-
庞加莱规范引力理论近年来在引力与天体物理领域受到广泛关注和应用. 因此, 如何从实验观测上区分广义相对论和庞加莱规范引力理论已经成为一个重要的课题. 中子星作为引力极强的天体, 为检验引力理论提供了理想试验场, 目前, 庞加莱规范引力理论对中子星性质的研究十分稀少, 鉴于庞加莱规范引力理论的重要性, 有必要在庞加莱规范引力理论的框架下研究中子星的性质, 进而考察能否通过对中子星的观测来区分和检验庞加莱规范引力理论和广义相对论. 本文在庞加莱规范引力理论框架下, 由特定的引力场方程推导出了修改的球对称静态中子星的Tolman-Oppenheimer-Volkoff方程, 并进一步研究了挠率对静态中子星质量半径关系的影响. 分析表明, 在一定的条件下, 该理论模型中静态中子星的质量半径关系与广义相对论中的结果一致. 本文为在庞加莱规范引力框架下进一研究自转中子星的质量半径关系提供了理论基础和参考方法.
-
关键词:
- 庞加莱规范引力 /
- 挠率 /
- 中子星 /
- Tolman-Oppenheimer-Volkoff方程
In recent years, Poincaré gauge gravity theory has attracted widespread attention and has been applied to the fields of gravitation and astrophysics. Therefore, how to distinguish between General Relativity and Poincaré Gauge Gravity Theory through experimental observations has become an important subject. The core of Poincaré gauge gravity theory is the introduction of torsion in spacetime. General relativity can be regarded as a special case of Poincaré gauge gravity theory in the absence of torsion. Neutron stars, as celestial bodies with extremely strong gravitational fields, serve as an ideal laboratory for Poincaré gauge gravity theory. At present, research on the properties of neutron stars based on the Poincaré gauge theory of gravitation is very scarce. In view of the significance of Poincaré gauge gravity theory, it is necessary to study the properties of neutron stars within the framework of this theory and check whether observations of neutron stars can be used to distinguish and test Poincaré gauge gravity theory and general relativity. In this work, a specific gravitational field Lagrangian is chosen for Poincaré gauge gravity theory to derive the corresponding gravitational field equations. Based on these equations, the modified Tolman-Oppenheimer-Volkoff (TOV) equation is further derived for spherically symmetric static neutron stars. When the spacetime torsion is zero, the modified static neutron star TOV equation decreases precisely to the TOV equation in general relativity. Then, the influence of torsion on the mass-radius relation of static neutron stars is investigated. Our analysis shows that in spherically symmetric spacetime, when the neutron star is static and only the spin tensor of particles is considered(the order of magnitude is ${10^{ - 34}}$), the mass-radius relation of static neutron stars calculated by this theoretical model is consistent with the result in general relativity. This indicates that under static conditions, the correction effect of torsion on the mass-radius relation of neutron stars can be neglected. This study is limited to static neutron star models under the condition of spherically symmetric spacetime metrics. However, in realistic astrophysical environments, neutron stars possess significant angular momentum. In the final section of this paper, the effect of neutron star rotation is discussed and the selected Poincaré gauge gravity model is found to be unsuitable for investigating the mass–radius relation of rotating neutron stars. This work provides a theoretical foundation and reference methods for further investigating the mass–radius relation of rotating neutron stars within the framework of Poincaré gauge gravity. -
Keywords:
- Poincaré gauge gravity /
- torsion /
- neutron star /
- Tolman-Oppenheimer-Volkoff equation
-
[1] Qin C G, Tan Y J, Lu X Y, Liu T, Yang Y R, Li Q, Shao C G 2025 Phys. Rev. D 111 055008
Google Scholar
[2] Qin C G, Liu T, Dai X Y, Guo P B, Huang W, Liu X P, Tan Y J, Shao C G 2025 Class. Quantum. Grav. 42 135006
