搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于薄膜铌酸锂定制化多模干涉的宽带90°光混频与模式分离集成器件的设计

谭振坤 侯朋飞 郭海红 雷思琛 徐一帆 张福瑞 李瑶 蔚娟 张朋 王姣

引用本文:
Citation:

基于薄膜铌酸锂定制化多模干涉的宽带90°光混频与模式分离集成器件的设计

谭振坤, 侯朋飞, 郭海红, 雷思琛, 徐一帆, 张福瑞, 李瑶, 蔚娟, 张朋, 王姣

Design of broadband 90° optical mixing and mode-separation integrated device based on customized multi-mode interference of thin-film lithium niobate

TAN Zhenkun, HOU Pengfei, GUO Haihong, LEI Sichen, XU Yifan, ZHANG Furui, LI Yao, YU Juan, ZHANG Peng, WANG Jiao
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 90°光混频器是无线相干光通信系统接收端的关键器件, 在提升接收端灵敏度和抗干扰能力方面发挥着重要作用. 传统的90°光混频器存在对精度要求高、体积大、受限于模式失配、偏振敏感和功能单一等缺点. 为解决上述问题且进一步实现器件的多功能化, 在铌酸锂平台基于多模干涉(multimode Interference, MMI)结构, 设计了兼具90°光混频和模式分离功能的多功能集成器件. 该器件在功能上具备良好的可扩展性, 在性能上均优于传统结构, 具有低损耗、高精度和宽带宽的特点, 并通过容差分析验证了器件在较大工艺误差范围内仍能保持优异的性能, 展现了较高的工艺容差性和可靠性. 该器件可同时应用于大规模集成光学中, 为高性能片上光通信系统提供了新技术.
    90°optical mixer, as an essential part of coherent optical communication and heterodyne detection, improves polarization discrimination and anti-interference capabilities, increases receiver sensitivity, and permits demodulation of higher-order modulation forms. The disadvantages of traditional 90° optical mixers, however, include their high precision needs, size, mode mismatch restrictions, polarization sensitivity, and single functionality. Utilizing a lithium niobate platform, a multimode interference (MMI) structure, and a micro-thermoelectric electrode array, and with the help of the finite difference time domain (FDTD) method, a multipurpose device that combines 90° optical mixing and mode separation capabilities is designed in this work. According to the results, when no voltage is applied across the micro-thermoelectric electrodes, the multipurpose device acts as a 90° optical mixer. The common-mode rejection ratios of all four outputs are all above –30 dB, phase errors are below 4°, and the losses in the wavelength range of 1520—1580 nm exceed –13.862 dB. When a voltage is applied across the micro-thermoelectric electrodes, TE0, TE1, TE2, and TE3 modes are separated by the multipurpose device acting as a mode splitter. In addition to controlling crosstalk fluctuation within 8.8 dB, the minimum loss divergence between modes is less than 0.024 dB. Research findings indicate that the physical characteristics of optical field interference within the MMI structure enable perfect phase matching and energy distribution across a wide spectrum range, even when no voltage is supplied across the micro-thermoelectric electrode terminals. By controlling the interference superposition process inside the multi-mode region and improving broadband 90° optical mixing parameters, the stable phase-matching conditions are maintained across the wide spectrum. The lithium niobate-based linear electro-optic effect (Pockels effect) modifies the waveguide refractive index distribution through an external electric field when a voltage is applied across the micro-thermoelectrodes. By changing the light field's coupling path and propagation mode inside the MMI structure, the mode-separating integrator can precisely achieve mode separation, thereby confirming the efficiency of the electro-optic effect in optical functional control, which meets the isolation requirements for various mode optical signals. Furthermore, a systematical tolerance analysis of the device's width and length is carried out, demonstrating how structural dimensional deviations affect the mode coupling efficiency and optical field interference circumstances. The integrated broadband 90° optical mixer and mode splitter device described in this paper has excellent process tolerance properties.
  • 图 1  宽带90°光混频器的示意图 (a) 三维图; (b) 俯视图

    Fig. 1.  Schematic diagram of a wideband 90° optical mixer: (a) Three-dimensional diagram; (b) top view.

