搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近零场磁共振与超极化技术

李泽铭 吕沄禧 祁浩刚 瞿千越 谭政 王力 蒋卫平 胡一南 周欣

引用本文:
Citation:

近零场磁共振与超极化技术

李泽铭, 吕沄禧, 祁浩刚, 瞿千越, 谭政, 王力, 蒋卫平, 胡一南, 周欣

Near-zero-field nuclear magnetic resonance and hyperpolarization technology

LI Zeming, LV Yunxi, QI Haogang, QU Qianyue, TAN Zheng, WANG Li, JIANG Weiping, HU Yinan, ZHOU Xin
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 近零场磁共振波谱和成像是一个快速发展的前沿领域, 其在化学样品快速分析和便携式磁共振诊断方面拥有巨大的应用潜力, 伴随着其核心部件原子磁力计的成熟, 国际上许多学者已提出相关的临床应用方案与计划. 近年来, 超极化技术的快速发展弥补了近零场磁共振信号强度不足的问题. 溶解动态核极化(dDNP)、仲氢超极化(PHIP/SABRE)、化学诱导动态核极化(CIDNP)以及自旋交换光抽运(SEOP)等超极化技术在近零场磁共振中已得到初步应用. 结合极化技术, 可以摆脱磁铁, 显著提高磁共振信号强度, 从而推动近零场磁共振在化学分析与人体成像中的应用, 为快速的化学样品分析和基于磁共振成像的快速诊断提供更便携的工具. 本文将综述近零场磁共振与超极化技术的相关研究进展.
    Near-zero-field nuclear magnetic resonance (NMR) has become a rapidly developing spectroscopic and imaging method, providing promising opportunities for portable diagnostics and fast chemical analysis. A key technology is the atomic magnetometer, and its ongoing improvements have sparked growing interest in potential clinical applications.The near-zero-field NMR has long been limited by weak signal strength, but recent developments in the hyperpolarization method have provided an effective solution to this problem. Dissolution dynamic nuclear polarization (dDNP), parahydrogen-based polarization schemes (PHIP/SABRE), chemically induced dynamic nuclear polarization (CIDNP), and spin-exchange optical pumping (SEOP) have all demonstrated preliminary feasibility in this context.By combining such hyperpolarization strategies with near-zero-field detection, strong signals can be obtained without the need of traditional high-field magnets. This capability opens new pathways for applying near-zero-field NMR to both chemical sensing and biomedical imaging, enabling compact tools for rapid analysis and diagnostic applications. Here, we review the recent progress of the intersection of near-zero-field NMR and hyperpolarization techniques.
  • 图 1  不同场强下的磁共振现象

    Fig. 1.  Magnetic resonance phenomena under different magnetic field.

    图 2  零场到超低场(ZULF)核磁共振中的化学交换场景[9] (a) 影响整个J耦合网络的化学交换, 分子中的所有原子的相互作用都可以破坏化学键, 例如对称分子(如H2O和$ {\text{NH}}_{4}^{+} $); (b) 影响J耦合网络子系统的化学交换, 其中自旋系统的一部分交换, 而分子的其余部分保持完整, 如具有多个耦合核的分子中的质子交换, 一旦解离, 氢(浅蓝色表示)可以附着在不同的分子上, 使交换发生分子间

    Fig. 2.  Chemical exchange scenarios in zero- to ultralow-field (ZULF) NMR[9]: (a) Exchange affecting the entire J-coupled network, where all atoms in a molecule can break chemical bonds. Examples include symmetric molecules like H2O and $ {\text{NH}}_{4}^{+} $; (b) exchange affecting a subsystem of the J-coupled network, where part of the spin system exchanges while the rest of the molecule remains intact. An example is proton exchange in molecules with multiple coupled nuclei. Once dissociated, hydrogen (light blue) can attach to a different molecule, making the exchange intermolecular.

