搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种同步研究透明材料折射率和动力学特性的实验方法

种涛 傅华 李涛 莫建军 张旭平 马骁 郑贤旭

引用本文:
Citation:

一种同步研究透明材料折射率和动力学特性的实验方法

种涛, 傅华, 李涛, 莫建军, 张旭平, 马骁, 郑贤旭

An experimental method of simultaneously studying refractive index and dynamic properties of transparent materials

Chong Tao, Fu Hua, Li Tao, Mo Jian-Jun, Zhang Xu-Ping, Ma Xiao, Zheng Xian-Xu
cstr: 32037.14.aps.70.20210414
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 基于电磁加载装置CQ-4, 建立了一种同步开展透明材料折射率和高压声速测量的实验方法. 完成了聚甲基丙烯酸甲酯(PMMA)窗口材料14 GPa斜波压缩实验, 利用多点双光源外差位移干涉测速仪(dual laser heterodyne velocimetry, DLHV), 获得了PMMA样品后表面的速度历史曲线. 速度曲线表现出明显的双波结构, 表明PMMA样品出现了弹塑性转变. 通过实验数据处理, 一发实验同步获取了PMMA的折射率-粒子速度光学特性和拉氏声速-粒子速度动力学特性.
    Based on the electromagnetic loading device CQ-4, an experimental method of simultaneously measuring the refractive index and high pressure sound velocity of transparent material is established. The ramp wave compression experiment of PMMA is carried out under a pressure of 14 GPa. The velocity history curves of PMMA sample rear surface are obtained by dual laser heterodyne velocimetry (DLHV). The velocity curve shows obvious double wave structure, which indicates the elastic-plastic transition. The refractive index particle velocity optical characteristics and Lagrangian sound velocity particle velocity dynamic characteristics of PMMA are obtained simultaneously with the experimental data processing.
      通信作者: 郑贤旭, zxxgoal109@sina.com
    • 基金项目: 冲击波物理与爆轰物理国防科技重点实验室基金(批准号: 6142A03192007, 6142A032020013)和国家自然科学基金(批准号: 11772311)资助的课题
      Corresponding author: Zheng Xian-Xu, zxxgoal109@sina.com
    • Funds: Project supported by the Science and the Technology Foundation of State Key Laboratory of Shock Wave and Detonation Physics, China (Grant Nos. 6142A03192007, 6142A032020013) and the National Natural Science Foundation of China (Grant No. 11772311)
    [1]

    Hall C A, Asay J R, Knudson M D, Stygar W A, Spielman R B, Pointon T D, Reisman D B, Toor A, Cauble R C 2001 Rev. Sci. Instrum. 72 3587Google Scholar

    [2]

    Hayes D B 2001 J. Appl. Phys. 89 648Google Scholar

    [3]

    Hayes D B, Hall C A, Asay J R, Knudson M D 2003 J. Appl. Phys. 94 2331Google Scholar

    [4]

    Fratanduono D E, Boehly T R, Barrios M A, Meyer-hofer D D, Eggert J H, Smith R F, Hicks D G, Celliers P M, Braun D G, Collins G W 2011 J. Appl. Phys. 109 123521Google Scholar

    [5]

    Fratanduono D E, Eggert J H, Akin M C, Chau R, Holmes N C 2013 J. Appl. Phys. 114 043518Google Scholar

    [6]

    Nazarov D V, Mikhailov A L, Fedorov A V, Manachkin S F, Urlin V D, Men’ shikh A V, Finyushin S A, Davy-dov V A, Filinov E V 2006 Combust. Explo. Shock 42 351Google Scholar

    [7]

    张旭平, 罗斌强, 种涛, 王桂吉, 谭福利, 赵剑衡, 孙承纬, 刘仓理 2016 64 046201Google Scholar

    Zhang X P, Luo B Q, Chong T, Wang G J, Tan F L, Zhao J H, Sun C W, Liu C L 2016 Acta Phys. Sin. 64 046201Google Scholar

    [8]

    Mulliken A D, Boyce M C 2006 Int. J. Solids. Struct. 46 2320

    [9]

    Cheng W M, Manson J A 1990 J. Mater. Sci. 25 31

    [10]

    Richeton J, Schlatter G, Vecchio K S, Remond Y, Ahzi S 2005 Polymer 46 8195

    [11]

    Richeton J, Ahzi S, Vecchio K S, Jiang F C, Makradi A 2007 Int. J. Solids. Struct. 44 7940

    [12]

    Chen W, Lu F 2002 Polym. Test. 21 114

    [13]

    Jo C, Fu J, Naguib H E 2005 Polymer 46 11897

    [14]

    Forquin P, Nasraoui M, Rusinek A, Siad L 2012 Int. J. Impact Eng. 40 46

    [15]

    Pélissier J L, Partouche-Sebban D 2005 Physica B 364 14Google Scholar

    [16]

    Chhabildas L C, Asay J R 1979 J. Appl. Phys. 50 2749Google Scholar

    [17]

    郝龙, 王翔, 王青松, 康强, 黄金 2017 高压 5 579Google Scholar

    Hao L, Wang X, Wang Q S, Kang Q, Hang J 2017 Chin. J. High Pressure Phys. 5 579Google Scholar

    [18]

    Wang G J, Luo B Q, Zhang X P, Zhao J H, Sun C W, Tan F L, Chong T, Mo J J, Wu G, TaO Y H 2013 Rev. Sci. Instrum. 84 015117Google Scholar

    [19]

    种涛, 王桂吉, 谭福利, 赵剑衡, 唐志平 2018 67 070204Google Scholar

    Chong T, Wang G J, Tan F L, Zhao J H, Tang A P 2018 Acta Phys. Sin. 67 070204Google Scholar

    [20]

    罗斌强, 张红平, 种涛, 王桂吉, 谭福利, 赵剑衡, 孙承纬 2017 高压 31 295Google Scholar

    Luo B Q, Zhang H P, Chong T, Wang G J, Tan F L, Zhao J H, Sun C W 2017 Chin. J. High Pressure Phys. 31 295Google Scholar

    [21]

    陶天炯, 翁继东, 王翔 2011 光电工程 38 39

    Tao T J, Weng J D, Wang X 2011 Opto-Electron. Eng. 38 39

    [22]

    LaLone B M, Fat’yanov O V, Asay J R, Gupta Y M 2008 J. Appl. Phys. 103 093505Google Scholar

    [23]

    Barker L M, Hollenbach R E 1970 J. Appl.Phys. 41 4208Google Scholar

    [24]

    Ao T, Knudson M D, Asay J R, Davis J P 2009 J. Appl.Phys. 106 103507Google Scholar

    [25]

    种涛2012 硕士学位论文 (绵阳: 中国工程物理研究院)

    Chong T 2012 M. S. Thesis (Mianyang: China Academy of Engineering Physics) (in Chinese)

    [26]

    蔡进涛 2018 博士学位论文 (绵阳: 中国工程物理研究院)

    Cai J T 2018 Ph. D. Dissertation (Mianyang: China Academy of Engineering Physics) (in Chinese)

    [27]

    姬忠涛, 田德 2006 农业工程学报 32 98Google Scholar

    Ji Z T, Tian D 2006 Trans. Chin. Soc. Agric. Eng. 32 98Google Scholar

  • 图 1  磁驱动加载原理及样品布局

    Fig. 1.  Schematic diagram of magnetically driven ramp wave loading and layout of the samples.

    图 2  实验速度曲线

    Fig. 2.  Experimental velocity curve.

    图 3  表观速度-原位粒子速度关系

    Fig. 3.  ua-up relationship of PMMA.

    图 4  原位粒子速度波形

    Fig. 4.  true particle velocity waveforms.

    图 5  拉氏声速-原位粒子速度关系

    Fig. 5.  Lagrange sound speed- true particle velocity relationship.

    表 1  实验条件

    Table 1.  Experimental condition.

    实验编号 位置 材料 尺寸/(mm × mm)
    shot163 ch1 纯铝 1.006 × 10.0 (厚 × 宽)
    PMMA Ф10.0 × 1.485
    PMMA Ф10.0 × 4.000
    ch2 纯铝 1.002 × 10.0 (厚 × 宽)
    PMMA Ф10.0 × 1.483
    ch3 纯铝 1.007 × 10.0 (厚 × 宽)
    PMMA Ф10.0 × 1.263
    PMMA Ф10.0 × 3.987
    ch4 纯铝 1.008 × 10.0 (厚 × 宽)
    LiF Ф10.0 × 3.601
    下载: 导出CSV
    Baidu
  • [1]

    Hall C A, Asay J R, Knudson M D, Stygar W A, Spielman R B, Pointon T D, Reisman D B, Toor A, Cauble R C 2001 Rev. Sci. Instrum. 72 3587Google Scholar

    [2]

    Hayes D B 2001 J. Appl. Phys. 89 648Google Scholar

    [3]

    Hayes D B, Hall C A, Asay J R, Knudson M D 2003 J. Appl. Phys. 94 2331Google Scholar

    [4]

