-
为研究高功率氮化镓器件散热性能, 构建氮化镓/石墨烯/金刚石异质结构, 采用分子动力学方法调控异质界面热输运特性, 并从声子输运角度揭示异质界面传热机理与调控机制. 研究发现Ga-C接触方式的界面热导是N-C结构的3倍, 且氮化镓/石墨烯/金刚石异质结构不具有热整流特性. N和B掺杂下界面热导先增大后减小, 但Si掺杂下界面热导单调增大. 两种Si掺杂势函数对应的界面热导差异不大, 但双势函数下的石墨烯结构更稳定. 线性掺杂和圆形掺杂两种掺杂形貌对界面热导影响不大, 但线性掺杂下石墨烯声子谱变化更具规律性. 氢化会严重阻碍界面传热, 但三种氢化结构下的界面热导均随氢化率增加而增大. 研究结果可为氮化镓器件热管理提供理论支持, 同时对突破大功率电子器件散热瓶颈具有指导价值.
In order to ascertain the heat dissipation performance of high-power gallium nitride devices, the thermal transport characteristics of GaN/graphene/diamond heterostructures are investigated at heterogeneous interfaces through molecular dynamics simulations. This study focuses on phonon transport mechanisms and regulatory strategies in the interfacial regions. The key findings are summarized below. Comparative analysis of two contact configurations reveals that the Ga-C structure exhibits an interfacial thermal conductance three times higher than that of the N-C structure, which is attributed to its larger phonon cutoff frequency and enhanced interfacial phonon coupling as evidenced by phonon spectral analysis. The intrinsic heterostructure demonstrates no thermal rectification characteristics without interface engineering. The analysis of hydrogenation effects shows that although hydrogenation generally hinders interfacial heat transfer, the thermal conductance increases paradoxically with the increase of hydrogenation ratio. This counterintuitive phenomenon arises from hydrogen-induced lattice disorder/hybridization scattering causing phonon localization (particularly severe in GaN-side hydrogenation), while generating new phonon coupling channels. The elemental doping investigations show that nitrogen and boron doping leads to an initial increase and subsequent decrease in interfacial thermal conductance, while silicon doping produces monotonic enhancement. Overlap factor analysis indicates that N and B doping first strengthens then weakens interfacial phonon coupling, whereas Si doping significantly improves coupling through synergistic effects of strong interfacial interactions and phonon focusing. Comparative evaluation of two Si doping potential functions shows that the difference in thermal conductance results is negligible. The studies on doping morphology show that although linear doping configurations can cause systematic changes in graphene phonon spectra, their influence on interfacial thermal conductance is minimal. These findings offer critical theoretical insights into thermal management optimization of GaN-based devices and provide fundamental guidance for overcoming thermal dissipation bottlenecks in high-power electronic systems. -
Keywords:
- heterostructure /
- molecular dynamics /
- interfacial thermal conductivity /
- hydrogenation /
- regulation mechanism
[1] Sajjad Hossain Rafin S M, Ahmed R, Haque M A, Hossain M K, Haque M A, Mohammed O A 2023 Micromachines-Basel 14 2045
Google Scholar
[2] 刘东静, 胡志亮, 周福, 王鹏博, 王振东, 李涛 2024 73 150202
Google Scholar
Liu D J, Hu Z L, Zhou F, Wang P B, Wang Z D, Li T 2024 Acta Phys. Sin. 73 150202
Google Scholar
[3] Zha J W, Wang F, Wan B Q 2025 Prog. Mater. Sci. 148 101362
Google Scholar
[4] Giri A, Walton S G, Tomko J, Bhatt N, Johnson M J, Boris D R, Lu G, Caldwell J D, Prezhdo O V, Hopkins P E 2023 ACS Nano 17 14253
Google Scholar
[5] Liu D, Wang S, Zhu J, Li H, Zhu H 2022 Phys. Lett. A 426 127895
Google Scholar
[6] Lee W, Kihm K D, Kim H G, Lee W, Cheon S, Yeom S, Lim G, Pyun K R, Ko S H, Shin S 2018 Carbon 138 98
Google Scholar
[7] Chegel R 2023 Diamond Relat. Mater. 137 110154
Google Scholar
[8] Song J, Xu Z, He X 2020 Int. J. Heat Mass Transfer 157 119954
Google Scholar
[9] Liu F, Zou R, Hu N, Ning H, Yan C, Liu Y, Wu L, Mo F, Fu S 2019 Nanoscale 11 4067
Google Scholar
[10] Yang H, Gao S, Pan Y, Yang P 2024 Int. Commun. Heat Mass Transfer 155 107521
Google Scholar
[11] Dong S, Yang B, Xin Q, Lan X, Wang X, Xin G 2022 Phys. Chem. Chem. Phys. 24 12837
Google Scholar
[12] Yang Y, Ma J, Yang J, Zhang Y 2022 ACS Appl. Mater. Interfaces 14 45742
Google Scholar
[13] Chen G F, Bao W L, Chen J, Wang Z L 2022 Carbon 190 170
Google Scholar
[14] Wang J, Shen Y, Yang P 2023 Compos. Commun. 40 101616
Google Scholar
[15] Farzadian O, Yousefi F, Shafiee M, Khoeini F, Spitas C, Kostas K V 2024 J. Mol. Graph. Model. 129 108763
Google Scholar
[16] Yang B, Li D, Qi L, Li T, Yang P 2019 Phys. Lett. A 383 1306
Google Scholar
[17] Oi N, Okubo S, Tsuyuzaki I, Hiraiwa A, Kawarada H 2024 IEEE Electron Device Lett. 45 1554
Google Scholar
[18] Wang Y, Wang S, Zhang Y, Cheng Z, Yang D, Wang Y, Wang T, Cheng L, Wu Y, Hao Y 2024 Nanoscale 16 15170
Google Scholar
[19] Yang B, Wang J, Yang Z, Xin Z, Zhang N, Zheng H, Wu X 2023 Mater. Today Phys. 30 100948
Google Scholar
[20] 朱洪涛, 黎广荣, 方诚, 周义朋, 方志杰, 赵凯 2023 岩石矿物学杂志 42 673
Google Scholar
Zhu H T, Li G R, Fang C, Zhou Y P, Fang Z J, Zhao K 2023 ACTA Petrol. Mineral. 42 673
Google Scholar
[21] Tao L, Theruvakkattil Sreenivasan S, Shahsavari R 2017 ACS Appl. Mater. Interfaces 9 989
Google Scholar
[22] Islam M S, Mia I, Ahammed S, Stampfl C, Park J 2020 Sci. Rep. 10 22050
Google Scholar
[23] Liang Q, Wei Y 2014 Phys. B: Condens. Matter 437 36
Google Scholar
[24] Erhart P, Albe K 2005 Phys. Rev. B 71 035211
Google Scholar
[25] 杨兵 2021 博士学位论文 (镇江: 江苏大学)
Yang B 2021 Ph. D. Dissertation (ZhenJiang: Jiangsu University
[26] 刘东静, 周福, 陈帅阳, 胡志亮 2023 72 157901
Google Scholar
Liu D J, Zhou F, Chen S Y, Hu Z L, 2023 Acta Phys. Sin. 72 157901
Google Scholar
[27] 刘东静, 王韶铭, 杨平 2021 70 187302
Google Scholar
Liu D J, Wang S M, Yang P 2021 Acta Phys. Sin. 70 187302
Google Scholar
[28] 邵常焜, 汤勇, 陈恭, 余树东, 颜才满, 丁鑫锐, 袁伟, 张仕伟 2024 机械工程学报 60 271
Google Scholar
Shao C K, Tang Y, Chen G, Yu S D, Yan C M, Ding X R, Yuan W, Zhang S W 2024 J. Mech. Eng. 60 271
Google Scholar
[29] Ding H B, He J R, Ding L M, He T 2024 DeCarbon 4 100048
Google Scholar
[30] Zhao H, Yang X, Wang C, Lu R, Zhang T, Chen H, Zheng X 2023 Mater. Today Phys. 30 100941
Google Scholar
[31] Yang Y, Ma J, Pei Q X, Yang J, Zhang Y 2023 Int. J. Heat Mass Transfer 216 124558
Google Scholar
[32] Das P, Paul P, Hassan M, Morshed A M, Paul T C 2025 Comput. Mater. Sci 246 113359
Google Scholar
[33] Kochaev A, Maslov M, Katin K, Efimov V, Efimova I 2022 Mater. Today Nano 20 100247
Google Scholar
[34] 佟赞, 杨银利, 徐晶, 刘伟, 陈亮 2023 72 068201
Google Scholar
Tong Z, Yang Y L, Xu J, Liu W, Chen L 2023 Acta Phys. Sin. 72 068201
Google Scholar
[35] 向鑫, 刘浪, 把静文 2023 原子与分子 40 032002
Google Scholar
Xiang X, Liu L, Ba J W 2023 J. Atom. Mol. Phys. 40 032002
Google Scholar
[36] Yang B, Li D, Yang H, Wang J, Yang P 2020 Int. Commun. Heat Mass Transfer 117 104735
Google Scholar
[37] Goharshadi E K, Mahdizadeh S J 2015 J. Mol. Graphics Modell 62 74
Google Scholar
[38] Weng Y K, Yousefzadi Nobakht A, Shin S, Kihm K D, Aaron D S 2021 Int. J. Heat Mass Transfer 169 120979
Google Scholar
[39] Majeti V K, Roy A, Gupta K K, Dey S 2020 IOP Conf. Ser.: Mater. Sci. Eng. 2020 012188
Google Scholar
[40] Habibur Rahman M, Mitra S, Motalab M, Bose P 2020 RSC Adv. 10 31318
Google Scholar
[41] Rajasekaran G, Kumar R, Parashar A 2016 Mater. Res. Express 3 035011
Google Scholar
[42] Zhang X, Zhang J, Yang M 2020 Solid State Commun. 309 113845
Google Scholar
-
图 15 氮和硼掺杂对PPR的影响 (a) 硼掺杂后的PPR; (b) 氮掺杂后的PPR; (c) 不同硼掺杂率对应的PPR; (d) 不同氮掺杂率对应的PPR
Fig. 15. Effects of nitrogen and boron doping on PPR: (a) PPR after boron doping; (b) PPR after nitrogen doping; (c) PPR corresponding to different boron doping ratios; (d) PPR corresponding to different nitrogen doping ratios.
图 18 (a), (b), (c) 单势函数下的氮化镓、石墨烯和金刚石的PDOS变化图; (d), (e), (f) 双势函数下的氮化镓、石墨烯和金刚石的PDOS变化图
Fig. 18. (a), (b), (c) Plots of PDOS variation for gallium nitride, graphene, and diamond under the single potential function; (d), (e), (f) plots of PDOS variation for gallium nitride, graphene, and diamond under the double potential functions.
表 1 晶格参数
Table 1. Lattice parameters.
方向 氮化镓 石墨烯 金刚石 x 3.21629 2.46000 3.56679 y 5.57078 4.26084 3.56679 z 5.23966 — 3.56679 表 2 Lennard-Jones势函数参数
Table 2. Lennard-Jones parameters.
原子1 原子2 $\varepsilon $/eV $ \sigma$/Å C C 0.00361 3.671 C Ga 0.00905 3.668 C N 0.00369 3.346 表 3 无热整流效应异质结构的调研结果表
Table 3. Investigation results of heterostructures without thermal rectification effect.
-
[1] Sajjad Hossain Rafin S M, Ahmed R, Haque M A, Hossain M K, Haque M A, Mohammed O A 2023 Micromachines-Basel 14 2045
Google Scholar
[2] 刘东静, 胡志亮, 周福, 王鹏博, 王振东, 李涛 2024 73 150202
Google Scholar
Liu D J, Hu Z L, Zhou F, Wang P B, Wang Z D, Li T 2024 Acta Phys. Sin. 73 150202
Google Scholar
[3] Zha J W, Wang F, Wan B Q 2025 Prog. Mater. Sci. 148 101362
Google Scholar
[4] Giri A, Walton S G, Tomko J, Bhatt N, Johnson M J, Boris D R, Lu G, Caldwell J D, Prezhdo O V, Hopkins P E 2023 ACS Nano 17 14253
Google Scholar
[5] Liu D, Wang S, Zhu J, Li H, Zhu H 2022 Phys. Lett. A 426 127895
Google Scholar
[6] Lee W, Kihm K D, Kim H G, Lee W, Cheon S, Yeom S, Lim G, Pyun K R, Ko S H, Shin S 2018 Carbon 138 98
Google Scholar
[7] Chegel R 2023 Diamond Relat. Mater. 137 110154
Google Scholar
[8] Song J, Xu Z, He X 2020 Int. J. Heat Mass Transfer 157 119954
Google Scholar
[9] Liu F, Zou R, Hu N, Ning H, Yan C, Liu Y, Wu L, Mo F, Fu S 2019 Nanoscale 11 4067
Google Scholar
[10] Yang H, Gao S, Pan Y, Yang P 2024 Int. Commun. Heat Mass Transfer 155 107521
Google Scholar
[11] Dong S, Yang B, Xin Q, Lan X, Wang X, Xin G 2022 Phys. Chem. Chem. Phys. 24 12837
Google Scholar
[12] Yang Y, Ma J, Yang J, Zhang Y 2022 ACS Appl. Mater. Interfaces 14 45742
Google Scholar
[13] Chen G F, Bao W L, Chen J, Wang Z L 2022 Carbon 190 170
Google Scholar
[14] Wang J, Shen Y, Yang P 2023 Compos. Commun. 40 101616
Google Scholar
[15] Farzadian O, Yousefi F, Shafiee M, Khoeini F, Spitas C, Kostas K V 2024 J. Mol. Graph. Model. 129 108763
Google Scholar
[16] Yang B, Li D, Qi L, Li T, Yang P 2019 Phys. Lett. A 383 1306
Google Scholar
[17] Oi N, Okubo S, Tsuyuzaki I, Hiraiwa A, Kawarada H 2024 IEEE Electron Device Lett. 45 1554
Google Scholar
[18] Wang Y, Wang S, Zhang Y, Cheng Z, Yang D, Wang Y, Wang T, Cheng L, Wu Y, Hao Y 2024 Nanoscale 16 15170
Google Scholar
