搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于薄膜铌酸锂定制化多模干涉的宽带90°光混频与模式分离集成器件的设计

谭振坤 侯朋飞 郭海红 雷思琛 徐一帆 张福瑞 李瑶 蔚娟 张朋 王姣

引用本文:
Citation:

基于薄膜铌酸锂定制化多模干涉的宽带90°光混频与模式分离集成器件的设计

谭振坤, 侯朋飞, 郭海红, 雷思琛, 徐一帆, 张福瑞, 李瑶, 蔚娟, 张朋, 王姣

Customized MMI Couplers for a Broadband 90° OpticalHybrid and Mode-Selective Splitter in Thin-Film Lithium Niobate

TAN Zhenkun, HOU Pengfei, GUO Haihong, LEI Sichen, XU Yifan, ZhANG Furui, LI Yao, YU Juan, ZHANG Peng, WANG Jiao
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 90°光混频器是无线相干光通信系统接收端的关键器件,在提升接收端灵敏度和抗干扰能力方面发挥着重要作用。传统的90°光混频器存在对精度要求高、体积大、受限于模式失配、偏振敏感和功能单一等缺点。为解决上述问题且进一步实现器件的多功能化,在铌酸锂平台基于多模干涉(Multimode Interference,MMI)结构,设计了兼具90°光混频和模式分离功能的多功能集成器件。该器件在功能上具备良好的可扩展性,在性能上均优于传统结构,具有低损耗、高精度和宽带宽的特点,并通过容差分析验证了器件在较大工艺误差范围内仍能保持优异的性能,展现了较高的工艺容差性和可靠性。该器件可同时应用于大规模集成光学中,为高性能片上光通信系统提供了新技术。
    An essential part of coherent optical communication and heterodyne detection, the 90°optical mixer improves polarization discrimination and anti-interference capabilities, increases receiver sensitivity, and permits demodulation of higher-order modulation forms. The disadvantages of conventional 90° optical mixers, however, include their high precision needs, size, mode mismatch restrictions, polarization sensitivity, and single functionality. Utilizing a lithium niobate platform, a Multimode Interference (MMI) structure, and a micro-thermoelectric electrode array, this study uses the Finite Difference Time Domain (FDTD) method to design a multipurpose device that combines 90°optical mixing and mode separation capabilities. The multipurpose device acts as a 90° optical mixer when no voltage is provided across the micro-thermoelectric electrode, according to the results. All four output ports have common-mode rejection ratios above -30 dB, phase errors below 4°, and losses surpassing -13.862 dB in the 1520–1580 nm wavelength region. TE0,TE1,TE2,and TE3 modes are separated by the multipurpose device acting as a mode splitter when a voltage is supplied across the micro-thermoelectric electrodes. In addition to controlling crosstalk fluctuation within 8.8 dB, the minimum loss divergence between modes is less than 0.024 dB. The physical characteristics of optical field interference within the MMI structure allow for perfect phase matching and energy distribution throughout a wide spectrum range, according to research findings, even when no voltage is supplied across the micro-thermoelectric electrode terminals. By controlling the interference superposition process inside the multi-mode region and improving broadband 90° optical mixing parameters, stable phase-matching conditions are maintained across the wide spectrum.The lithium niobate-based linear electro-optic effect (Pockels effect) modifies the waveguide refractive index distribution through an external electric field when a voltage is placed across the micro-thermoelectrode. By changing the light field's coupling path and propagation mode inside the MMI structure, this allows the mode-separating integrator to precisely achieve mode separation. The efficiency of the electro-optic effect in optical functional control is confirmed by this, which meets the isolation requirements for various mode optical signals. Furthermore, a methodical tolerance analysis of the device's width and length was carried out, demonstrating how structural dimensional deviations affect the mode coupling efficiency and optical field interference circumstances. The integrated broadband 90° optical mixer and mode splitter device described in this paper has excellent process tolerance properties.
  • [1]

    Han X T, Nie W C, Li P, Li G Y, Chang C, Zhang P F, Liao P X, Xie C H, Li H, Wang W, Xie X P 2025 Acta Photon. Sin. 451306016(in Chinese) [韩笑天, 聂文超, 李鹏, 李广英, 常畅, 张鹏飞, 廖佩璇, 谢琛华, 李慧, 汪伟, 谢小平2025光子学报451306016]