    Fratanduono D E, Boehly T R, Barrios M A, Meyer-hofer D D, Eggert J H, Smith R F, Hicks D G, Celliers P M, Braun D G, Collins G W 2011 J. Appl. Phys. 109 123521Google Scholar

    [5]

    Fratanduono D E, Eggert J H, Akin M C, Chau R, Holmes N C 2013 J. Appl. Phys. 114 043518Google Scholar

    [6]

    Nazarov D V, Mikhailov A L, Fedorov A V, Manachkin S F, Urlin V D, Men’ shikh A V, Finyushin S A, Davy-dov V A, Filinov E V 2006 Combust. Explo. Shock 42 351Google Scholar

    [7]

    张旭平, 罗斌强, 种涛, 王桂吉, 谭福利, 赵剑衡, 孙承纬, 刘仓理 2016 64 046201Google Scholar

    Zhang X P, Luo B Q, Chong T, Wang G J, Tan F L, Zhao J H, Sun C W, Liu C L 2016 Acta Phys. Sin. 64 046201Google Scholar

    [8]

    Mulliken A D, Boyce M C 2006 Int. J. Solids. Struct. 46 2320

    [9]

    Cheng W M, Manson J A 1990 J. Mater. Sci. 25 31

    [10]

    Richeton J, Schlatter G, Vecchio K S, Remond Y, Ahzi S 2005 Polymer 46 8195

    [11]

    Richeton J, Ahzi S, Vecchio K S, Jiang F C, Makradi A 2007 Int. J. Solids. Struct. 44 7940

    [12]

    Chen W, Lu F 2002 Polym. Test. 21 114

    [13]

    Jo C, Fu J, Naguib H E 2005 Polymer 46 11897

    [14]

    Forquin P, Nasraoui M, Rusinek A, Siad L 2012 Int. J. Impact Eng. 40 46

    [15]

    Pélissier J L, Partouche-Sebban D 2005 Physica B 364 14Google Scholar

    [16]

    Chhabildas L C, Asay J R 1979 J. Appl. Phys. 50 2749Google Scholar

    [17]

    郝龙, 王翔, 王青松, 康强, 黄金 2017 高压 5 579Google Scholar

    Hao L, Wang X, Wang Q S, Kang Q, Hang J 2017 Chin. J. High Pressure Phys. 5 579Google Scholar

    [18]

    Wang G J, Luo B Q, Zhang X P, Zhao J H, Sun C W, Tan F L, Chong T, Mo J J, Wu G, TaO Y H 2013 Rev. Sci. Instrum. 84 015117Google Scholar

    [19]

    种涛, 王桂吉, 谭福利, 赵剑衡, 唐志平 2018 67 070204Google Scholar

    Chong T, Wang G J, Tan F L, Zhao J H, Tang A P 2018 Acta Phys. Sin. 67 070204Google Scholar

    [20]

    罗斌强, 张红平, 种涛, 王桂吉, 谭福利, 赵剑衡, 孙承纬 2017 高压 31 295Google Scholar

    Luo B Q, Zhang H P, Chong T, Wang G J, Tan F L, Zhao J H, Sun C W 2017 Chin. J. High Pressure Phys. 31 295Google Scholar

    [21]

    陶天炯, 翁继东, 王翔 2011 光电工程 38 39

    Tao T J, Weng J D, Wang X 2011 Opto-Electron. Eng. 38 39

    [22]

    LaLone B M, Fat’yanov O V, Asay J R, Gupta Y M 2008 J. Appl. Phys. 103 093505Google Scholar

    [23]

    Barker L M, Hollenbach R E 1970 J. Appl.Phys. 41 4208Google Scholar

    [24]

    Ao T, Knudson M D, Asay J R, Davis J P 2009 J. Appl.Phys. 106 103507Google Scholar

    [25]

    种涛2012 硕士学位论文 (绵阳: 中国工程物理研究院)

    Chong T 2012 M. S. Thesis (Mianyang: China Academy of Engineering Physics) (in Chinese)

    [26]

    蔡进涛 2018 博士学位论文 (绵阳: 中国工程物理研究院)

    Cai J T 2018 Ph. D. Dissertation (Mianyang: China Academy of Engineering Physics) (in Chinese)

    [27]

    姬忠涛, 田德 2006 农业工程学报 32 98Google Scholar

    Ji Z T, Tian D 2006 Trans. Chin. Soc. Agric. Eng. 32 98Google Scholar

计量
  • 文章访问数:  6996
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-04
  • 修回日期:  2021-04-20
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-05

/

返回文章
返回
Baidu
map