    图 3  近零场磁共振示意图[17,19] (a) 基于开放光路式原子磁力计的近零场磁共振; (b) 基于小型化原子磁力计的近零场磁共振

    Fig. 3.  Schematic diagram of Near-Zero-Field NMR[17,19]: (a) Near-zero-field magnetic resonance based on an open-light path atomic magnetometer; (b) near-zero-field NMR based on a miniaturized atomic magnetometer.

    图 4  原子磁力计示意图 (a) NMOR原子磁力计; (b) 小型化原子磁力计

    Fig. 4.  Schematic diagram of atomic magnetometers: (a) NMOR-based atomic magnetometer; (b) miniaturized atomic magnetometer.

    图 5  磁屏蔽装置

    Fig. 5.  Magnetic shields.

    图 6  用于近零场磁共振的线圈 (a) 柔性线圈设计图(内部); (b) 柔性线圈设计图(内部); (c) 马鞍形线圈; (d) 亥姆霍兹线圈

    Fig. 6.  Coils used for near-zero-field NMR: (a) Flexible coil for shielding; (b) photo of flexible coil; (c) saddle-shaped coil; (d) Helmholtz coil.

    图 7  不同极化方式

    Fig. 7.  Polarization methods.

    图 8  dDNP与近零场磁共振实验装置示意图[42], 其中样品dDNP超极化后转移至近零场磁共振进行检测

    Fig. 8.  Schematic of the experimental apparatus[42]. The sample is hyperpolarized by dDNP and is transferred to the near-zero-field NMR spectrometer for detection.

    图 9  仲氢与正氢的区别[44] (a) 氢原子的两种自旋态; (b) 氢气分子的4种自旋态与转动能级对应

    Fig. 9.  Principle of parahydrogen-induced hyperpolarization[44]: (a) Two spin states of hydrogen atoms; (b) four spin states of hydrogen molecules and their corresponding rotational states.

    图 10  PASADENA与ALTADENA超极化方式的对比[44] (a) 加氢反应过程; (b) 自旋态在不同能级上的布居数; (c) 1H磁共振信号

    Fig. 10.  Principle of parahydrogen-induced hyperpolarization[44]: (a) Hydrogenation reaction; selective population of the spin states; (b) 1H NMR signal.

    图 11  可逆交换信号放大(SABRE)过程示意图

    Fig. 11.  Schematic diagram of the signal amplification by reversible exchange (SABRE) process.

    图 12  连续仲氢诱导超极化与近零场磁共振的结合[44] (a) 以吡啶为底物的SABRE反应; (b) 计算机控制仲氢通过SABRE样品的实验装置

    Fig. 12.  Combination of continuous parahydrogen-induced hyperpolarization and near-zero-field NMR[44]: (a) SABRE reaction scheme with pyridine as substrate; (b) experimental setup of computer controlled p-H2 bubbling through a SABRE sample.

    图 13  CIDNP与近零场磁共振测量结合[57]

    Fig. 13.  Photo-CIDNP hyperpolarization generated under near-zero-field conditions[57].

    图 14  129Xe的弱自旋交换光泵浦示意图[58] (a) 含有400 Torr N2和200 Torr Xe(129Xe为26.4%)的气体混合物通过泵室和探针室, 最终从出口室流出; 进入泵室的非极化129Xe通过与光泵浦87Rb的自旋交换变得极化, 并随后进入探针室; (b) 硅芯片尺寸为3 cm×1 cm, 厚度1 mm; (c) 129Xe的泵浦和探测序列

    Fig. 14.  Schematic diagram of weak spin-exchange optical pumping of 129Xe (a) A gas mixture containing 400 Torr N2 and 200 Torr Xe (with 129Xe at 26.4%) flows through the pumping chamber and probe chamber, and eventually exits the output chamber. The depolarized 129Xe entering the pumping chamber becomes polarized through spin exchange with optical pumping of 87Rb, and then moves into the probe chamber. (b) The silicon chip has dimensions of 3 cm×1 cm and a thickness of 1 mm. (c) Pumping and detection sequence for 129Xe.

    图 15  近零场磁共振与超极化技术的结合及应用

    Fig. 15.  Combination and application of Near-Zero-Field NMR and hyperpolarization technology.

    图 16  近零场下的磁共振成像 (a) 近零场下对样品管的成像; (b) 人脑的近零场磁共振成像; (c) 近零场磁共振对流动液体的成像

    Fig. 16.  Combination of continuous parahydrogen-induced hyperpolarization and near-zero-field NMR: (a) Imaging of sample tubes at ZULF; (b) ZULF MRI of human brain; (c) imaging of flowing liquids using ZULF NMR.

    图 17  近零场磁共振的代谢监测[80] (a) 对富马酸-苹果酸反应过程的监测; (b) 对丙酮酸-乳酸反应过程的监测

    Fig. 17.  Metabolic monitoring with near-zero-field NMR[80]: (a) Monitoring of the fumaric acid-malic acid reaction process; (b) monitoring of the pyruvate-lactic acid reaction process.

    图 18  近零场磁共振中特征谱峰可以达到亚赫兹的线宽水平

    Fig. 18.  The characteristic spectral peak in ZULF NMR can reach a line width of sub-Hertz.

    图 19  近零场磁共振与超极化技术应用于化学分析[39]

    Fig. 19.  Application of near-zero-field NMR and hyperpolarization technology in chemistry analysis[39].

    图 20  近零场磁共振与超极化技术应用于自旋重力耦合研究[93]

    Fig. 20.  Near-zero-field NMR and hyperpolarization techniques for spin-gravity couplings[93].

    Baidu
  • [1]

    Taraporewala I B 1990 J. Pharm. Sci. 79 553

    [2]

    Shimizu Y, Blanchard J W, Pustelny S, Saielli G, Bagno A, Ledbetter M P, Budker D, Pines A 2015 J. Magn. Reson. 250 1Google Scholar

    [3]

    Nishiyama Y, Yamazaki T 2007 J. Chem. Phys. 126 134501Google Scholar

    [4]

    Barskiy D A, Tayler M C, Marco-Rius I, Kurhanewicz J, Vigneron D B, Cikrikci S, Aydogdu A, Reh M, Pravdivtsev A N, Hövener J B 2019 Nat. Commun. 10 3002Google Scholar

    [5]

    Picazo-Frutos R, Sheberstov K F, Blanchard J W, Van Dyke E, Reh M, Sjoelander T, Pines A, Budker D, Barskiy D A 2024 Nat. Commun. 15 4487Google Scholar

    [6]

    Jiang M, Bian J, Li Q, Wu Z, Su H W, Xu M X, Wang Y H, Wang X, Peng X H 2021 Fundam. Res. 1 68Google Scholar

    [7]

    Put P, Pustelny S, Budker D, Druga E, Sjolander T F, Pines A, Barskiy D A 2021 Anal. Chem. 93 3226Google Scholar

    [8]

    Sjolander T F, Blanchard J W, Budker D, Pines A 2020 J. Magn. Reson. 318 106781Google Scholar

    [9]

    Barskiy D A, Tayler M C D, Marco-Rius I, Kurhanewicz J, Vigneron D B, Cikrikci S, Aydogdu A, Reh M, Pravdivtsev A N, Hovener J B, Blanchard J W, Wu T, Budker D, Pines A 2019 Nat. Commun. 10 3002Google Scholar

    [10]

    Josemans S H, van der Post A S, Strijkers G J, Dawood Y, van den Hoff M J B, Jens S R J, Obdeijn M C, Oostra R J, Maas M 2023 Eur. Radiol. Exp. 7 28Google Scholar

    [11]

    Ganesan S, B A M, Van Dam N T, Lorenzetti V, Zalesky A 2023 Brain. Res. Bull. 203 110766Google Scholar

    [12]

    Dalitz F, Cudaj M, Maiwald M, Guthausen G 2012 Prog. Nucl. Magn. Reson. Spectrosc. 60 52Google Scholar

    [13]

    Cormie M A, Kaya B, Hadjis G E, Mouseli P, Moayedi M 2023 Cereb. Cortex 33 9787Google Scholar

    [14]

    Hennig J 2022 Radiologe 62 385Google Scholar

    [15]

    Blundell C D, Reed M A, Overduin M, Almond A 2006 Carbohydr. Res. 341 1985Google Scholar

    [16]

    Manu V S, Olivieri C, Pavuluri K, Veglia G 2022 Phys. Chem. Chem. Phys. 24 18477Google Scholar

    [17]

    Tayler M C D, Theis T, Sjolander T F, Blanchard J W, Kentner A, Pustelny S, Pines A, Budker D 2017 Rev. Sci. Instrum. 88 091101Google Scholar

    [18]

    Kato K, Sasakawa H, Kamiya Y, Utsumi M, Nakano M, Takahashi N, Yamaguchi Y 2008 Biochim. Biophys. Acta 1780 619Google Scholar

    [19]

    Blanchard J W, Budker D, Trabesinger A 2021 J. Magn. Reson. 323 106886Google Scholar

    [20]

    Jiang M, Wu T, Blanchard J W, Feng G, Peng X H, Budker D 2018 Sci. Adv. 4 eaar6327Google Scholar

    [21]

    Andrews B, Lai M, Wang Z, Kato N, Tayler M C, Druga E, Ajoy A 2025 Proc. Natl. Acad. Sci. Nexus 4 187

    [22]

    Kononenko, E S, Skovpin I V, Kovtunova L M, Koptyug I V 2025 J. Phys. Chem. Lett. 16 650Google Scholar

    [23]

    Burueva D B, Eills J, Blanchard J W, Garcon A, Picazo‐Frutos R, Kovtunov K V, Budker D 2020 Angew. Chem. Int. Ed. 59 17026Google Scholar

    [24]

    Eills J, Picazo-Frutos R, Bondar O, Cavallari E, Carrera C, Barker S J, Utz M, Herrero-Gomez A, Marco-Rius I, Tayler M C D, Aime S, Reineri F, Budker D, Blanchard J W 2023 Anal. Chem. 95 17997Google Scholar

    [25]

    Guo J C, Zhou H Y, Zeng J, Wang K J, Lai J, Liu Y X 2020 Pet. Sci. 17 1281Google Scholar

    [26]

    Li B K, Wang H, Trakic A, Engstrom C, Weber E, Crozier S 2012 NMR Biomed. 25 835Google Scholar

    [27]

    Komu M, Kormano M 1992 Magn. Reson. Med. 27 165Google Scholar

    [28]

    Schneider U, Giessler F, Nowak H, Logemann T, Grimm B, Haueisen J, Schleussner E 2004 Neurol. Clin. Neurophysiol. 2004 65

    [29]

    Tayler M C D, Ward-Williams J, Gladden L F 2018 J. Magn. Reson. 297 1Google Scholar

    [30]

    Wyllie R, Kauer M, Smetana G S, Wakai R T, Walker T G 2012 Phys. Med. Biol. 57 2619Google Scholar

    [31]

    Fang J C, Wang T, Zhang H, Li Y, Zou S 2014 Rev. Sci. Instrum. 85 123104Google Scholar

    [32]

    Xing B Z, Sun C, Liu Z, Zhao J P, Lu J X, Han B C, Ding M 2021 Opt. Express 29 5055Google Scholar

    [33]

    Flower C, Freeman M S, Plue M, Driehuys B 2017 J. Appl. Phys. 122 024902Google Scholar

    [34]

    Brickwedde M, Anders P, Kuhn A A, Lofredi R, Holtkamp M, Kaindl A M, Grent-'t-Jong T, Kruger P, Sander T, Uhlhaas P J 2024 Transl. Psychiatry 14 341Google Scholar

    [35]

    Duckett S B, Mewis R E 2012 Acc. Chem. Res. 45 1247Google Scholar

    [36]

    Pravica M G, Weitekamp D P 1988 Chem. Phys. Lett. 145 255Google Scholar

    [37]

    Ledbetter M P, Theis T, Blanchard J W, Ring H, Ganssle P, Appelt S, Blumich B, Pines A, Budker D 2011 Phys. Rev. Lett. 107 107601Google Scholar

    [38]

    Tayler M C D, Sjolander T F, Pines A, Budker D 2016 J. Magn. Reson. 270 35Google Scholar

    [39]

    Van Dyke E T, Eills J, Picazo-Frutos R, Sheberstov K F, Hu Y, Budker D, Barskiy D A 2022 Sci. Adv. 8 eabp9242Google Scholar

    [40]

    Boeg P A, Duus J Ø, Ardenkjær-Larsen J H, Karlsson M, Mossin S 2019 J. Phys. Chem. C 123 9949Google Scholar

    [41]

    Green R A, Adams R W, Duckett S B, Mewis R E, Williamson D C, Green G G 2012 Prog. Nucl. Magn. Reson. Spectrosc. 67 1Google Scholar

    [42]

    Picazo-Frutos R, Stern Q, Blanchard J W, Cala O, Ceillier M, Cousin S F, Eills J, Elliott S J, Jannin S, Budker D 2023 Anal. Chem. 95 720

    [43]

    Leutzsch M, Sederman A J, Gladden L F, Mantle M D 2019 Magn. Reson. Imaging 56 138Google Scholar

    [44]

    王忻昌, 江文龙, 黄程达, 孙惠军, 曹晓宇, 田中群, 陈忠 2020 光谱学与光谱分析 40 665

    Wang X C, Jiang W L, Huang C D, Sun H J, Cao X Y, Tian Z Q, Chen Z 2020 Spectrosc. Spectral Anal. 40 665

    [45]

    Bowers C R, Weitekamp D P 1987 J. Am. Chem. Soc. 109 5541Google Scholar

    [46]

    Atkinson K D, Cowley M J, Duckett S B, Elliott P I, Green G G, López-Serrano J, Khazal I G, Whitwood A C 2009 Inorg. Chem. 48 663Google Scholar

    [47]

    Chekmenev E Y, Hövener J, Norton V A, Harris K, Batchelder L S, Bhattacharya P, Ross B D, Weitekamp D P 2008 J. Am. Chem. Soc. 130 4212Google Scholar

    [48]

    So H, Jeong K 2019 J. Korean Magn. Reson. Soc. 23 6

    [49]

    Lloyd L S, Adams R W, Bernstein M, Coombes S, Duckett S B, Green G G, Lewis R J, Mewis R E, Sleigh C J 2012 J. Am. Chem. Soc. 134 12904Google Scholar

    [50]

    Roy S S, Appleby K M, Fear E J, Duckett S B 2018 J. Phys. Chem Lett. 9 1112Google Scholar

    [51]

    Truong M L, Theis T, Coffey A M, Shchepin R V, Waddell K W, Shi F, Goodson B M, Warren W S, Chekmenev E Y 2015 J. Phys. Chem. C 119 8786Google Scholar

    [52]

    Ripka B H 2018 Ph. D. Dissertation (Johannes Gutenberg-Universität Mainz

    [53]

    Mok K H, Hore P J 2004 Methods 34 75Google Scholar

    [54]

    Lee J H, Sekhar A, Cavagnero S 2011 J. Am. Chem. Soc. 133 8062Google Scholar

    [55]

    Sheberstov K F, Chuchkova L, Hu Y, Zhukov I V, Kiryutin A S, Eshtukov A V, Cheshkov D A, Barskiy D A, Blanchard J W, Budker D 2021 J. Phys. Chem. Lett. 12 4686Google Scholar

    [56]

    Sheberstov K, Van Dyke E, Xu J, Kircher R, Chuchkova L, Hu Y, Alvi S, Budker D, Barskiy D 2024 ChemRxiv: 10.26434 [magn-res]

    [57]

    Sheberstov K F, Chuchkova L, Hu Y, Zhukov I V, Kiryutin A S, Eshtukov A V, Cheshkov D A, Barskiy D A, Blanchard J W, Budker D, Ivanov K L, Yurkovskaya A V 2021 J. Phys. Chem. Lett. 12 4686Google Scholar

    [58]

    Jimenez-Martinez R, Kennedy D J, Rosenbluh M, Donley E A, Knappe S, Seltzer S J, Ring H L, Bajaj V S, Kitching J 2014 Nat. Commun. 5 3908Google Scholar

    [59]

    Molway M J, Bales-Shaffer L, Ranta K, Ball J, Sparling E, Prince M, Cocking D, Basler D, Murphy M, Kidd B E, Gafar A T, Porter J, Albin K, Rosen M S, Chekmenev E Y, Michael Snow W, Barlow M J, Goodson B M 2023 J. Magn. Reson. 354 107521Google Scholar

    [60]

    Ball J E, Wild J M, Norquay G 2022 Molecules 28 11Google Scholar

    [61]

    Birchall J R, Irwin R K, Chowdhury M R H, Nikolaou P, Goodson B M, Barlow M J, Shcherbakov A, Chekmenev E Y 2021 Anal. Chem. 93 3883Google Scholar

    [62]

    Antonacci M A, Burant A, Wagner W, Branca R T 2017 J Magn. Reson. 279 60Google Scholar

    [63]

    Nikolaou P, Coffey A M, Ranta K, Walkup L L, Gust B M, Barlow M J, Rosen M S, Goodson B M, Chekmenev E Y 2014 J. Phys. Chem. B 118 4809Google Scholar

    [64]

    Whiting N, Nikolaou P, Eschmann N A, Goodson B M, Barlow M J 2011 J. Magn. Reson. 208 298Google Scholar

    [65]

    Li H D, Zhao X C, Wang Y J, Lou X, Chen S Z, Deng H, Shi L, Xie J S, Tang D Z, Zhao J P, Bouchard L S, Xia L M, Zhou X 2021 Sci. Adv. 7 eabc8180Google Scholar

    [66]

    Yashchuk V V, Granwehr J, Kimball D F, Rochester S M, Trabesinger A H, Urban J T, Budker D, Pines A 2004 Phys. Rev. Lett. 93 160801Google Scholar

    [67]

    Kilian W, Haller A, Seifert F, Grosenick D, Rinneberg H 2007 Eur. Phys. J. D 42 197Google Scholar

    [68]

    Burghoff M, Hartwig S, Kilian W, Vorwerk A, Trahms L 2007 IEEE Trans. Appl. Supercond. 17 846Google Scholar

    [69]

    Kennedy D J, Seltzer S J, Jimenez-Martinez R, Ring H L, Malecek N S, Knappe S, Donley E A, Kitching J, Bajaj V S, Pines A 2017 Sci. Rep. 7 43994Google Scholar

    [70]

    Wong-Foy A, Saxena S, Moule A J, Bitter H M, Seeley J A, McDermott R, Clarke J, Pines A 2002 J. Magn. Reson. 157 235Google Scholar

    [71]

    Blanchard J W, Sjolander T F, King J P, Ledbetter M P, Levine E H, Bajaj V S, Budker D, Pines A 2015 Phys. Rev. B 92 220202Google Scholar

    [72]

    Blanchard J W, Budker D 2007 eMagRes 5 1395

    [73]

    Jiang M, Bian J, Li Q, Wu Z, Su H W, Xu M X, Wang Y H, Wang X, Peng X H 2021 Fundam. Res. 1 68Google Scholar

    [74]

    Barskiy D A, Blanchard J W, Budker D, Eills J, Pustelny S, Sheberstov K F, Tayler M C, Trabesinger A H 2024 arXiv: 2409.09048 [chem-ph]

    [75]

    Blanchard J W, Budker D, Trabesinger A 2021 J. Magn. Reson. 323 106886Google Scholar

    [76]

    Xu S, Yashchuk V V, Donaldson M H, Rochester S M, Budker D, Pines A 2006 Proc. Natl. Acad. Sci. 103 12668Google Scholar

    [77]

    Savukov I, Zotev V, Volegov P, Espy M, Matlashov A, Gomez J, Kraus Jr R 2009 J. Magn. Reson. 199 188Google Scholar

    [78]

    Savukov I, Karaulanov T 2013 J. Magn. Reson. 231 39Google Scholar

    [79]

    Clatworthy M R, Kettunen M I, Hu D E, Mathews R J, Witney T H, Kennedy B W, Bohndiek S E, Gallagher F A, Jarvis L B, Smith K G 2012 Proc. Natl. Acad. Sci. 109 13374Google Scholar

    [80]

    Eills J, Picazo-Frutos R, Bondar O, Cavallari E, Carrera C, Barker S J, Utz M, Aime S, Reineri F, Budker D 2022 arXiv: 2205.12380 [chem-ph]

    [81]

    Zhukov I V, Kiryutin A S, Yurkovskaya A V, Blanchard J W, Budker D, Ivanov K L 2021 J. Chem. Phys. 154 14

    [82]

    Wilzewski A, Afach S, Blanchard J W, Budker D 2017 J. Magn. Reson. 284 66Google Scholar

    [83]

    Put P, Alcicek S, Bondar O, Bodek Ł, Duckett S, Pustelny S 2023 Commun. Chem. 6 131Google Scholar

    [84]

    Burueva D B, Eills J, Blanchard J W, Garcon A, Picazo‐Frutos R, Kovtunov K V, Koptyug I V, Budker D 2020 Angew. Chem. Int. Ed. 59 17026Google Scholar

    [85]

    Korchak S, Jagtap A P, Glöggler S 2021 Chem. Sci. 12 314Google Scholar

    [86]

    Eills J, Picazo-Frutos R, Bondar O, Cavallari E, Carrera C, Barker S J, Utz M, Herrero-Gómez A, Marco-Rius I, Tayler M C 2023 Anal. Chem. 95 17997Google Scholar

    [87]

    Elenewski J E, Camara C M, Kalev A 2024 arXiv: 2406.09340 [quant-ph]

    [88]

    Jiang M, Frutos R P, Wu T, Blanchard J W, Peng X H, Budker D 2019 Phys. Rev. Appl. 11 024005Google Scholar

    [89]

    Blanchard J W, Sjolander T F, King J P, Ledbetter M P, Levine E H, Bajaj V S, Budker D, Pines A 2015 Phys. Rev. B 92 220202Google Scholar

    [90]

    Barskiy D A, Blanchard J W, Budker D, Eills J, Pustelny S, Sheberstov K F, Trabesinger A H 2025 Prog. Nucl. Magn. Reson. Spectrosc. 148-149 101558

    [91]

    Wu T, Blanchard J W, Centers G P, Figueroa N L, Garcon A, Graham P W, Kimball D F J, Rajendran S, Stadnik Y V, Sushkov A O 2019 Phys. Rev. Lett. 122 191302Google Scholar

    [92]

    Jiang M, Su H W, Garcon A, Peng X H, Budker D 2021 Nat. Phys. 17 1402Google Scholar

    [93]

    Jackson Kimball D F, Dudley J, Li Y, Patel D, Valdez J 2017 Phys. Rev. D 96 075004Google Scholar

    [94]

    Ledbetter M P, Pustelny S, Budker D, Romalis M V, Blanchard J W, Pines A 2012 Phys. Rev. Lett. 108 243001Google Scholar

    [95]

    Wu T, Blanchard J W, Jackson Kimball D F, Jiang M, Budker D 2018 Phys. Rev. Lett. 121 023202Google Scholar

    [96]

    Jiang M, Su H W, Wu Z, Peng X H, Budker D 2021 Sci. Adv. 7 eabe0719Google Scholar

    [97]

    Bian J, Jiang M, Cui J Y, Liu X M, Chen B T, Ji Y L, Zhang B, Blanchard J, Peng X H, Du J F 2017 Phys. Rev. A 95 052342Google Scholar