    图 2  性能随结构参数变化曲线 (a) 耦合效率随输出波导间隔gap_ln的变化; (b) 损耗随输出端波导长度Lout-ln的变化; (c) 损耗随多模波导长度LMMI的变化

    Fig. 2.  Performance curves with structural parameters: (a) Curve of coupling efficiency with output waveguide gap_ln; (b) variation of loss with output waveguide length Lout-ln; (c) variation of loss with multimode waveguide length LMMI.

    图 3  基于LiNbO3平台宽带90°光混频器单束光输入光强图 (a) 单束信号光输入; (b) 单束本振光输入

    Fig. 3.  Single-beam optical input light intensity diagram of a wideband 90° optical mixer based on the LiNbO3 platform: (a) Single beam signal light input; (b) single-beam local oscillator optical input.

    图 4  各模式传输光场图 (a) 输出TE0模式; (b) 输出TE1模式; (c) 输出TE2模式; (d) 输出TE3模式

    Fig. 4.  Transmission light field diagram of each mode: (a) Outputs TE0 mode; (b) outputs TE1 mode; (c) output TE2 mode; (d) output TE3 mode.

    图 5  各模式透射率随电压变化曲线

    Fig. 5.  Variation curves of transmittance with voltage in each mode.

    图 6  各模式性能指标随电压变化曲线 (a) 模式分离器损耗; (b) 模式分离器串扰

    Fig. 6.  Curves of performance index of each mode with voltage: (a) Mode separator loss; (b) mode separator crosstalk.

    图 7  基于LiNbO3平台的宽带90°光混频器光强图

    Fig. 7.  Light intensity map of a wideband 90° optical mixer based on LiNbO3 platform.

    图 8  性能指标随波长变化情况 (a) 90°光混频器损耗随波长变化曲线; (b) 90°光混频器共模抑制比随波长变化曲线; (c) 不同输出端口之间的相位偏差随波长变化曲线

    Fig. 8.  Variation of performance index with wavelength: (a) 90-degree hybrid loss versus wavelength curves; (b) variation curves of common mode rejection ratio of 90-degree optical with wavelength; (c) variation curves of phase deviation between different output ports with wavelength.

    图 9  模式分离器性能指标 (a) 模式分离器损耗; (b) 模式分离器串扰

    Fig. 9.  Performance index of mode separator: (a) Mode separator loss; (b) mode separator crosstalk.

    图 10  宽度容差下共模抑制比性能分析 (a) MMI宽度容差范围为±0.1 μm; (b) MMI容差范围宽度为±0.2 μm

    Fig. 10.  Performance analysis of common mode rejection ratio under width tolerance: (a) The tolerance range of MMI width is ±0.1 μm; (b) the width of MMI tolerance range is ±0.2 μm.

    图 11  宽度容差下损耗性能分析

    Fig. 11.  Analysis of loss performance under width tolerance.

    图 12  宽度容差下相位偏差性能分析 (a) MMI宽度为13 μm; (b) MMI宽度为13.1 μm; (c) MMI宽度为13.3 μm; (d) MMI宽度为13.4 μm

    Fig. 12.  Performance analysis of phase deviation under width tolerance: (a) MMI width is 13 μm; (b) MMI width is 13.1 μm; (c) MMI width is 13.3 μm; (d) MMI width is 13.4 μm.

    图 13  长度容差下共模抑制比性能分析 (a) MMI长度容差范围为±2 μm; (b) MMI长度容差范围为±4 μm

    Fig. 13.  Performance analysis of common mode rejection ratio under length tolerance: (a) The tolerance range of MMI length is ±2 μm; (b) the tolerance range of MMI length is ±4 μm.

    图 14  长度容差下相位偏差性能分析 (a) MMI长度为138 μm; (b) MMI长度为140 μm; (c) MMI长度为144 μm; (d) MMI长度为148 μm

    Fig. 14.  Performance analysis of phase deviation under length tolerance: (a) MMI length is 138 μm; (b) MMI length is 140 μm; (c) MMI length is 144 μm; (d) MMI length is 148 μm.

    图 15  长度容差下损耗性能分析

    Fig. 15.  Analysis of loss performance under length tolerance.

    图 16  宽度容差下损耗性能分析 (a) MMI宽度为13 μm; (b) MMI宽度为13.1 μm; (c) MMI宽度为13.3 μm; (d) MMI宽度为13.4 μm

    Fig. 16.  Analysis of loss performance under width tolerance: (a) MMI width is 13 μm; (b) MMI width is 13.1 μm; (c) MMI width is 13.3 μm; (d) MMI width is 13.4 μm.

    图 17  宽度容差下串扰性能分析 (a) MMI宽度为13 μm; (b) MMI宽度为13.1 μm; (c) MMI宽度为13.3 μm; (d) MMI宽度为13.4 μm

    Fig. 17.  Analysis of crosstalk performance under width tolerance: (a) MMI width is 13 μm; (b) MMI width is 13.1 μm; (c) MMI width is 13.3 μm; (d) MMI width is 13.4 μm.

    图 18  长度容差下损耗性能分析 (a) MMI长度为138 μm; (b) MMI长度为140 μm; (c) MMI长度为144 μm; (d) MMI长度为148 μm

    Fig. 18.  Analysis of loss performance under length tolerance: (a) MMI length is 138 μm; (b) MMI length is 140 μm; (c) MMI length is 144 μm; (d) MMI length is 148 μm.

    图 19  长度容差下串扰性能分析 (a) MMI长度为138 μm; (b) MMI长度为140 μm; (c) MMI长度为144 μm; (d) MMI长度为148 μm

    Fig. 19.  Analysis of crosstalk performance under length tolerance: (a) MMI length is 138 μm; (b) MMI length is 140 μm; (c) MMI length is 144 μm; (d) MMI length is 148 μm.

    表 1  90°光混频器的比较

    Table 1.  Comparison of 90° optical mixers.

    Ref. Phase Deviation/(°) CMRR/dB Technology
    [6] <5 <–20 InP平台
    [7] <5 <–20 SOI平台
    [8] <5 <–20 SOI平台
    [9] <5 <–20 SOI平台
    [10] <5 <–20 SOI平台
    This Work <4 <–30 LiNbO3平台
    下载: 导出CSV

    表 2  模式分离器的比较

    Table 2.  Comparison of pattern separators.

    Ref. Patterns of separation Loss/dB Crosstalk/dB
    [11] TE0, TE1 <1 <–16
    [12] TM0, TM1 <0.53 <–15
    [14] TE0, TE1 <1.8 <–22.1
    [16] TE0, TE1 <3.04 <–13.34
    [18] TE0, TE1, TE2 <10 <–15
    This Work TE0, TE1, TE2, TE3 <0.56 <–15.46
    下载: 导出CSV
    Baidu
  • [1]

    韩笑天, 聂文超, 李鹏, 李广英, 常畅, 张鹏飞, 廖佩璇, 谢琛华, 李慧, 汪伟, 谢小平 2025 光学学报 45 1306016Google Scholar

    Han X T, Nie W C, Li P, Li G Y, Chang C, Zhang P F, Liao P X, Xie C H, Li H, Wang W, Xie X P 2025 Acta Opt. Sin. 45 1306016Google Scholar

    [2]

    Xing J J, Li Z Y, Xiao X, Yu J Z, Yu Y D 2013 Opt. Lett. 38 3468Google Scholar

    [3]

    马天宝, 祁玲珍, 彭姝, 李佳明, 郭旭联, 刘奎 2024 光学学报 44 1627001Google Scholar

    Ma T B, Qi L Z, Peng S, Li J M, Guo X L, Liu K 2024 Acta Opt. Sin. 44 1627001Google Scholar

    [4]

    Driscoll J B, Grote R R, Souhan B, Dadap J I, Lu M, Osgood R M 2013 Opt. Lett. 38 1854Google Scholar

