搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弹性声子晶体板中耦合谷拓扑边缘态与多模干涉传输

杨秋爽 霍绍勇 张树鑫 陈久久

引用本文:
Citation:

弹性声子晶体板中耦合谷拓扑边缘态与多模干涉传输

杨秋爽, 霍绍勇, 张树鑫, 陈久久

Coupling valley topological edge states and multimode interference transmission in elastic phononic crystal plates

Yang Qiu-Shuang, Huo Shao-Yong, Zhang Shu-xin, Chen Jiu-jiu
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 近年来,具有谷赝自旋自由度的拓扑谷态物理备受关注。声子晶体中的拓扑谷边界态因其背向散射免疫传输特性,在高效声波和弹性波波导与传感方面具有重要的应用前景。本文基于弹性波量子谷霍尔效应类比构建了一种三角晶格谷拓扑声子晶体板,系统地研究了面外偏振弹性波谷边缘态在多层拓扑异质超胞结构中耦合行为,揭示了有限尺寸的多层异质结构对弹性波耦合谷边缘态的形成机理与调控规律。进一步通过拓扑传输计算,揭示了弹性波耦合谷边缘态的多模干涉效应并验证其传输鲁棒性。最后,作为一种应用示例,基于谷边缘态多模干涉效应设计了一种弹性波拓扑波长解复用器。利用不同耦合频率下边缘态的耦合波长差异,实现入射弹性波在抗缺陷通道中的定向分离。本文研究为弹性波拓扑传输调控提供了新范式,有望推动新型多功能弹性波耦合与传感器件的实用化设计。
    In recent years, topological valley physics with valley pseudospin degrees of freedom have attracted significant attention. The topological valley boundary states in phononic crystals have important application prospects in efficient guidance and sensing for acoustic and elastic wave due to their unique transmission characteristics with backscattering immunity. However, the coupling effect of the valley edge states in multi-layer topological heterostructure was still a challenge in the elastic system due to the complicated multi-mode polarization of elastic waves. This article constructed a valley topological phononic crystal plate with multi-layer heterostructure to explore the multi-mode interference characteristics of the valley edge states based on the analogy of elastic wave quantum valley Hall effect. The coupling behavior of valley edge states for the out-of-plane polarized elastic wave in multi-layer topological heterostructure was systematically studied. By adjusting the layer numbers of the topological heterostructure, the formation mechanism and regulation law of coupled valley edge states for elastic wave in finite size multi-layer heterogeneous structures were revealed. Furthermore, through topological transmission calculations, the multi-mode interference effect of coupled valley edge states for elastic wave was achieved and its transmission robustness was well verified. Finally, as an application example, an elastic topological wavelength demultiplexing device was designed based on the multi-mode interference effect of valley edge state. By utilizing the difference in coupling wavelengths of elastic valley edge states at different coupling frequencies, directional separation of incident elastic waves in defect resistant channels was achieved, which could be as a prototype model for the novel application of elastic wavelength demultiplex device. This study provides a new paradigm for the manipulation of elastic wave topological transport, which is also expected to promote the practical design of new multifunctional elastic wave coupling and sensing devices.
  • [1]

    Ma G C, Xiao M, Chan C T 2019 Nat. Rev. Phys. 1 281

    [2]

    Zhang X J, Xiao M, Cheng Y, Lu M H, Christensen J 2018 Commun. Phys. 1 97

    [3]

    Zhang Z W, Wei Q, Cheng Y, Zhang T, Wu D J, Liu X J 2017 Phys. Rev. Lett. 118 084303

    [4]

    Tan M T, Sun X W, Liu Y H, Gao X L, Hu L W, Song T 2024 J. Appl. Phys. 135 243107

    [5]

    Chen X D, Shi F L, Liu H, Lu J C, Deng W M, Dai J Y, Cheng Q, Dong J W 2018 Phys. Rev. Appl. 10 044002

    [6]

    Chen X D, Zhao F L, Chen M, Dong J W 2017 Phys. Rev. B. 96 020202

    [7]

    Lu J Y, Qiu C Y, Ye L P, Fan X Y, Ke M Z, Zhang F, Liu Z Y 2017 Nat. Phys. 13 369

    [8]

    Geng Z G, Peng Y G, Shen Y X, Zhao D G, Zhu X F 2019 Acta Phys. Sin. 68 227802 (in Chinese)[耿治国,彭玉桂,沈亚西,赵德刚,祝雪丰 2019 68 227802]

    [9]

    Yan M, Lu J Y, Li F, Deng W Y, Huang X Q, Ma J H, Liu Z Y 2018 Nat. Mater. 17 993

    [10]

    Huo S Y, Xie G H, Qiu S J, Gong X C, Fan S Z, Fu C M, Li Z Y 2022 Mech. Adv. Mater. Struct. 29 7772

    [11]

    Chen K K, Dong X J, Gao P L, Zhang J Y, Sun Y T, Tu G W, Peng Z K 2023 Int. J. Mech. Sci. 259 108589

    [12]

    Wang B B, Jia D, Ge Y, Yuan S Q, Sun H X 2022 New J. Phys. 24 113033

    [13]

    Zhang Z W, Tian Y, Wang Y H, Gao S X, Cheng Y, Liu X J, Christensen J 2018 Adv. Mater. 30 1803229

    [14]

    Xiao J W, Ding X X, Huang W B, He Q B, Shao Y M 2024 Mech. Syst. Sig. Process 220 111657

    [15]

    Bao Y H, Jia Z Y, Tian Q M, Luo Y J, Zhang X P, Kang Z 2024 Compos. Struct. 351 118622

    [16]

    Zhang Z W, Tian Y, Cheng Y, Wei Q, Liu X J, Christensen J 2018 Phys. Rev. Appl. 9 034032

    [17]

    Dixon K Y, Loring T A, Cerjan A 2023 Phys. Rev. Lett. 131 213801

    [18]

    Li Y, Luo Y J, Zhang X P 2022 J. Sound Vib. 529 116962

    [19]

    Shao H X, Wang Y K, Yang G F, Sang T 2023 Opt. Express 31 32393

    [20]

    Sharifi M, Rezaei B, Pashaei Adl H, Zakerhamidi M S 2023 J. Appl. Phys. 133 083102

    [21]

    Li M X, Wang Y K, Sang T, Chu H C, Lai Y, Yang G F 2021 Photonics Res. 10 197

    [22]

    Yang Q S, Chen R H, Huo S Y 2024 Mater. Today Commun. 40 110060

    [23]

    Yang Y T, Qian X Y, Shi L W, Shen X P, Wang Y F, Hang Z H 2022 Opt. Express 30 5731

    [24]

    Li J F, Yao J F, Wang Y, Zhou Z X, Kudryavtsev A A, Lan Z H, Yuan C X 2023 APL Photon. 8 066102

    [25]

    Wang L G, Liu T, Yin J W 2024 Phys. Lett. A 512 129571

    [26]

    Wang M D, Zhou W Y, Bi L Y, Qiu C Y, Ke M Z, Liu Z Y 2020 Nat. Commun. 11 3000

    [27]

    Wei T T, Wang Y K 2022 Opt. Express 30 36900

    [28]

    Wu P, Gao F, Xiang X, Yang J, Liu Y K, Peng Y G, Zhu X F 2025 Phys. Rev. Appl. 23 054015

    [29]

    Geng Z G, Yu T J, Chen Z J, Shen Y X, Zhu X F 2024 Phys. Rev. Appl. 22 064091

    [30]

    Huang H B, Chen J J, Mao L 2024 Phys. Scr. 99 095011

    [31]

    Zhou Y Z, Sang T, Hu B L, Wang Y K 2025 Appl. Phys. Lett. 126 242203

    [32]

    Liu L, Wang Y K, Zheng F X, Sang T 2022 Opt. Lett. 47 2634

    [33]

    Fang H, Xie G H, Huang H B, Chen J J 2024 Sci. Rep. 14 17011

    [34]

    Yin S D, Ye L P, He H L, Ke M Z, Liu Z Y 2022 Phys. Rev. Appl. 18 054073

    [35]

    Zhang L, Yang Y H, He M J, Wang H X, Yang Z J, Li E P, Gao F, Zhang B L, Singh R J, Jiang J H, Chen H S 2019 Laser Photonics Rev. 13 1900159

    [36]

    Huang Z, Wu J H, Huang Y, Liu C R, Chen C, Ma F Y 2021 J. Phys. D: Appl. Phys. 55 045301

    [37]

    Xu Y, Zhou W, Chen K H, Huang X G 2022 Opt. Laser. Technol. 155 108422

    [38]

    Wu Z, Chen J Y, Wang W H, Xu J, Shao S X, Xia R Y, Li Z 2024 Thin.Wall. Struct. 201 111997

    [39]

    Li Y M, Kong P, Bi R G, He Z J, Deng K 2022 Acta Phys. Sin. 71 244302 (in Chinese) [李荫铭,孔鹏,毕仁贵,何兆剑,邓科 2022 71 244302]

  • [1] 谭振坤, 侯朋飞, 郭海红, 雷思琛, 徐一帆, 张福瑞, 李瑶, 蔚娟, 张朋, 王姣. 基于薄膜铌酸锂定制化多模干涉的宽带90°光混频与模式分离集成器件的设计.  , doi: 10.7498/aps.74.20250725
    [2] 何希文, 马德岳, 张政, 王荣平, 刘继桥, 陈卫标, 周治平. 基于分段级联多模干涉的Ta2O5 980/1550 nm波分复用/解复用器.  , doi: 10.7498/aps.74.20241243
    [3] 林建华, 毕仁贵, 唐诗瑶, 孔鹏, 邓科. 基于弹性拓扑绝缘体的多频段谷锁定拓扑输运研究.  , doi: 10.7498/aps.74.20241322
    [4] 李荫铭, 孔鹏, 毕仁贵, 何兆剑, 邓科. 双表面周期性弹性声子晶体板中的谷拓扑态.  , doi: 10.7498/aps.71.20221292
    [5] 骆全斌, 黄学勤, 邓伟胤, 吴迎, 陆久阳, 刘正猷. 声子晶体板中的第二类狄拉克点和边缘传输.  , doi: 10.7498/aps.70.20210712
    [6] 郑周甫, 尹剑飞, 温激鸿, 郁殿龙. 基于声子晶体板的弹性波拓扑保护边界态.  , doi: 10.7498/aps.69.20200542
    [7] 汪静丽, 陈子玉, 陈鹤鸣. 基于Si3N4/SiNx/Si3N4三明治结构的偏振无关1 × 2多模干涉型解复用器的设计.  , doi: 10.7498/aps.69.20191449
    [8] 邱橙, 陈泳屹, 高峰, 秦莉, 王立军. 一种结合增益耦合分布反馈光栅的多模干涉波导半导体激光器的研制.  , doi: 10.7498/aps.68.20190744
    [9] 王子, 张丹妹, 任捷. 声子系统中弹性波与热输运的拓扑与非互易现象.  , doi: 10.7498/aps.68.20191463
    [10] 王婷, 崔志文, 刘金霞, 王克协. 含少量气泡流体饱和孔隙介质中的弹性波.  , doi: 10.7498/aps.67.20180209
    [11] 陈泽国, 吴莹. 声子晶体中的多重拓扑相.  , doi: 10.7498/aps.66.227804
    [12] 王青海, 李锋, 黄学勤, 陆久阳, 刘正猷. 一维颗粒声子晶体的拓扑相变及可调界面态.  , doi: 10.7498/aps.66.224502
    [13] 肖金标, 王登峰. 硅基槽式纳米线多模干涉型模阶数转换器全矢量分析.  , doi: 10.7498/aps.66.074203
    [14] 刘启能. 一维固-固结构圆柱声子晶体中弹性波的传输特性.  , doi: 10.7498/aps.60.034301
    [15] 崔志文, 刘金霞, 王春霞, 王克协. 基于Biot-喷射流统一模型Maxwell流体饱和孔隙介质中的弹性波.  , doi: 10.7498/aps.59.8655
    [16] 蔡 力, 韩小云, 温熙森. 长波条件下二维声子晶体中的弹性波传播及各向异性.  , doi: 10.7498/aps.57.1746
    [17] 孙一翎, 潘剑侠. 多模干涉耦合器中重叠像相干相消现象分析.  , doi: 10.7498/aps.56.3300
    [18] 于天宝, 王明华, 江晓清, 杨建义. 三平行光子晶体单模波导的耦合特性及其应用.  , doi: 10.7498/aps.55.1851
    [19] 温激鸿, 王 刚, 刘耀宗, 郁殿龙. 基于集中质量法的一维声子晶体弹性波带隙计算.  , doi: 10.7498/aps.53.3384
    [20] 范希庆, 刘砚章, 王淮生, 刘福绥. 多声子强耦合超导理论.  , doi: 10.7498/aps.38.53
计量
  • 文章访问数:  32
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2025-10-24

/

返回文章
返回
Baidu
map