Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental research of low-noise and high-gain balanced detectors in the mHz-MHz band

LU Bo SHI Shaoping GAO Li WANG Xuan LIN Yisong TIAN Long LI Wei WANG Yajun ZHENG Yaohui

Citation:

Experimental research of low-noise and high-gain balanced detectors in the mHz-MHz band

LU Bo, SHI Shaoping, GAO Li, WANG Xuan, LIN Yisong, TIAN Long, LI Wei, WANG Yajun, ZHENG Yaohui
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Balanced detectors are fundamental components for the precise measurement of quantum state fluctuations, particularly quantum noise, which is crucial for future quantum-enhanced interferometric gravitational wave detectors utilizing squeezed light. Based on the transimpedance amplifier (TIA) model core to balanced detection, we conduct a detailed theoretical and practical analysis of the electronic factors influencing detector performance in the target ultra-lowfrequency band. The TIA stage was meticulously designed using a highperformance integrated operational amplifier characterized by low offset voltage drift. To ensure gain stability critical for ultra-low-frequency operation, the design incorporated low temperature-drift metal foil resistors. Subsequent voltage amplification was achieved using a noninverting amplifier configuration to attain the necessary high electrical gain while strictly managing overall electronic noise. Recognizing the criticality of common-mode noise rejection for quantum noise measurements, we analyzed and optimized the photodiode (PD) nonlinear response compensation mechanism. This was achieved through the innovative implementation of a differential fine-tuning circuit (DFTC) coupled with an adjustable bias voltage (ABV) compensation scheme. Experimental validation confirmed the effectiveness of the optimized design. The compensation scheme utilizing DFTC and ABV successfully achieved a high common mode rejection ratio (CMRR) exceeding 75 dB@500 Hz. Crucially, the detector achieves an electronic noise spectral density of 3.5×10-5 V/Hz1/2 within the 1 mHz–1 Hz band, surpassing the space-based gravitational wave detection requirement for laser intensity noise (1×10-4 V/Hz1/2). Furthermore, the detector demonstrated high gain capability and bandwidth: with an incident detection light power of 4 mW, the balanced detectors achieved a gain of 20 dB maintained across a wide frequency range from 1 mHz to 1 MHz. This work presents the design, detailed analysis, and experimental realization of optimized balanced detectors specifically tailored for high-sensitivity measurements in the millihertz gravitational wave frequency band. The achieved low electronic noise floor below 1 Hz and high CMRR fulfill the critical requirements for detecting squeezed states of light in future space-based gravitational wave detectors. This optimized balanced detector provides vital components and technical support for next-generation space-based gravitational wave detection and millihertz squeezed light characterization.
  • [1]

    Abbott R, Abbott T D, Abraham S, Acernese F, Ackley K, Adams A, Adams C, Adhikari R X, Adya V B, Affeldt C 2020 Phys. Rev. Lett. 125 101102

    [2]

    Vitale S 2021 Science 372 eabc7397

    [3]

    Abbott T D, Abraham S, Acernese F, et al. 2020 Astrophys. J. Lett. 896 L44

    [4]

    Li Q H, Li W, Sun Y, Wang Y J, Tian L, Chen L R, Zhang P F, Zheng Y H 2022 Acta Phys. Sin. 71 164203(in Chinese) [李庆回, 李卫, 孙瑜, 王雅君, 田龙, 陈力荣, 张鹏飞, 郑耀辉 2022 71 164203]

    [5]

    Wang Z Y, Wang J H, Li Y H, Liu Q 2023 Acta Phys. Sin. 72 054205 (in Chinese) [王在渊, 王洁浩, 李宇航, 柳强 2023 72 054205]

    [6]

    Jia W X, Xu V, Kuns K, et al. 2024 Science 385 1318

    [7]

    McCuller L, Whittle C, Ganapathy D, Komori K, Tse K, Fernandez-Galiana A, Barsotti L, Fritschel P, MacInnis M, Matichard F, Mason K, Mavalvala N, Mittleman R, Yu H C, Zucker M E, Evans M 2020 Phys. Rev. Lett. 124 171102

    [8]

    Aasi J, Abadie J, Abbott B P, Abbott R, et al. 2013 Nat. Photonics 7 613

    [9]

    Acernese F, Agathos M, Aiello L, et al. 2019 Phys. Rev. Lett. 123 231108

    [10]

    Mikhail K, Ma Y Q, Chen Y B, Schnabel R 2019 Light: Sci. Appl. 8 118

    [11]

    Harry G M, LIGO Scientific Collaboration 2010 Class. Quantum Grav. 27 084006

    [12]

    Matichard F, Lantz B, Mittleman R, et al. 2015 Class. Quantum Grav. 32 185003

    [13]

    Thorne K S, Winstein C J 1999 Phys. Rev. D 60 082001

    [14]

    Acernese F, Agathos M, Agatsuma K, et al. 2014 Class. Quantum Grav. 32 024001

    [15]

    Luo J, Chen L S, Duan H Z, Gong Y G, Hu S C, Ji J H, Liu Q, Mei J W, Milyukov V, Sazhin M, Shao C G, Toth V T, Tu H B, Wang Y M, Wang Y, Yeh H C, Zhan M S, Zhang Y H, Zharov V, Zhou Z B 2016 Class. Quantum Grav. 33 035010

    [16]

    Jennrich O 2009 Class. Quantum Grav. 26 153001

    [17]

    Luo Z R, Wang Y, Wu Y L, Hu W R, Jin G 2021 Prog. Theor. Exp. Phys. 2021 05A108

    [18]

    Luo Z R, Guo Z K, Jin G, Wu Y L, Hu W R 2020 Results Phys.16 102918.

    [19]

    Luo Z R, Bai S B, Chen G R, Dong P, Dong Y H, Gao W, Gong X F, He J W, Li H Y, Li X Q, Li Y Q, Liu H S, Shao M X, Song T X, Sun B S, Tang W L, Xu P, Xu S N, Yang R, Jin G 2013 Adv. Mechan. 43 415 (in Chinese) [罗子人, 白姗边, 陈葛瑞, 董鹏, 董玉辉, 高伟, 龚雪飞, 贺建武, 李洪银, 李向前, 李玉琼, 刘河山, 邵明学, 宋同消, 孙保三, 唐文林, 徐鹏, 徐生年, 杨然, 靳刚 2013力学进展 43 415]

    [20]

    Badaracco F, Rossi C D, Fiori I, Harms J, Miyo K, Paoletti F, Tanaka T, Washimi T, Yokozawa T 2021 Phys. Rev. D 104 042006

    [21]

    Stefszky M S, Mow-Lowry C M, Chua S S Y, Shaddock D A, Buchler B C, Vahlbruch H, Khalaidovski A, Schnabel R, Lam P K, McClelland D E 2012 Class. Quantum Grav. 29 145015

    [22]

    Shang X, LI F, Ma Z L, Huang T S, Dang H, LI W, Yin W B, Tian L, Cheng L R, Zheng Y H 2025 Acta Phys. Sin. 74 059501(in Chinese) [尚鑫, 李番, 马正磊, 黄天时, 党昊, 李卫, 尹王保, 田龙, 陈力荣, 郑耀辉2025 74 059501]

    [23]

    McKenzie K, Gray M B, Lam P K, McClelland D E 2007 Appl. Opt. 46 3389

    [24]

    Schnabel R, Mavalvala N, McClelland D E, Lam P K 2010 Nat. Commun. 1 122

    [25]

    Vahlbruch H, Chelkowski S, Danzmann K, Schnabel R 2007 New J. Phys. 9 371

    [26]

    Wu M C, Schmittberger B L, Brewer N R, Speirs R W, Jones K M, Lett P D 2019 Opt. Express 27 4769

    [27]

    Meylahn F, Willke B, Vahlbruch H 2022 Phys. Rev. Lett. 129 121103

    [28]

    Gao L, Zheng L A., Lu B, Shi S P, Tian L, Zheng Y H 2024 Light: Sci. Appl. 13 294

    [29]

    Yang W H, Jin X L, Yu X D, Zheng Y H, Peng K C 2017 Opt. Express 25 24262

    [30]

    Wang W J, Li F, Li J B, Ju M J, Zheng L A, Tian Y H, Yin W B, Tian L, Zheng Y H 2022 Infrared Laser Eng. 51 20220300 (in Chinese) [王炜杰, 李番, 李健博, 鞠明健, 郑立昂, 田宇航, 尹王保, 田龙, 郑耀辉 2022 红外与激光工程 51 20220300]

