-
近年来,具有谷赝自旋自由度的拓扑谷态物理备受关注。声子晶体中的拓扑谷边界态因其背向散射免疫传输特性,在高效声波和弹性波波导与传感方面具有重要的应用前景。本文基于弹性波量子谷霍尔效应类比构建了一种三角晶格谷拓扑声子晶体板,系统地研究了面外偏振弹性波谷边缘态在多层拓扑异质超胞结构中耦合行为,揭示了有限尺寸的多层异质结构对弹性波耦合谷边缘态的形成机理与调控规律。进一步通过拓扑传输计算,揭示了弹性波耦合谷边缘态的多模干涉效应并验证其传输鲁棒性。最后,作为一种应用示例,基于谷边缘态多模干涉效应设计了一种弹性波拓扑波长解复用器。利用不同耦合频率下边缘态的耦合波长差异,实现入射弹性波在抗缺陷通道中的定向分离。本文研究为弹性波拓扑传输调控提供了新范式,有望推动新型多功能弹性波耦合与传感器件的实用化设计。In recent years, topological valley physics with valley pseudospin degrees of freedom have attracted significant attention. The topological valley boundary states in phononic crystals have important application prospects in efficient guidance and sensing for acoustic and elastic wave due to their unique transmission characteristics with backscattering immunity. However, the coupling effect of the valley edge states in multi-layer topological heterostructure was still a challenge in the elastic system due to the complicated multi-mode polarization of elastic waves. This article constructed a valley topological phononic crystal plate with multi-layer heterostructure to explore the multi-mode interference characteristics of the valley edge states based on the analogy of elastic wave quantum valley Hall effect. The coupling behavior of valley edge states for the out-of-plane polarized elastic wave in multi-layer topological heterostructure was systematically studied. By adjusting the layer numbers of the topological heterostructure, the formation mechanism and regulation law of coupled valley edge states for elastic wave in finite size multi-layer heterogeneous structures were revealed. Furthermore, through topological transmission calculations, the multi-mode interference effect of coupled valley edge states for elastic wave was achieved and its transmission robustness was well verified. Finally, as an application example, an elastic topological wavelength demultiplexing device was designed based on the multi-mode interference effect of valley edge state. By utilizing the difference in coupling wavelengths of elastic valley edge states at different coupling frequencies, directional separation of incident elastic waves in defect resistant channels was achieved, which could be as a prototype model for the novel application of elastic wavelength demultiplex device. This study provides a new paradigm for the manipulation of elastic wave topological transport, which is also expected to promote the practical design of new multifunctional elastic wave coupling and sensing devices.
-
Keywords:
- Coupled valley edge states /
- elastic wave /
- topological phononic crystals /
- multi-mode interference
-
[1] Ma G C, Xiao M, Chan C T 2019 Nat. Rev. Phys. 1 281
[2] Zhang X J, Xiao M, Cheng Y, Lu M H, Christensen J 2018 Commun. Phys. 1 97
[3] Zhang Z W, Wei Q, Cheng Y, Zhang T, Wu D J, Liu X J 2017 Phys. Rev. Lett. 118 084303
[4] Tan M T, Sun X W, Liu Y H, Gao X L, Hu L W, Song T 2024 J. Appl. Phys. 135 243107
[5] Chen X D, Shi F L, Liu H, Lu J C, Deng W M, Dai J Y, Cheng Q, Dong J W 2018 Phys. Rev. Appl. 10 044002
[6] Chen X D, Zhao F L, Chen M, Dong J W 2017 Phys. Rev. B. 96 020202
[7] Lu J Y, Qiu C Y, Ye L P, Fan X Y, Ke M Z, Zhang F, Liu Z Y 2017 Nat. Phys. 13 369
[8] Geng Z G, Peng Y G, Shen Y X, Zhao D G, Zhu X F 2019 Acta Phys. Sin. 68 227802 (in Chinese)[耿治国,彭玉桂,沈亚西,赵德刚,祝雪丰 2019 68 227802]
[9] Yan M, Lu J Y, Li F, Deng W Y, Huang X Q, Ma J H, Liu Z Y 2018 Nat. Mater. 17 993
[10] Huo S Y, Xie G H, Qiu S J, Gong X C, Fan S Z, Fu C M, Li Z Y 2022 Mech. Adv. Mater. Struct. 29 7772
[11] Chen K K, Dong X J, Gao P L, Zhang J Y, Sun Y T, Tu G W, Peng Z K 2023 Int. J. Mech. Sci. 259 108589
[12] Wang B B, Jia D, Ge Y, Yuan S Q, Sun H X 2022 New J. Phys. 24 113033
[13] Zhang Z W, Tian Y, Wang Y H, Gao S X, Cheng Y, Liu X J, Christensen J 2018 Adv. Mater. 30 1803229
[14] Xiao J W, Ding X X, Huang W B, He Q B, Shao Y M 2024 Mech. Syst. Sig. Process 220 111657
[15] Bao Y H, Jia Z Y, Tian Q M, Luo Y J, Zhang X P, Kang Z 2024 Compos. Struct. 351 118622
[16] Zhang Z W, Tian Y, Cheng Y, Wei Q, Liu X J, Christensen J 2018 Phys. Rev. Appl. 9 034032
[17] Dixon K Y, Loring T A, Cerjan A 2023 Phys. Rev. Lett. 131 213801
[18] Li Y, Luo Y J, Zhang X P 2022 J. Sound Vib. 529 116962
[19] Shao H X, Wang Y K, Yang G F, Sang T 2023 Opt. Express 31 32393
[20] Sharifi M, Rezaei B, Pashaei Adl H, Zakerhamidi M S 2023 J. Appl. Phys. 133 083102
[21] Li M X, Wang Y K, Sang T, Chu H C, Lai Y, Yang G F 2021 Photonics Res. 10 197
[22] Yang Q S, Chen R H, Huo S Y 2024 Mater. Today Commun. 40 110060
[23] Yang Y T, Qian X Y, Shi L W, Shen X P, Wang Y F, Hang Z H 2022 Opt. Express 30 5731
[24] Li J F, Yao J F, Wang Y, Zhou Z X, Kudryavtsev A A, Lan Z H, Yuan C X 2023 APL Photon. 8 066102
[25] Wang L G, Liu T, Yin J W 2024 Phys. Lett. A 512 129571
[26] Wang M D, Zhou W Y, Bi L Y, Qiu C Y, Ke M Z, Liu Z Y 2020 Nat. Commun. 11 3000
[27] Wei T T, Wang Y K 2022 Opt. Express 30 36900
[28] Wu P, Gao F, Xiang X, Yang J, Liu Y K, Peng Y G, Zhu X F 2025 Phys. Rev. Appl. 23 054015
[29] Geng Z G, Yu T J, Chen Z J, Shen Y X, Zhu X F 2024 Phys. Rev. Appl. 22 064091
[30] Huang H B, Chen J J, Mao L 2024 Phys. Scr. 99 095011
[31] Zhou Y Z, Sang T, Hu B L, Wang Y K 2025 Appl. Phys. Lett. 126 242203
[32] Liu L, Wang Y K, Zheng F X, Sang T 2022 Opt. Lett. 47 2634
[33] Fang H, Xie G H, Huang H B, Chen J J 2024 Sci. Rep. 14 17011
[34] Yin S D, Ye L P, He H L, Ke M Z, Liu Z Y 2022 Phys. Rev. Appl. 18 054073
[35] Zhang L, Yang Y H, He M J, Wang H X, Yang Z J, Li E P, Gao F, Zhang B L, Singh R J, Jiang J H, Chen H S 2019 Laser Photonics Rev. 13 1900159
[36] Huang Z, Wu J H, Huang Y, Liu C R, Chen C, Ma F Y 2021 J. Phys. D: Appl. Phys. 55 045301
[37] Xu Y, Zhou W, Chen K H, Huang X G 2022 Opt. Laser. Technol. 155 108422
[38] Wu Z, Chen J Y, Wang W H, Xu J, Shao S X, Xia R Y, Li Z 2024 Thin.Wall. Struct. 201 111997
[39] Li Y M, Kong P, Bi R G, He Z J, Deng K 2022 Acta Phys. Sin. 71 244302 (in Chinese) [李荫铭,孔鹏,毕仁贵,何兆剑,邓科 2022 71 244302]
计量
- 文章访问数: 32
- PDF下载量: 3
- 被引次数: 0








下载: