chem. Soc. 109 5541
Google Scholar
[46] Atkinson K D, Cowley M J, Duckett S B, Elliott P I, Green G G, López-Serrano J, Khazal I G, Whitwood A C 2009 Inorg. Chem. 48 663
Google Scholar
[47] Chekmenev E Y, Hövener J, Norton V A, Harris K, Batchelder L S, Bhattacharya P, Ross B D, Weitekamp D P 2008 J. Am. Chem. Soc. 130 4212
Google Scholar
[48] So H, Jeong K 2019 J. Korean Magn. Reson. Soc. 23 6
[49] Lloyd L S, Adams R W, Bernstein M, Coombes S, Duckett S B, Green G G, Lewis R J, Mewis R E, Sleigh C J 2012 J. Am. Chem. Soc. 134 12904
Google Scholar
[50] Roy S S, Appleby K M, Fear E J, Duckett S B 2018 J. Phys. Chem Lett. 9 1112
Google Scholar
[51] Truong M L, Theis T, Coffey A M, Shchepin R V, Waddell K W, Shi F, Goodson B M, Warren W S, Chekmenev E Y 2015 J. Phys. Chem. C 119 8786
Google Scholar
[52] Ripka B H 2018 Ph. D. Dissertation (Johannes Gutenberg-Universität Mainz
[53] Mok K H, Hore P J 2004 Methods 34 75
Google Scholar
[54] Lee J H, Sekhar A, Cavagnero S 2011 J. Am. Chem. Soc. 133 8062
Google Scholar
[55] Sheberstov K F, Chuchkova L, Hu Y, Zhukov I V, Kiryutin A S, Eshtukov A V, Cheshkov D A, Barskiy D A, Blanchard J W, Budker D 2021 J. Phys. Chem. Lett. 12 4686
Google Scholar
[56] Sheberstov K, Van Dyke E, Xu J, Kircher R, Chuchkova L, Hu Y, Alvi S, Budker D, Barskiy D 2024 ChemRxiv: 10.26434 [magn-res]
[57] Sheberstov K F, Chuchkova L, Hu Y, Zhukov I V, Kiryutin A S, Eshtukov A V, Cheshkov D A, Barskiy D A, Blanchard J W, Budker D, Ivanov K L, Yurkovskaya A V 2021 J. Phys. Chem. Lett. 12 4686
Google Scholar
[58] Jimenez-Martinez R, Kennedy D J, Rosenbluh M, Donley E A, Knappe S, Seltzer S J, Ring H L, Bajaj V S, Kitching J 2014 Nat. Commun. 5 3908
Google Scholar
[59] Molway M J, Bales-Shaffer L, Ranta K, Ball J, Sparling E, Prince M, Cocking D, Basler D, Murphy M, Kidd B E, Gafar A T, Porter J, Albin K, Rosen M S, Chekmenev E Y, Michael Snow W, Barlow M J, Goodson B M 2023 J. Magn. Reson. 354 107521
Google Scholar
[60] Ball J E, Wild J M, Norquay G 2022 Molecules 28 11
Google Scholar
[61] Birchall J R, Irwin R K, Chowdhury M R H, Nikolaou P, Goodson B M, Barlow M J, Shcherbakov A, Chekmenev E Y 2021 Anal. Chem. 93 3883
Google Scholar
[62] Antonacci M A, Burant A, Wagner W, Branca R T 2017 J Magn. Reson. 279 60
Google Scholar
[63] Nikolaou P, Coffey A M, Ranta K, Walkup L L, Gust B M, Barlow M J, Rosen M S, Goodson B M, Chekmenev E Y 2014 J. Phys. Chem. B 118 4809
Google Scholar
[64] Whiting N, Nikolaou P, Eschmann N A, Goodson B M, Barlow M J 2011 J. Magn. Reson. 208 298
Google Scholar
[65] Li H D, Zhao X C, Wang Y J, Lou X, Chen S Z, Deng H, Shi L, Xie J S, Tang D Z, Zhao J P, Bouchard L S, Xia L M, Zhou X 2021 Sci. Adv. 7 eabc8180
Google Scholar
[66] Yashchuk V V, Granwehr J, Kimball D F, Rochester S M, Trabesinger A H, Urban J T, Budker D, Pines A 2004 Phys. Rev. Lett. 93 160801
Google Scholar
[67] Kilian W, Haller A, Seifert F, Grosenick D, Rinneberg H 2007 Eur. Phys. J. D 42 197
Google Scholar
[68] Burghoff M, Hartwig S, Kilian W, Vorwerk A, Trahms L 2007 IEEE Trans. Appl. Supercond. 17 846
Google Scholar
[69] Kennedy D J, Seltzer S J, Jimenez-Martinez R, Ring H L, Malecek N S, Knappe S, Donley E A, Kitching J, Bajaj V S, Pines A 2017 Sci. Rep. 7 43994
Google Scholar
[70] Wong-Foy A, Saxena S, Moule A J, Bitter H M, Seeley J A, McDermott R, Clarke J, Pines A 2002 J. Magn. Reson. 157 235
Google Scholar
[71] Blanchard J W, Sjolander T F, King J P, Ledbetter M P, Levine E H, Bajaj V S, Budker D, Pines A 2015 Phys. Rev. B 92 220202
Google Scholar
[72] Blanchard J W, Budker D 2007 eMagRes 5 1395
[73] Jiang M, Bian J, Li Q, Wu Z, Su H W, Xu M X, Wang Y H, Wang X, Peng X H 2021 Fundam. Res. 1 68
Google Scholar
[74] Barskiy D A, Blanchard J W, Budker D, Eills J, Pustelny S, Sheberstov K F, Tayler M C, Trabesinger A H 2024 arXiv: 2409.09048 [chem-ph]
[75] Blanchard J W, Budker D, Trabesinger A 2021 J. Magn. Reson. 323 106886
Google Scholar
[76] Xu S, Yashchuk V V, Donaldson M H, Rochester S M, Budker D, Pines A 2006 Proc. Natl. Acad. Sci. 103 12668
Google Scholar
[77] Savukov I, Zotev V, Volegov P, Espy M, Matlashov A, Gomez J, Kraus Jr R 2009 J. Magn. Reson. 199 188
Google Scholar
[78] Savukov I, Karaulanov T 2013 J. Magn. Reson. 231 39
Google Scholar
[79] Clatworthy M R, Kettunen M I, Hu D E, Mathews R J, Witney T H, Kennedy B W, Bohndiek S E, Gallagher F A, Jarvis L B, Smith K G 2012 Proc. Natl. Acad. Sci. 109 13374
Google Scholar
[80] Eills J, Picazo-Frutos R, Bondar O, Cavallari E, Carrera C, Barker S J, Utz M, Aime S, Reineri F, Budker D 2022 arXiv: 2205.12380 [chem-ph]
[81] Zhukov I V, Kiryutin A S, Yurkovskaya A V, Blanchard J W, Budker D, Ivanov K L 2021 J. Chem. Phys. 154 14
[82] Wilzewski A, Afach S, Blanchard J W, Budker D 2017 J. Magn. Reson. 284 66
Google Scholar
[83] Put P, Alcicek S, Bondar O, Bodek Ł, Duckett S, Pustelny S 2023 Commun. Chem. 6 131
Google Scholar
[84] Burueva D B, Eills J, Blanchard J W, Garcon A, Picazo‐Frutos R, Kovtunov K V, Koptyug I V, Budker D 2020 Angew. Chem. Int. Ed. 59 17026
Google Scholar
[85] Korchak S, Jagtap A P, Glöggler S 2021 Chem. Sci. 12 314
Google Scholar
[86] Eills J, Picazo-Frutos R, Bondar O, Cavallari E, Carrera C, Barker S J, Utz M, Herrero-Gómez A, Marco-Rius I, Tayler M C 2023 Anal. Chem. 95 17997
Google Scholar
[87] Elenewski J E, Camara C M, Kalev A 2024 arXiv: 2406.09340 [quant-ph]
[88] Jiang M, Frutos R P, Wu T, Blanchard J W, Peng X H, Budker D 2019 Phys. Rev. Appl. 11 024005
Google Scholar
[89] Blanchard J W, Sjolander T F, King J P, Ledbetter M P, Levine E H, Bajaj V S, Budker D, Pines A 2015 Phys. Rev. B 92 220202
Google Scholar
[90] Barskiy D A, Blanchard J W, Budker D, Eills J, Pustelny S, Sheberstov K F, Trabesinger A H 2025 Prog. Nucl. Magn. Reson. Spectrosc. 148-149 101558
[91] Wu T, Blanchard J W, Centers G P, Figueroa N L, Garcon A, Graham P W, Kimball D F J, Rajendran S, Stadnik Y V, Sushkov A O 2019 Phys. Rev. Lett. 122 191302
Google Scholar
[92] Jiang M, Su H W, Garcon A, Peng X H, Budker D 2021 Nat. Phys. 17 1402
Google Scholar
[93] Jackson Kimball D F, Dudley J, Li Y, Patel D, Valdez J 2017 Phys. Rev. D 96 075004
Google Scholar
[94] Ledbetter M P, Pustelny S, Budker D, Romalis M V, Blanchard J W, Pines A 2012 Phys. Rev. Lett. 108 243001
Google Scholar
[95] Wu T, Blanchard J W, Jackson Kimball D F, Jiang M, Budker D 2018 Phys. Rev. Lett. 121 023202
Google Scholar
[96] Jiang M, Su H W, Wu Z, Peng X H, Budker D 2021 Sci. Adv. 7 eabe0719
Google Scholar
[97] Bian J, Jiang M, Cui J Y, Liu X M, Chen B T, Ji Y L, Zhang B, Blanchard J, Peng X H, Du J F 2017 Phys. Rev. A 95 052342
Google Scholar
计量
- 文章访问数: 344
- PDF下载量: 12
- 被引次数: 0








下载: