-
Recycling is a sustainable strategy for the effcient utilization of rare earth resources. Hydrogenation milling has been widely adopted due to its high effciency and environmental benefits. However, the formation of non-stable phases during the hydrogenation process significantly reduces recovery effciency, presenting new challenges for process optimization. In this study, a combination of first-principles calculations and machine learning methods was employed to systematically investigate the thermodynamic behavior of key rare earth hydrides—such as NdH2, NdH3, and Nd2H5 during the hydrogenation milling process using the Debye model for lattice vibrations. The results show that a temperature range around 630 K under a pressure of 600 kPa may offer an ideal operational condition for the hydrogenation milling process. Under these conditions, NdH2 can undergo spontaneous hydrogenation, and the formation of unstable phases can be effectively suppressed, thereby improving rare earth recovery effciency. This study also reveals the potential adverse effects of excessively high temperatures on the stability and reactivity of NdH2, further emphasizing the importance of operating within a specific temperature range. These findings provide new insights into the thermodynamic mechanisms of the hydrogenation process in Nd2Fe14B permanent magnet material. Furthermore, they offer theoretical guidance for the optimization of industrial hydrogenation milling parameters.
-
Keywords:
- Nd2Fe14B /
- hydrogenation recycling process /
- thermodynamic properties /
- Debye model
-
[1] Poenaru I, Patroi E A, Patroi D, Iorga A, Manta E 2023 Journal of Magnetism and Magnetic Materials 577170777
[2] Liu X B, Kesler M S, Besser M F, Kramer M J, McGuire M A, Nlebedim I C 2021 IEEE Transactions on Magnetics 576
[3] Dirba I, Pattur P, Soldatov I, Adabifiroozjaei E, Molina-Luna L, Gutfleisch O 2023 Journal of Alloys and Compounds 930167411
[4] Lixandru A, Poenaru I, Güth K, Gauß R, Gutfleisch O 2017 Journal of Alloys and Compounds 72451
[5] Ojih J, Al-Fahdi M, Yao Y, Hu J, Hu M 2024 Journal of Materials Chemistry A 128502
[6] Toher C, Plata J J, Levy O, De Jong M, Asta M, Nardelli M B, Curtarolo S 2014 Physical Review B 90174107
[7] Xu C R, Shao L, Ding N, Jiang H H, Tang B Y 2024 Physica B: Condensed Matter 674415589
[8] Nenuwe N O, Yebovi A S 2024 Computational Condensed Matter 38 e00882
[9] Ning J, Zhu Y, Kidd J, Guan Y, Wang Y, Mao Z, Sun J 2020 npj Computational Materials 6157
[10] Vesti A, Music D, Olsson P A 2024 Nuclear Materials and Energy 39101684
[11] Sheridan R S, Harris I R, Walton A 2016 Journal of Magnetism and Magnetic Materials 401455
[12] Matin M A, Kwon H W, Lee J G, Yu J H 2014 Journal of Magnetics 19106
[13] Michalski B, Szymanski M, Gola K, Zygmuntowicz J, Leonowicz M 2022 Journal of Magnetism and Magnetic Materials 548168979
[14] Kirklin S, Saal J E, Meredig B, Thompson A, Doak J W, Aykol M, Rühl S, Wolverton C 2015 npj Computational Materials 115
[15] Saal J E, Kirklin S, Aykol M, Meredig B, Wolverton C 2013 Jom 651501
[16] Li X T, Yue M, Zhou S X, Kuang C J, Zhang G Q, Dong B S, Zeng H 2018 Journal of Magnetism and Magnetic Materials 460570
[17] Habibzadeh A, Kucuker M A, Gökelma M 2023 ACS Omega 817431
[18] Qin T, Zhang Q, Wentzcovitch R M, Umemoto K 2019 Computer Physics Communications 237199
[19] Baroni S, Giannozzi P, Isaev E 2018 Theoretical and Computational Methods in Mineral Physics: Geophysical Applications 7139
[20] Palumbo M, Dal Corso A 2017 Journal of Physics Condensed Matter 29395401
[21] Otero-De-La-Roza A, Abbasi-Pérez D, Luaña V 2011 Computer Physics Communications 1822232
[22] Togo A, Tanaka I 2015 Scripta Materialia 1081
[23] Bartel C J, Millican S L, Deml A M, Rumptz J R, Tumas W, Weimer A W, Lany S, Stevanović V, Musgrave C B, Holder A M 2018 Nature Communications 94168
[24] Chen S, Zhang J, Wang Y, Wang T, Li Y, Liu Z 2023 Metals 13225
[25] Deng B, Zhong P, Jun K, Riebesell J, Han K, Bartel C J, Ceder G 2023 Nature Machine Intelligence 51031
[26] Pan J 2023 Nature Computational Science 3816
[27] Blanco M A, Francisco E, Luaña V 2004 Computer Physics Communications 15857
[28] Shamsuddin M 2024 Thermodynamic Measurement Techniques, vol. Part F3193 of The Minerals, Metals Materials Series (Cham: Springer International Publishing), pp 1–349
[29] Olivotos S, Economou-Eliopoulos M 2016 Geosciences (Switzerland) 62
[30] Rostami S, Gonze X 2024 Physical Review B 110014103
[31] Bartel C J 2022 Journal of Materials Science 5710475
[32] Drebushchak V A 2020 Journal of Thermal Analysis and Calorimetry 1421097
[33] Yamanaka S, Yoshioka K, Uno M, Katsura M, Anada H, Matsuda T, Kobayashi S 1999 Journal of Alloys and Compounds 293-29523
[34] Hu X, Wang H, Linton K, Le Coq A, Terrani K A 2021 Handbook on the material properties of yttrium hydride for high temperature moderator applications. Tech. rep., Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
[35] Vajda P, Daou J N 1996 Solid State Phenomena 49-5071
[36] Grinderslev J B, Møller K T, Bremholm M, Jensen T R 2019 Inorganic Chemistry 585503
[37] Pourarian F 2002 Physica B: Condensed Matter 32118
[38] Suwarno S, Lototskyy M V, Yartys V A 2020 Journal of Alloys and Compounds 842155530
[39] Sheridan R S, Sillitoe R, Zakotnik M, Harris I R, Williams A J 2012 Journal of Magnetism and Magnetic Materials 32463
[40] Fultz B 2010 Progress in Materials Science 55247
[41] Piotrowicz A, Pietrzyk S, Noga P, Myćka Ł 2020 Journal of Mining and Metallurgy, Section B: Metallurgy 56415
[42] Xia M, Abrahamsen A B, Bahl C R, Veluri B, Søegaard A I, Bøjsøe P 2017 Journal of Magnetism and Magnetic Materials 44155
[43] Li X, Yue M, Zhou S, Kuang C, Zhang G, Dong B, Zeng H 2019 Journal of Magnetism and Magnetic Materials 473144
Metrics
- Abstract views: 16
- PDF Downloads: 1
- Cited By: 0