[19] Yang B, Wang J, Yang Z, Xin Z, Zhang N, Zheng H, Wu X 2023 Mater. Today Phys. 30 100948
Google Scholar
[20] 朱洪涛, 黎广荣, 方诚, 周义朋, 方志杰, 赵凯 2023 岩石矿物学杂志 42 673
Google Scholar
Zhu H T, Li G R, Fang C, Zhou Y P, Fang Z J, Zhao K 2023 ACTA Petrol. Mineral. 42 673
Google Scholar
[21] Tao L, Theruvakkattil Sreenivasan S, Shahsavari R 2017 ACS Appl. Mater. Interfaces 9 989
Google Scholar
[22] Islam M S, Mia I, Ahammed S, Stampfl C, Park J 2020 Sci. Rep. 10 22050
Google Scholar
[23] Liang Q, Wei Y 2014 Phys. B: Condens. Matter 437 36
Google Scholar
[24] Erhart P, Albe K 2005 Phys. Rev. B 71 035211
Google Scholar
[25] 杨兵 2021 博士学位论文 (镇江: 江苏大学)
Yang B 2021 Ph. D. Dissertation (ZhenJiang: Jiangsu University
[26] 刘东静, 周福, 陈帅阳, 胡志亮 2023 72 157901
Google Scholar
Liu D J, Zhou F, Chen S Y, Hu Z L, 2023 Acta Phys. Sin. 72 157901
Google Scholar
[27] 刘东静, 王韶铭, 杨平 2021 70 187302
Google Scholar
Liu D J, Wang S M, Yang P 2021 Acta Phys. Sin. 70 187302
Google Scholar
[28] 邵常焜, 汤勇, 陈恭, 余树东, 颜才满, 丁鑫锐, 袁伟, 张仕伟 2024 机械工程学报 60 271
Google Scholar
Shao C K, Tang Y, Chen G, Yu S D, Yan C M, Ding X R, Yuan W, Zhang S W 2024 J. Mech. Eng. 60 271
Google Scholar
[29] Ding H B, He J R, Ding L M, He T 2024 DeCarbon 4 100048
Google Scholar
[30] Zhao H, Yang X, Wang C, Lu R, Zhang T, Chen H, Zheng X 2023 Mater. Today Phys. 30 100941
Google Scholar
[31] Yang Y, Ma J, Pei Q X, Yang J, Zhang Y 2023 Int. J. Heat Mass Transfer 216 124558
Google Scholar
[32] Das P, Paul P, Hassan M, Morshed A M, Paul T C 2025 Comput. Mater. Sci 246 113359
Google Scholar
[33] Kochaev A, Maslov M, Katin K, Efimov V, Efimova I 2022 Mater. Today Nano 20 100247
Google Scholar
[34] 佟赞, 杨银利, 徐晶, 刘伟, 陈亮 2023 72 068201
Google Scholar
Tong Z, Yang Y L, Xu J, Liu W, Chen L 2023 Acta Phys. Sin. 72 068201
Google Scholar
[35] 向鑫, 刘浪, 把静文 2023 原子与分子 40 032002
Google Scholar
Xiang X, Liu L, Ba J W 2023 J. Atom. Mol. Phys. 40 032002
Google Scholar
[36] Yang B, Li D, Yang H, Wang J, Yang P 2020 Int. Commun. Heat Mass Transfer 117 104735
Google Scholar
[37] Goharshadi E K, Mahdizadeh S J 2015 J. Mol. Graphics Modell 62 74
Google Scholar
[38] Weng Y K, Yousefzadi Nobakht A, Shin S, Kihm K D, Aaron D S 2021 Int. J. Heat Mass Transfer 169 120979
Google Scholar
[39] Majeti V K, Roy A, Gupta K K, Dey S 2020 IOP Conf. Ser.: Mater. Sci. Eng. 2020 012188
Google Scholar
[40] Habibur Rahman M, Mitra S, Motalab M, Bose P 2020 RSC Adv. 10 31318
Google Scholar
[41] Rajasekaran G, Kumar R, Parashar A 2016 Mater. Res. Express 3 035011
Google Scholar
[42] Zhang X, Zhang J, Yang M 2020 Solid State Commun. 309 113845
Google Scholar
计量
- 文章访问数: 453
- PDF下载量: 7
- 被引次数: 0








下载: