搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于对称啁啾长周期光纤光栅的双参量传感

黄秋萍 朱晓帅 任子嫣 陈海云 凌强 彭保进 陈达如

引用本文:
Citation:

基于对称啁啾长周期光纤光栅的双参量传感

黄秋萍, 朱晓帅, 任子嫣, 陈海云, 凌强, 彭保进, 陈达如

Dual-parameter sensing based on symmetrically chirped long-period fiber grating

HUANG Qiuping, ZHU Xiaoshuai, REN Ziyan, CHEN Haiyun, LING Qiang, PENG Baojin, CHEN Daru
cstr: 32037.14.aps.74.20250449
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 本文提出了一种基于对称啁啾长周期光纤光栅的双参量传感方法, 传感器由两个长度和平均周期相同但啁啾系数相反的啁啾长周期光纤光栅组成, 由于马赫-曾德尔干涉效应和光栅的啁啾效应, 对称啁啾长周期光纤光栅的透射谱表现为频率渐变的干涉条纹, 相邻干涉谷间隔随波长而增大, 条纹中不同波长位置的干涉谷对同一被测参量的响应灵敏度不同, 因而可以通过矩阵解调实现对多个参量的同时测量. 对传感器的模式干涉机制、光谱特性和传感原理进行了理论和数值分析, 并通过紫外光逐点曝光法刻制了光栅结构, 平均光栅周期为321 μm, 啁啾系数为±21.9 μm/cm, 总长度为4.34 cm, 实现了对环境折射率和温度双参量的同时测量. 此外, 由于条纹光谱中有多个频率不同的干涉谷, 因此该传感器结构可以被进一步拓展应用于对3个及以上环境参量的同时测量, 在生物化学传感、环境监测等诸多领域有较好的应用前景.
    A dual-parameter sensor based on a symmetrically chirped long-period fiber grating (SCLPFG) is proposed and demonstrated. The SCLPFG consists of two segments of long-period fiber gratings (LPFGs) with the same length and average period but opposite chirp coefficients, forming an in-fiber Mach-Zehnder interferometer (MZI). Due to the chirping effect of the LPFG, the core mode at different wavelength couples to the cladding modes at different positions within the positively chirped LPFG. Integrated with the symmetry of the SCLPFG, the stimulated cladding mode recouples to the core at the symmetrical position in the negatively chirped LPFG. Consequently, in this MZI configuration, the effective length of the interference arm is not fixed but varies with wavelength. As a result, the transmission spectrum of the SCLPFG is characterized by a nonuniform fringe pattern where the free spectrum range (FSR) increases with wavelength increasing. For the MZI-based fiber sensor, the phase difference between the core and cladding modes, influenced by environmental parameters, plays a crucial role in determining sensitivity, as this phase difference is directly proportional to the length of the interference arm. Therefore, for a specific measurand, the sensitivities interrogated by the dips at different wavelengths in the fringe pattern are inherently different, which leads to the possibility of multi-parameter sensing through a differential modulation method.The fringe characteristics and sensing mechanism are systematically investigated through theoretical analysis and numerical simulation. In the experimental section, the SCLPFG structure is engraved on a Corning single-mode fiber by irradiating photosensitive core with point-by-point UV pulsed laser. The grating exhibits an average period of 321 μm and a chirping coefficient of ±21.9 μm/cm, with the total length of the symmetrically chirped grating determined to be 4.34 cm. Experimental implementation of simultaneous dual-parameter sensing for surrounding refractive index (SRI) and temperature is conducted, verifying the differential response of distinct fringe dips to SRI and temperature variations. A 2×2 sensitivity coefficient matrix is established by linearly fitting the SRI and temperature response data, which are obtained by interrogating two dips at different wavelengths. Thus, the variations of SRI and temperature are determined by multiplying the inverse sensitivity coefficient matrix with the wavelength shift array. Furthermore, temperature sensitivities are corrected by considering the thermal effect on the refractive index of the liquid. Finally, the maximum sensitivity of the sensor to SRI is –95.316 nm/RIU and a maximum sensitivity to temperature is 0.0849 nm/℃, both of which have excellent linearity. This sensing scheme features a compact structure, high sensitivity, and the ability to measure multiple parameters. Moreover, the multi-channel nonuniform fringe characteristics enable the sensor configuration to be extended for simultaneous measurement of three or more parameters, thus providing a promising lab-on-fiber platform for multi-parameter sensing applications.
      通信作者: 陈海云, chy@zjnu.cn
    • 基金项目: 浙江省基础公益技术应用研究计划(批准号: LGF19F050001)资助的课题.
      Corresponding author: CHEN Haiyun, chy@zjnu.cn
    • Funds: Project supported by the Basic Public Welfare Research Project of Zhejiang Province, China (Grant No. LGF19F050001).
    [1]

    Gao S, Liu Y, Yang J, Duan Z Y, Yin T A, Liu Z H, Shi J H, Yuan L B, Guan C Y 2024 J. Lightwave Technol. 42 1696Google Scholar

    [2]

    Liu S, Zhou M, Zhang Z, Sun Z Y, Bai Z Y, Wang Y P 2022 Opt. Lett. 47 2602Google Scholar

    [3]

    郝晋青, 韩丙辰 2020 光学学报 40 0206002Google Scholar

    Hao J Q, Han B C 2020 Acta Opt. Sin. 40 0206002Google Scholar

    [4]

    Tian T, Li M, Ma Y W, Geng T, Yuan L B 2023 Opt. Lett. 48 2785Google Scholar

    [5]

    Wang J B, Hao J Y, Zhou J, Wang A Z, Zeng X Z, Yang X Y, Meng H R, Li S, Yang Q, Sun W M, Geng T 2023 Sens. Actuators, A 359 114465Google Scholar

    [6]

    杨易, 徐贲, 刘亚铭, 李萍, 王东宁, 赵春柳 2017 66 094205Google Scholar

    Yang Y, Xu B, Liu Y M, Li P, Wang D N, Zhao C L 2017 Acta Phys. Sin. 66 094205Google Scholar

    [7]

    陈鹏宇, 钟年丙, 何雪丰, 解泉华, 万波, 贺媛媛, 吴磊, 刘洋, 赖东 2024 光学学报 44 0428003Google Scholar

    Chen P Y, Zhong N B, He X F, Xie Q H, Wan B, He Y Y, Wu L, Liu Y, Lai D 2024 Acta Opt. Sin. 44 0428003Google Scholar

    [8]

    Chen H Y, Gu Z T, Gao K 2014 Sens. Actuators, B 196 18Google Scholar

    [9]

    Ding Y L, Chen Y, Luo S, Ling Q, Zhang Y S, Yu Z W, Guan Z G, Chen D R 2024 Opt. Laser Technol. 171 110414Google Scholar

    [10]

    Chen Y, Luo W X, Jiao B B, Yan Y X, Ling Q, Chen H Y, Yu Z W, Guan Z G, Chen D R 2024 J. Lightwave Technol. 42 463Google Scholar

    [11]

    Yue Y, Hu X X, Zhou R, Wang R H, Qiao X G 2023 J. Lightwave Technol. 41 2578Google Scholar

    [12]

    Zhu X S, Ling Q, Ren Z Y, Chen H Y, Zhou R J, Wang Y, Lou G, Luo S, Yu Z W, Guan Z G, Chen D R 2025 Opt. Laser Technol. 182 112232Google Scholar

    [13]

    Ghosh S, Dissanayake K, Asokan S, Sun T, Rahman B M A, Grattan K T V 2022 Sens. Actuators, B 364 131818Google Scholar

    [14]

    李醒龙, 赵浩兴, 武文杰, 蒋卫峰, 郑加金, 张祖兴, 余柯涵, 韦玮 2022 71 050702Google Scholar

    Li X L, Zhao H Y, Wu W J, Jiang W F, Zheng J J, Zhang Z X, Yu K H, Wei W 2022 Acta Phys. Sin. 71 050702Google Scholar

    [15]

    Liu Y G, Yang D Q, Wang Y X, Zhang T, Shao M, Yu D, Fu H W, Jia Z N 2019 Opt. Commun. 443 166Google Scholar

    [16]

    Zhang P, Tang M, Gao F, Zhu B P, Fu S N, Ouyang J, Shum P P, Liu D M 2014 Opt. Express 22 19581Google Scholar

    [17]

    Zhao Y, Zhao J, Wang X X, Peng Y, Hu X G 2022 Sens. Actuators, B 353 131134Google Scholar

    [18]

    Bhatia V, Campbel D, Claur R O 1997 Opt. Lett. 22 648Google Scholar

    [19]

    Ling Q, Gu Z T, Pang B 2020 Opt. Fiber Technol. 58 102264Google Scholar

    [20]

    Zhao Y, Chen S, Guo Y, Jiang Y, Chen S, Mou C, Liu Y, He Z 2024 Opt. Laser Technol. 175 110879Google Scholar

    [21]

    Zhang S, Geng T, Sun W M 2022 Opt. Lett. 47 2266Google Scholar

    [22]

    Esposito F, Srivastava A, Iadicicco A, Campopiano S 2019 Opt. Laser Technol. 113 198Google Scholar

    [23]

    Urrutia A, Goicoechea J, Ricchiuti A, Barrera D, Sales S, Arregui F 2016 Sens. Actuators, B 227 135Google Scholar

    [24]

    Liu T, Li Y W, Dai X Y, Gan W B, Wang X S, Dai S X, Song B A, Xu T F Zhang P Q 2023 J. Lightwave Technol. 41 5169Google Scholar

    [25]

    Erdogan T 1997 J. Lightwave Technol. 15 1277Google Scholar

    [26]

    James S W, Ishaq I, Ashwell G J, Tatam R P 2005 Opt. Lett. 30 2197Google Scholar

    [27]

    Yan J H, Zhang A P, Shao L Y, Ding J F, He S L 2007 IEEE Sens. J. 7 1360Google Scholar

  • 图 1  对称啁啾LPFG的结构示意图

    Fig. 1.  Schematic diagram of symmetrically chirped LPFG.

    图 2  对称啁啾LPFG仿真透射谱

    Fig. 2.  Simulated transmission spectrum of symmetrically chirped LPFG.

    图 3  条纹傅里叶分析 (a)频谱; (b)级联啁啾LPFG的恢复相位; (c)对称啁啾LPFG的恢复相位

    Fig. 3.  Fourier analysis for the fringe: (a) Frequency spectrum; (b) recovered phase of cascaded chirped LPFG; (c) recovered phase of symmetrically chirped LPFG.

    图 4  对称啁啾LPFG透射谱 (a)实验与仿真透射谱对比; (b)水中与空气中透射谱对比

    Fig. 4.  Transmission spectrum of symmetrically chirped LPFG: (a) Comparison between the experimental and simulated spectra; (b) comparison between the spectra in air and water.

    图 5  环境折射率和温度响应测试实验装置示意图

    Fig. 5.  Schematic diagram of the setup for SRI and temperature measurements.

    图 6  传感器对SRI变化的响应特性

    Fig. 6.  Sensing characteristics to SRI variation.

    图 7  传感器对温度变化的响应特性

    Fig. 7.  Sensing characteristics to temperature variation.

    Baidu
  • [1]

    Gao S, Liu Y, Yang J, Duan Z Y, Yin T A, Liu Z H, Shi J H, Yuan L B, Guan C Y 2024 J. Lightwave Technol. 42 1696Google Scholar

    [2]

    Liu S, Zhou M, Zhang Z, Sun Z Y, Bai Z Y, Wang Y P 2022 Opt. Lett. 47 2602Google Scholar

    [3]

    郝晋青, 韩丙辰 2020 光学学报 40 0206002Google Scholar

    Hao J Q, Han B C 2020 Acta Opt. Sin. 40 0206002Google Scholar

    [4]

    Tian T, Li M, Ma Y W, Geng T, Yuan L B 2023 Opt. Lett. 48 2785Google Scholar

    [5]

    Wang J B, Hao J Y, Zhou J, Wang A Z, Zeng X Z, Yang X Y, Meng H R, Li S, Yang Q, Sun W M, Geng T 2023 Sens. Actuators, A 359 114465Google Scholar

    [6]

    杨易, 徐贲, 刘亚铭, 李萍, 王东宁, 赵春柳 2017 66 094205Google Scholar

    Yang Y, Xu B, Liu Y M, Li P, Wang D N, Zhao C L 2017 Acta Phys. Sin. 66 094205Google Scholar

    [7]

    陈鹏宇, 钟年丙, 何雪丰, 解泉华, 万波, 贺媛媛, 吴磊, 刘洋, 赖东 2024 光学学报 44 0428003Google Scholar

    Chen P Y, Zhong N B, He X F, Xie Q H, Wan B, He Y Y, Wu L, Liu Y, Lai D 2024 Acta Opt. Sin. 44 0428003Google Scholar

    [8]

    Chen H Y, Gu Z T, Gao K 2014 Sens. Actuators, B 196 18Google Scholar

    [9]

    Ding Y L, Chen Y, Luo S, Ling Q, Zhang Y S, Yu Z W, Guan Z G, Chen D R 2024 Opt. Laser Technol. 171 110414Google Scholar

    [10]

    Chen Y, Luo W X, Jiao B B, Yan Y X, Ling Q, Chen H Y, Yu Z W, Guan Z G, Chen D R 2024 J. Lightwave Technol. 42 463Google Scholar

    [11]

    Yue Y, Hu X X, Zhou R, Wang R H, Qiao X G 2023 J. Lightwave Technol. 41 2578Google Scholar

    [12]

    Zhu X S, Ling Q, Ren Z Y, Chen H Y, Zhou R J, Wang Y, Lou G, Luo S, Yu Z W, Guan Z G, Chen D R 2025 Opt. Laser Technol. 182 112232Google Scholar

    [13]

    Ghosh S, Dissanayake K, Asokan S, Sun T, Rahman B M A, Grattan K T V 2022 Sens. Actuators, B 364 131818Google Scholar

    [14]

    李醒龙, 赵浩兴, 武文杰, 蒋卫峰, 郑加金, 张祖兴, 余柯涵, 韦玮 2022 71 050702Google Scholar

    Li X L, Zhao H Y, Wu W J, Jiang W F, Zheng J J, Zhang Z X, Yu K H, Wei W 2022 Acta Phys. Sin. 71 050702Google Scholar

    [15]

    Liu Y G, Yang D Q, Wang Y X, Zhang T, Shao M, Yu D, Fu H W, Jia Z N 2019 Opt. Commun. 443 166Google Scholar

    [16]

    Zhang P, Tang M, Gao F, Zhu B P, Fu S N, Ouyang J, Shum P P, Liu D M 2014 Opt. Express 22 19581Google Scholar

    [17]

    Zhao Y, Zhao J, Wang X X, Peng Y, Hu X G 2022 Sens. Actuators, B 353 131134Google Scholar

    [18]

    Bhatia V, Campbel D, Claur R O 1997 Opt. Lett. 22 648Google Scholar

    [19]

    Ling Q, Gu Z T, Pang B 2020 Opt. Fiber Technol. 58 102264Google Scholar

    [20]

    Zhao Y, Chen S, Guo Y, Jiang Y, Chen S, Mou C, Liu Y, He Z 2024 Opt. Laser Technol. 175 110879Google Scholar

    [21]

    Zhang S, Geng T, Sun W M 2022 Opt. Lett. 47 2266Google Scholar

    [22]

    Esposito F, Srivastava A, Iadicicco A, Campopiano S 2019 Opt. Laser Technol. 113 198Google Scholar

    [23]

    Urrutia A, Goicoechea J, Ricchiuti A, Barrera D, Sales S, Arregui F 2016 Sens. Actuators, B 227 135Google Scholar

    [24]

    Liu T, Li Y W, Dai X Y, Gan W B, Wang X S, Dai S X, Song B A, Xu T F Zhang P Q 2023 J. Lightwave Technol. 41 5169Google Scholar

    [25]

    Erdogan T 1997 J. Lightwave Technol. 15 1277Google Scholar

    [26]

    James S W, Ishaq I, Ashwell G J, Tatam R P 2005 Opt. Lett. 30 2197Google Scholar

    [27]

    Yan J H, Zhang A P, Shao L Y, Ding J F, He S L 2007 IEEE Sens. J. 7 1360Google Scholar

计量
  • 文章访问数:  3165
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-07
  • 修回日期:  2025-06-01
  • 上网日期:  2025-06-20
  • 刊出日期:  2025-08-20

/

返回文章
返回
Baidu
map