    [5]

    Halir R, Molina-Fernández I, Ortega-Moñux A, Wangüemert-Pérez J G, Xu D X, Cheben P, Janz S 2008 J. Lightwave Technol. 26 2697

    [6]

    Jeong S H, Morito K 2010 J. Lightwave Technol. 28 1323Google Scholar

    [7]

    Voigt K, Zimmermann L, Winzer G, Tian H, Tillack B, Petermann K 2011 IEEE Photonics Technol. Lett. 23 1769Google Scholar

    [8]

    Halir R, Roelkens G, Ortega-Moñux A, Wangüemert-Pérez J G 2011 Opt. Lett. 36 178Google Scholar

    [9]

    Yang W, Yin M, Li Y P, Wang X J, Wang Z Y 2013 Opt. Express 21 28423Google Scholar

    [10]

    Liao J W, Zhang L X, Liu M L, Wang L R, Wang W Q, Wang G X, Ruan C, Zhao W, Zhang W F 2016 IEEE Photonics Technol. Lett. 28 2597Google Scholar

    [11]

    Jiang W F, Wang X G 2020 J. Lightwave Technol. 38 2414Google Scholar

    [12]

    Liu D J, Zhang M, Shi Y C, Dai D X 2020 IEEE Photonics Technol. Lett. 32 192Google Scholar

    [13]

    Jiang W F, Xu S Y 2021 J. Lightwave Technol. 39 6239Google Scholar

    [14]

    Chen T, Dang Z Q, Liu Z X, Ding Z M, Yang Z F, Zhang X D, Jiang X H, Zhang Z Y 2021 IEEE Photonics Technol. Lett. 33 1135Google Scholar

    [15]

    陈涛, 毛思强, 万洪丹, 汪静丽, 蒋卫锋 2023 光学学报 43 2313003

    Chen T, Mao S Q, Wan H D, Wang J L, Jiang W F 2023 Acta Opt. Sin. 43 2313003

    [16]

    廖莎莎, 张伍浩, 赵帅, 赵薪程, 唐亮 2024 光学学报 44 0523001Google Scholar

    Liao S S, Zhang W H, Zhao S, Zhao X C, Tang L 2024 Acta Opt. Sin. 44 0523001Google Scholar

    [17]

    王曼卓, 姚振涛, 孙朝阳, 张越, 方记民, 孙小强, 吴远大, 张大明 2025 光子学报 54 0323001Google Scholar

    Wang M Z, Yao Z T, Sun C Y, Zhang Y, Fang J M, Sun X Q, Wu Y D, Zhang D M 2025 Acta Photonica Sin. 54 0323001Google Scholar

    [18]

    Qi Y, Li Y 2020 Nanophotonics 9 1287Google Scholar

    [19]

    徐光耀, 马晓飞, 盛冲, 刘辉 2023 光学学报 43 1923001Google Scholar

    Xu G Y, Ma X F, Chong S, Liu H 2023 Acta Opt. Sin. 43 1923001Google Scholar

    [20]

    冯新凯, 陈怀熹, 陈家颖, 梁万国 2023 中国激光 50 2208001Google Scholar

    Feng X K, Chen H X, Chen J Y, Liang W G 2023 Chin. J. Lasers 50 2208001Google Scholar

    [21]

    Guan H, Ma Y J, Shi R Z, Zhu X L, Younce R, Chen Y J, Roman J, Ophir N, Liu Y, Ding R, Baehr-Jones T, Bergman K, Hochberg M 2017 Opt. Express 25 28957Google Scholar

    [22]

    Ortega-Monux A, Zavargo-Peche L, Maese-Novo A, Molina-Fernandez I, Halir R, Wanguemert-Perez J G, Cheben P, Schmid J H 2011 IEEE Photonics Technol. Lett. 23 1406Google Scholar

  • [1] 杨秋爽, 霍绍勇, 张树鑫, 陈久久. 弹性声子晶体板中耦合谷拓扑边缘态与多模干涉传输.  , doi: 10.7498/aps.75.20251194
    [2] 何希文, 马德岳, 张政, 王荣平, 刘继桥, 陈卫标, 周治平. 基于分段级联多模干涉的Ta2O5 980/1550 nm波分复用/解复用器.  , doi: 10.7498/aps.74.20241243
    [3] 汪静丽, 陈子玉, 陈鹤鸣. 基于Si3N4/SiNx/Si3N4三明治结构的偏振无关1 × 2多模干涉型解复用器的设计.  , doi: 10.7498/aps.69.20191449
    [4] 刘景良, 陈薪羽, 王睿明, 吴春婷, 金光勇. 基于中红外光参量振荡器光束质量优化的90°像旋转四镜非平面环形谐振腔型设计与分析.  , doi: 10.7498/aps.68.20182001
    [5] 邱橙, 陈泳屹, 高峰, 秦莉, 王立军. 一种结合增益耦合分布反馈光栅的多模干涉波导半导体激光器的研制.  , doi: 10.7498/aps.68.20190744
    [6] 贾芳, 张魁正, 胡银泉, 张浩亮, 胡利云, 范洪义. 级联光束分离器的纠缠特性及其应用.  , doi: 10.7498/aps.67.20180362
    [7] 肖金标, 王登峰. 硅基槽式纳米线多模干涉型模阶数转换器全矢量分析.  , doi: 10.7498/aps.66.074203
    [8] 方月婷, 易建鹏, 陈锦山, 汪洪杰, 池浪, 夏瑞东. 基于衬底图形化与链取向技术实现平面光波导.  , doi: 10.7498/aps.65.056101
    [9] 周建忠, 陈抱雪, 李家韡, 王关德, 浜中广见. 光波导脉冲耦合器研究.  , doi: 10.7498/aps.63.014211
    [10] 贾芳, 徐学翔, 刘寸金, 黄接辉, 胡利云, 范洪义. 光束分离器算符的分解特性与纠缠功能.  , doi: 10.7498/aps.63.220301
    [11] 李珊珊, 常胜江, 张昊, 白晋军, 刘伟伟. 基于悬浮式双芯多孔光纤的太赫兹偏振分离器.  , doi: 10.7498/aps.63.110706
    [12] 贾婉丽, 赵立, 侯磊, 纪卫莉, 施卫, 屈光辉. 碳纳米管光混频器产生太赫兹功率的理论分析.  , doi: 10.7498/aps.63.077201
    [13] 曾维友, 谢康, 陈伟, 毛书哲. TE-TM模变换型光波导隔离器的理论研究.  , doi: 10.7498/aps.61.164201
    [14] 方晓惠, 胡明列, 宋有建, 谢辰, 柴路, 王清月. 多芯光子晶体光纤锁模激光器.  , doi: 10.7498/aps.60.064208
    [15] 孙一翎, 潘剑侠. 多模干涉耦合器中重叠像相干相消现象分析.  , doi: 10.7498/aps.56.3300
    [16] 于天宝, 王明华, 江晓清, 杨建义. 三平行光子晶体单模波导的耦合特性及其应用.  , doi: 10.7498/aps.55.1851
    [17] 纪宪明, 印建平. 一种新颖的表面光波导型原子(或分子)分束器.  , doi: 10.7498/aps.54.4659
    [18] 赵建林, 李碧丽, 张 鹏, 杨德兴, 李振伟. 用光辐照法在SBN:Cr晶体中写入动态阵列平面光波导.  , doi: 10.7498/aps.53.2583
    [19] 张 鹏, 赵建林, 杨德兴, 王美蓉, 孙一栋. LiNbO3:Fe晶体中光写入平面光波导的导光特性研究.  , doi: 10.7498/aps.53.3369
    [20] 刘山亮. 空间光孤子脉冲在平面光波导中的传输.  , doi: 10.7498/aps.52.2825
计量
  • 文章访问数:  365
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-04
  • 修回日期:  2025-09-24
  • 上网日期:  2025-10-14

/

返回文章
返回
Baidu
map