    [2]

    Xing J J, Li Z Y, Xiao X, Yu J Z, Yu Y D 2013 Opt. Lett. 383468

    [3]

    Liao J W, Zhang L X, Liu M L, Wang L R, Wang W Q, Wang G X, Ruan C, Zhao W, Zhang W F 2016 IEEE Photonics Technol. Lett. 282597

    [4]

    Jeffrey B. Driscoll, Richard R. Grote, Brian Souhan, Jerry I. Dadap, Lu M, Richard M. Osgood 2013 Opt. Lett. 381854

    [5]

    Robert Halir, I. Molina-Fernández, A. Ortega-Moñux, J. G. Wangüemert-Pérez, Xu D X, Pavel Cheben, Siegfried Janz 2008 J. Lightwave Technol.262697

    [6]

    Seok-Hwan Jeong, Ken Morito 2010 J. Lightwave Technol. 281323

    [7]

    Karsten Voigt, Lars Zimmermann, Georg Winzer, Tian H, Bernd Tillack, Klaus Petermann 2011 IEEE Photonics Technol. Lett. 231769

    [8]

    R. Halir, G. Roelkens, A. Ortega-Moñux, J. G. Wangüemert-Pérez 2011 Opt. Lett. 36178

    [9]

    Yang W, Yin M, Li Y P, Wang X J, Wang Z Y 2013 Opt. Express 2128423

    [10]

    Liao J W, Zhang L X, Liu M L, Wang L R, Wang W Q, Wang G X, Ruan C, Zhao W, Zhang W F 2016 IEEE Photonics Technol. Lett. 282597

    [11]

    Jiang W F, Wang X G 2020 J. Lightwave Technol. 382414

    [12]

    Liu D J, Zhang M, Shi Y C, Dai D X 2020 IEEE Photonics Technol. Lett. 32192

    [13]

    Jiang W F, Xu S Y 2021 J. Lightwave Technol.396239

    [14]

    Chen T, Dang Z Q, Liu Z X, Ding Z M, Yang Z F, Zhang X D, Jiang X H, Zhang Z Y 2021 IEEE Photonics Technol. Lett. 331135

    [15]

    Chen T, Mao S Q, Wan H D, Wang J L, Jiang W F 2023 Acta Opt. Sin. 43173(in Chinese) [陈涛, 毛思强, 万宏丹, 王静丽, 江伟峰2023光学学报43173]

    [16]

    Wang M Z, Yao Z T, Sun C Y, Zhang Y, Fang J M, Sun X Q, Wu Y D, Zhang D M 2025 Acta Photon. Sin. 540323001(in Chinese) [王曼卓, 姚振涛, 孙朝阳, 张跃, 方济民, 孙晓强, 吴远达, 张大明2025光子学报540323001]

    [17]

    Liao S S, Zhang W H, Zhao S, Zhao X C, Tang L 2024 Acta Opt. Sin. 440523001(in Chinese) [廖莎莎, 张武豪, 赵帅, 赵新成, 唐良2024光学学报440523001]

    [18]

    Qi Y, Li Y 2020 Nanophotonics 91287

    [19]

    Xu G Y, Ma X F, Chong S, Liu H 2023 Acta Opt. Sin. 431923001(in Chinese) [徐光耀, 马晓飞, 冲生, 刘慧2023光学学报431923001]

    [20]

    Feng X K, Chen H X, Chen J Y, Liang W G 2023 Chin. J. Lasers 502208001(in Chinese) [冯新凯, 陈淮西, 陈嘉颖, 梁万国2023中国激光502208001]

    [21]

    Guan H, Ma Y J, Shi R Z, Zhu X L, Rick Younce, Chen Y J, Jose Roman, Noam Ophir, Liu Y, Ding R, Thomas Baehr-Jones, Keren Bergman, Michael Hochberg 2017 Opt. Express 2528957

    [22]

    A. Ortega-Monux, L. Zavargo-Peche, A. Maese-Novo, I. Molina-Fernandez, R. Halir, J. G. Wanguemert-Perez, P. Cheben, J. H. Schmid 2011 IEEE Photonics Technol. Lett. 231406