    [31]

    Wu Y M, Tian L, Yao W X, Shi S P, Liu X, Lu B, Wang Y J, Zheng Y H 2024 Appl. Phys. Lett. 124 114002

    [32]

    Shi S P, Tian L, Wang Y J, Zheng Y H, Xie C D, Peng K C 2020 Phys. Rev. Lett. 125 070502

    [33]

    Shi S P, Wu Y M, Liu X, Tian L, Zheng Y H 2024 Quantum Opt. 30 040102 (in Chinese) [史少平, 武奕淼, 刘璇, 田龙, 郑耀辉 2024 量子光学学报 30 040102]

    [34]

    Wang D K, Wu J Z, Song Z G, Li J H 2024 Quantum Opt. 30 041001 (in Chinese) [王鼎康, 武晋泽, 宋志刚, 李晋红 2024量子光学学报, 30 041001]

    [35]

    Graeme J 1996 Photodiode amplifiers: op amp solutions (New York: McGraw-Hill) pp87-92

    [36]

    AD797: Ultralow Distortion, Ultralow Noise Op Amp Data Sheet (Rev.K) https://www.analog.com/media/en/technical-documentation/data-sheets/AD797.pdf [2025-5-12]

    [37]

    AD8671/AD8672/AD8674: Precision, Very Low Noise, Low Input Bias Current Operational Amplifiers Data Sheet (Rev.F) https://www.analog.com/media/en/technical-documentation/data-sheets/AD8671_8672_8674.pdf [2025-5-12]

    [38]

    Jin X L, Su J, Zheng Y H, Chen C Y, Wang W Z, Peng K C 2015 Opt. Express 23 23859

    [39]

    Lu Q, Shen Q, Cao Y, Liao S K, Peng C Z 2018 IEEE Trans. Nucl. Sci. 66 1048

    [40]

    Li F, Wang J W, Gao Z C, Li J B, An B N, Li R X, Bai Y, Yin W B, Tian L, Zheng Y H 2022 Acta Phys. Sin. 71 209501 (in Chinese) [李番, 王嘉伟, 高子超, 李健博, 安炳南, 李瑞鑫, 白禹,尹王保, 田龙, 郑耀辉 2022 71 209501]

  • [1] SHANG Xin, LI Fan, MA Zhenglei, HUANG Tianshi, DANG Hao, LI Wei, YIN Wangbao, TIAN Long, CHEN Lirong, ZHENG Yaohui. Experimental study of ultra-low noise photodetectors in 0.1 mHz–1 Hz frequency band. Acta Physica Sinica, doi: 10.7498/aps.74.20241635
    [2] Chen Zhi-Gang, Zhang Wei-Jun, Zhang Xing-Yu, Wang Yu-Ze, Xiong Jia-Min, Hong Yi-Yu, Yuan Pu-Sheng, Wu Ling, Wang Zhen, You Li-Xing. Cryogenic DC-coupled readout electronics for high-speed superconducting nanowire single-photon detectors based on a commercial operational amplifier. Acta Physica Sinica, doi: 10.7498/aps.73.20240398
    [3] Zhao Wei, Fu Shi-Jie, Sheng Quan, Xue Kai, Shi Wei, Yao Jian-Quan. Suppression effect of auxiliary laser on stimulated Raman scattering effect of high-power Yb-doped fiber laser amplifier. Acta Physica Sinica, doi: 10.7498/aps.73.20240895
    [4] Guo Zhong-Kai, Li Yong-Gang, Yu Bo-Cheng, Zhou Shi-Chao, Meng Qing-Yu, Lu Xin-Xin, Huang Yi-Fan, Liu Gui-Peng, Lu Jun. Research progress of lock-in amplifiers. Acta Physica Sinica, doi: 10.7498/aps.72.20230579
    [5] Wang Zai-Yuan, Wang Jie-Hao, Li Yu-Hang, Liu Qiang. Millihertz band low-intensity-noise single-frequency laser for space gravitational wave detection. Acta Physica Sinica, doi: 10.7498/aps.72.20222127
    [6] Sheng Quan, Wang Meng, Shi Chao-Du, Tian Hao, Zhang Jun-Xiang, Liu Jun-Jie, Shi Wei, Yao Jian-Quan. High-power narrow-linewidth single-frequency pulsed fiber amplifier based on self-phase modulation suppression via sawtooth-shaped pulses. Acta Physica Sinica, doi: 10.7498/aps.70.20210496
    [7] Tang Yong-Hui, Zheng Zhu, Xie Shi-Meng, Huang Lin, Jiang Hua-Bei. Thermoacoustic imaging based on noise suppression of multi-channel amplifier and additive circuit. Acta Physica Sinica, doi: 10.7498/aps.69.20201036
    [8] Xue Jia, Qin Ji-Liang, Zhang Yu-Chi, Li Gang, Zhang Peng-Fei, Zhang Tian-Cai, Peng Kun-Chi. Measurement of standard vacuum noise at low frequencies. Acta Physica Sinica, doi: 10.7498/aps.65.044211
    [9] Qi Xiao-Meng, Peng Wen-Bo, Zhao Xiao-Long, He Yong-Ning. Photoconductive UV detector based on high-resistance ZnO thin film. Acta Physica Sinica, doi: 10.7498/aps.64.198501
    [10] Hong Qing-Hui, Li Zhi-Jun, Zeng Jin-Fang, Zeng Yi-Cheng. Design and simulation of a memristor chaotic circuit based on current feedback op amp. Acta Physica Sinica, doi: 10.7498/aps.63.180502
    [11] Chen Zhao-Fu, Huang Hua, Chang An-Bi, Xu Zhou, He Hu, Lei Lu-Rong, Hu Jin-Guang, Yuan Huan, Liu Zhen-Bang. Investigation and suppression of pulse shortening problem caused by non-working mode self-excitation in an S-band long pulse relativistic klystron amplifier. Acta Physica Sinica, doi: 10.7498/aps.63.238402
    [12] Chen Yong-Dong, Jin Xiao, Li Zheng-Hong, Huang Hua, Wu Yang. Investigation of suppression of non-working mode oscillation in a high gain relativistic klystron amplifier. Acta Physica Sinica, doi: 10.7498/aps.61.228501
    [13] Zhang Rong, Guo Xu-Guang, Cao Jun-Cheng. Simulation and optimization of grating optical coupling of terahertz quantum well photodetector. Acta Physica Sinica, doi: 10.7498/aps.60.050705
    [14] Yang Ruo-Fu, Yang Ping, Shen Feng. Experimental research on phase detection and correction of two fiber amplifier based on active segmented mirrors. Acta Physica Sinica, doi: 10.7498/aps.58.8297
    [15] Wang Chun-Can, Zhang Fan, Tong Zhi, Ning Ti-Gang, Jian Shui-Sheng. Study on the suppression of the stimulated Brillouin scattering in high-power single-frequency multicore fiber amplifier. Acta Physica Sinica, doi: 10.7498/aps.57.5035
    [16] Zhang Chun-Fu, Hao Yue, You Hai-Long, Zhang Jin-Feng, Zhou Xiao-Wei. Influence of interface dipoles on the UV/solar rejection ratios of GaN/AlGaN/GaN photodetectors. Acta Physica Sinica, doi: 10.7498/aps.54.3810
    [17] ZHAO HONG-ZHI, DONG TAI-QIAN. A NEW TYPE OF QUANTUM MECHANICAL AMPLIFIER ——TRANSITION BEAT AMPLIFIEP. Acta Physica Sinica, doi: 10.7498/aps.36.1526
    [18] WANG CHIH-CHIANG. THE RUBY OPTICAL MASER. Acta Physica Sinica, doi: 10.7498/aps.20.63
    [19] CHENG CHUNG-CHIH, HWA JUNG-JENG. ANALYSIS OF PHASE AND GAIN CHARACTERISTICS OF TRAVELLING-WAVE TYPE NEGATIVE-RESISTANCE AMPLIFIERS. Acta Physica Sinica, doi: 10.7498/aps.19.425
    [20] CHUO CHI-TSANG, SHIUH GEN-TWEN. ON CURRENT AMPLIFICATION IN POINT CONTACT TRANSISTORS. Acta Physica Sinica, doi: 10.7498/aps.14.317
Metrics
  • Abstract views:  107
  • PDF Downloads:  3
  • Cited By: 0
Publishing process
  • Available Online:  19 July 2025
  • /

    返回文章
    返回
    Baidu
    map