Google Scholar
[3] Paulo C C, Freire, Wex N 2024 Living. Rev. Rel. 27 5
Google Scholar
[4] Worden P, Overduin J 2024 J. Minkowski. Inst. Mag. 9 1
[5] Shao L J 2023 Lect. Notes. Phys. 1017 385
[6] Paugnat H, Lupsasca A, Vincent F H, Wielgus M 2022 Astron. Astrophys. 668 A11
Google Scholar
[7] Leane R K, Tong J 2025 J. Instrum. 20 T04001
Google Scholar
[8] Leane R K, Tong J 2024 J. Cosmol. Astropart. Phys. 12 031
[9] Kang S, Scopel S, Tomar G, Yoon J H 2019 Astropart. Phys. 109 1
Google Scholar
[10] Das H C, Burgio G F 2025 Universe 11 159
Google Scholar
[11] Yuan W L, Huang C, Zhang C, Zhou E, Xu R X 2025 Phys. Rev. D 111 063033
Google Scholar
[12] Bhattacharjee D, Chattopadhyay P K 2024 Eur. Phys. J. C 84 77
Google Scholar
[13] Romani R W, Kandel D, Filippenko A V, Brink T G, Zheng W K 2022 Astrophys. J. Lett. 934 L17
Google Scholar
[14] Jusufi K, Luciano G G, Sheykhi A, Samart D 2025 J. High Energy Astrophys. 47 100373
Google Scholar
[15] Chatterjee A, Roy R, Dey S, Bandyopadhyay A 2024 Eur. Phys. J. C 84 236
Google Scholar
[16] Chatterjee A, Gong Y 2025 Ann. Phys. 478 170036
Google Scholar
[17] Chatterjee A 2024 Class. Quantum. Grav. 41 095007
Google Scholar
[18] Landry A 2025 Mathematics 13 1003
Google Scholar
[19] Koussour M, Altaibayeva A, Bekov S, Holmurodov F, Muminov S, Rayimbaev J 2024 Phys. Dark. Univ. 46 101664
Google Scholar
[20] Koussour M, Altaibayeva A, Bekov S , Donmez O, Muminov S, Rayimbaev, J 2024 Phys. Dark. Univ. 46 101577
[21] Maurya D C, Myrzalulov R 2024 Eur. Phys. J. C 84 534
Google Scholar
[22] Sharif M, Saba S 2019 Chin. J. Phys. 58 202
Google Scholar
[23] Nashed G G L, Bamba K 2024 Phys. Dark Univ. 44 101485
Google Scholar
[24] Bubuianu L, Vacaru S I, Veliev E V, Zhamysheva A 2024 Eur. Phys. J. C 84 211
Google Scholar
[25] Lin R H, Chen X N, Zhai X H 2022 Eur. Phys. J. C 82 308
Google Scholar
[26] Mota C E, Pretel J M Z, Flores C O V 2024 Eur. Phys. J. C 84 673
Google Scholar
[27] Naseer T, Sharif M, Manzoor S, Fatima A 2024 Mod. Phys. Lett. A 39 2450048
[28] Matos I S, Calvão M O, Waga I 2021 Phys. Rev. D 103 104059
Google Scholar
[29] Pauli W 1941 Rev. Mod. Phys. 13 203
Google Scholar
[30] Yang C N, Mills R L 1954 Phys. Rev. 96 191
Google Scholar
[31] Weinberg S 1972 Phys. Rev. D 5 1412
Google Scholar
[32] Utiyama R 1956 Phys. Rev. 101 1597
Google Scholar
[33] Kibble T W B 1961 J. Math. Phys. 2 212
Google Scholar
[34] Zhao X, Ma Y G 2024 Commun. Theor. Phys. 76 065403
Google Scholar
[35] Zhang H C, Xu L X 2019 J. Cosmol. Astropart. Phys. 9 050
[36] Zhang H C, Xu L X 2020 J. Cosmol. Astropart. Phys. 10 003
[37] Cembranos J A R, Valcárcel J G 2017 J. Cosmol. Astropart. Phys. 1 14
[38] Giacconi R, Gursky H, Paolini F R, Rossi B B 1962 Phys. Rev. Lett. 9 439
Google Scholar
[39] Baade W, Zwicky F 1934 Phys. Rev. 46 76
[40] Oppenheimer J R, Volkoff G M 1939 Phys. Rev. 55 374
Google Scholar
[41] Schmidt M 1963 Nature 197 1040
[42] Shklovsky I 1967 Astrophys. J. 148 L1
Google Scholar
[43] Lundmark K 1921 Publ. Astron. Soc. Pac. 33 225
Google Scholar
[44] Kardashev N 1964 Astron. Zh. 41 807
[45] Pacini F 1967 Nature 216 567
Google Scholar
[46] Hewish A, Bell S J, Pilkington J D H, Scott P F, Collins R A 1968 Nature 217 709
Google Scholar
[47] Gold T 1968 Nature 218 731
Google Scholar
[48] Obukhov Y N 2006 Int. J. Geom. Meth. Mod. Phys. 3 95
Google Scholar
[49] Weyssenhoff J, Raabe A 1946 Nature 157 766
[50] Obukhov Y N, Korotky V A 1987 Class. Quantum. Grav. 4 1633
Google Scholar
计量
- 文章访问数: 499
- PDF下载量: 14
- 被引次数: 0