  • [1] 何希文, 马德岳, 张政, 王荣平, 刘继桥, 陈卫标, 周治平. 基于分段级联多模干涉的Ta2O5 980/1550 nm波分复用/解复用器.  , doi: 10.7498/aps.74.20241243
    [2] 汪静丽, 陈子玉, 陈鹤鸣. 基于Si3N4/SiNx/Si3N4三明治结构的偏振无关1 × 2多模干涉型解复用器的设计.  , doi: 10.7498/aps.69.20191449
    [3] 刘景良, 陈薪羽, 王睿明, 吴春婷, 金光勇. 基于中红外光参量振荡器光束质量优化的90°像旋转四镜非平面环形谐振腔型设计与分析.  , doi: 10.7498/aps.68.20182001
    [4] 邱橙, 陈泳屹, 高峰, 秦莉, 王立军. 一种结合增益耦合分布反馈光栅的多模干涉波导半导体激光器的研制.  , doi: 10.7498/aps.68.20190744
    [5] 贾芳, 张魁正, 胡银泉, 张浩亮, 胡利云, 范洪义. 级联光束分离器的纠缠特性及其应用.  , doi: 10.7498/aps.67.20180362
    [6] 肖金标, 王登峰. 硅基槽式纳米线多模干涉型模阶数转换器全矢量分析.  , doi: 10.7498/aps.66.074203
    [7] 方月婷, 易建鹏, 陈锦山, 汪洪杰, 池浪, 夏瑞东. 基于衬底图形化与链取向技术实现平面光波导.  , doi: 10.7498/aps.65.056101
    [8] 周建忠, 陈抱雪, 李家韡, 王关德, 浜中广见. 光波导脉冲耦合器研究.  , doi: 10.7498/aps.63.014211
    [9] 贾芳, 徐学翔, 刘寸金, 黄接辉, 胡利云, 范洪义. 光束分离器算符的分解特性与纠缠功能.  , doi: 10.7498/aps.63.220301
    [10] 李珊珊, 常胜江, 张昊, 白晋军, 刘伟伟. 基于悬浮式双芯多孔光纤的太赫兹偏振分离器.  , doi: 10.7498/aps.63.110706
    [11] 贾婉丽, 赵立, 侯磊, 纪卫莉, 施卫, 屈光辉. 碳纳米管光混频器产生太赫兹功率的理论分析.  , doi: 10.7498/aps.63.077201
    [12] 徐刚, 谢平, 廖勇. X波段过模弯曲圆波导TM01-HE11模式变换器研究.  , doi: 10.7498/aps.62.078401
    [13] 曾维友, 谢康, 陈伟, 毛书哲. TE-TM模变换型光波导隔离器的理论研究.  , doi: 10.7498/aps.61.164201
    [14] 方晓惠, 胡明列, 宋有建, 谢辰, 柴路, 王清月. 多芯光子晶体光纤锁模激光器.  , doi: 10.7498/aps.60.064208
    [15] 孙一翎, 潘剑侠. 多模干涉耦合器中重叠像相干相消现象分析.  , doi: 10.7498/aps.56.3300
    [16] 于天宝, 王明华, 江晓清, 杨建义. 三平行光子晶体单模波导的耦合特性及其应用.  , doi: 10.7498/aps.55.1851
    [17] 纪宪明, 印建平. 一种新颖的表面光波导型原子(或分子)分束器.  , doi: 10.7498/aps.54.4659
    [18] 赵建林, 李碧丽, 张 鹏, 杨德兴, 李振伟. 用光辐照法在SBN:Cr晶体中写入动态阵列平面光波导.  , doi: 10.7498/aps.53.2583
    [19] 张 鹏, 赵建林, 杨德兴, 王美蓉, 孙一栋. LiNbO3:Fe晶体中光写入平面光波导的导光特性研究.  , doi: 10.7498/aps.53.3369
    [20] 刘山亮. 空间光孤子脉冲在平面光波导中的传输.  , doi: 10.7498/aps.52.2825
计量
  • 文章访问数:  12
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-10-14

/

返回文章
返回
Baidu
map