  • [1] 刘凡, 蒋渊丞, 郭华. 高分辨率磁共振二维扩散成像技术综述.  , doi: 10.7498/aps.74.20250235
    [2] 覃柏霖, 高家红. 超高场磁共振成像的现状和展望.  , doi: 10.7498/aps.74.20241759
    [3] 李昭青, 韩益华, 王泽君, 白瑞良. 水分子跨细胞膜交换的磁共振测量技术研究进展.  , doi: 10.7498/aps.74.20250325
    [4] 赵地, 赵莉芝, 甘永进, 覃斌毅. 基于支撑先验与深度图像先验的无预训练磁共振图像重建方法.  , doi: 10.7498/aps.71.20211761
    [5] 向鹏程, 蔡聪波, 王杰超, 蔡淑惠, 陈忠. 基于深度神经网络的时空编码磁共振成像超分辨率重建方法.  , doi: 10.7498/aps.71.20211754
    [6] 高嵩, 曹文田, 黄新瑞, 包尚联. 硼中子俘获治疗中的含硼-10药物分布及浓度在体测量方法研究进展.  , doi: 10.7498/aps.70.20201794
    [7] 蒋晓华, 薛芃, 黄伟灿, 李烨. 14 T全身超导MRI磁体的技术挑战 —大规模应用强场超导磁体未来十年的发展目标之一.  , doi: 10.7498/aps.70.20202042
    [8] 杜晓纪, 王为民, 兰贤辉, 李超. 1.5 T关节磁共振成像超导磁体的设计、制作与测试.  , doi: 10.7498/aps.66.248401
    [9] 胡洋, 王秋良, 李毅, 朱旭晨, 牛超群. 基于边界元方法的超导核磁共振成像设备高阶轴向匀场线圈优化算法.  , doi: 10.7498/aps.65.218301
    [10] 包尚联, 杜江, 高嵩. 核磁共振骨皮质成像关键技术研究进展.  , doi: 10.7498/aps.62.088701
    [11] 刘铁兵, 姚文坡, 宁新宝, 倪黄晶, 王俊. 功能磁共振成像的基本尺度熵分析.  , doi: 10.7498/aps.62.218704
    [12] 方晟, 吴文川, 应葵, 郭华. 基于非均匀螺旋线数据和布雷格曼迭代的快速磁共振成像方法.  , doi: 10.7498/aps.62.048702
    [13] 倪志鹏, 王秋良, 严陆光. 短腔、自屏蔽磁共振成像超导磁体系统的混合优化设计方法.  , doi: 10.7498/aps.62.020701
    [14] 王宁, 金贻荣, 邓辉, 吴玉林, 郑国林, 李绍, 田野, 任育峰, 陈莺飞, 郑东宁. 基于高温超导量子干涉仪的超低场核磁共振成像研究.  , doi: 10.7498/aps.61.213302
    [15] 张国庆, 杜晓纪, 赵玲, 宁飞鹏, 姚卫超, 朱自安. 基于0—1整数线性规划的自屏蔽磁共振成像超导磁体设计.  , doi: 10.7498/aps.61.228701
    [16] 汪红志, 许凌峰, 俞捷, 黄清明, 王晓琰, 陆伦, 王鹤, 黄勇, 程红岩, 张学龙, 李鲠颖. 基于核磁共振弹性成像技术的肝纤维化分级体模研究.  , doi: 10.7498/aps.59.7463
    [17] 李海鹏, 韩 奎, 逯振平, 沈晓鹏, 黄志敏, 张文涛, 白 磊. 有机分子第一超极化率色散效应和双光子共振增强理论研究.  , doi: 10.7498/aps.55.1827
    [18] 陈杰夫, 刘婉秋, 钟万勰. Bloch方程的精细时程积分及其在射频脉冲设计中的应用.  , doi: 10.7498/aps.55.884
    [19] 张必达, 王卫东, 宋枭禹, 俎栋林, 吕红宇, 包尚联. 磁共振现代射频脉冲理论在非均匀场成像中的应用.  , doi: 10.7498/aps.52.1143
    [20] 韩世莹. 单晶电子顺磁共振研究中零场分裂张量主轴的确定.  , doi: 10.7498/aps.38.317
计量
  • 文章访问数:  344
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-15
  • 修回日期:  2025-07-31
  • 上网日期:  2025-09-26

/

返回文章
返回
Baidu
map