Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-power high-energy four-channel fiber coherent beam combined system

SHI Zhuo CHANG Hongxiang WANG Dongliang GUO Hongyu DONG Zikai DU Zhihang LIANG Chengbin LI Can ZHOU Pu WEI Zhiyi CHANG Guoqing

Citation:

High-power high-energy four-channel fiber coherent beam combined system

SHI Zhuo, CHANG Hongxiang, WANG Dongliang, GUO Hongyu, DONG Zikai, DU Zhihang, LIANG Chengbin, LI Can, ZHOU Pu, WEI Zhiyi, CHANG Guoqing
cstr: 32037.14.aps.74.20241476
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Ultrafast fiber laser sources with mJ-level pulse energy and kilo-watt average power are of particular importance for various science fields such as attosecond lasers. Currently, several large-scale facilities for attosecond lasers, including ELI-ALPS in Europe, SECUF in China, NeXUS in America and ALFA in Japan are under construction. High-performance femtosecond driven lasers are crucial for attosecond lasers and various ultrafast laser facilities. Fiber lasers have a large surface-to-volume ratio, which enables efficient cooling and is suitable for high average power amplification. However, due to small mode area of optical fibers, detrimental nonlinear optical effects such as self-phase modulation, four-wave mixing, and stimulated Raman scattering limit the peak power of pulse to hundreds of MW, corresponding to pulse energy of hundreds of μJ for femtosecond pulses in large mode area rod-type fibers. In addition, the average power of fiber lasers is limited by transverse mode instability, which reduces the stability and quality of beams above a certain threshold. In rod-type fibers, the threshold is about 250 W. Neither average power nor pulse energy emitted by single fiber meets the requirement for attosecond laser generation.The average power and pulse energy can be further scaled by coherent beam combination, which involves splitting pulses caused by an frontend laser and recombining them after amplification. It is essential for coherent beam combination to maintain the coherence of pulse replicas, which usually involves high speed photodiode detectors, piezo-driven mirrors, and other electronics forming a feedback system to actively control the phase of all replicas. We present a high-energy high-power ultrafast fiber laser system by using filled-aperture coherent combination of four ytterbium-doped rod-type fiber amplifiers. The phase control is achieved by using stochastic parallel gradient descent method. The frontend includes a passively mode-locked Yb-fiber oscillator, a stretcher, a pulse picker, and three fiber pre-amplifiers, which delivers 1 MHz stretched pulses centered at 1032 nm with 700 ps duration and 20 W average power. The pulse is split into four replicas by polarization beam-splitter and half-wave plate pairs, and the replicas pass through delay lines formed by piezo-driven mirrors before amplification. The pulse replicas are equally split and amplified to ensure the same accumulated nonlinear phase, and are combined by thin film polarizer and half-wave plate pairs. A small portion of the combined pulse is split and collected by a photodiode detector after being filtered spectrally and spatially, serving as a signal for controlling phase. The combined pulse is compressed by a compressor using a double-pass diffraction grating pair consisting of two 1739 l/mm gratings.At a repetition rate of 1 MHz, our four-channel Yb-fiber coherent beam combination system generates a combined average power value of 753 W and a combination efficiency of 87%. By utilizing an adjustable pulse stretcher and compressor, a 0.67 mJ, 242 fs near transform-limited pulse can be generated with a compressing efficiency of 89%. The compressed pulse is centered at 1032 nm, and the spectrum width is 8.8-nm. In the 30 min measurement, the root-mean-square of average power is less than 1% , while the residual phase error is less than λ/23, indicating excellent stability on different time scales. The beam quality factor of the 0.67 mJ compressed pulses is 1.17×1.11. At 500 kHz, we obtain pulses of 1.07 mJ and 247 fs with average power of 534 W, exhibiting similar efficiency, long-term stability, and beam quality. The residual phase error decreases below λ/29, indicating better short-term stability. Further scaling power and energy can be achieved by increasing the number of channels. By adding the delay stabilization system and pointing stabilization system, which are currently under development, an eight-channel CBC system can be used to generate 1 kW, 2 mJ pulses.In this work, we implement a four-channel coherent beam combining system based on the SPGD method, and obtain compressed pulses of 673 W, 673 µJ, and 242 fs at 1 MHz and 534 W, 1.07 mJ, and 247 fs at 500 kHz. Both power and energy can be further improved by increasing the channel number, and adding the delay stabilization system and pointing stabilization system which are under construction. By adding coherent pulse stacking amplification technology, the coherent beam combining system ought to generate pulse energy as high as 100 mJ, which constitutes the energy source for applications such as laser wake-field acceleration.
      Corresponding author: CHANG Guoqing, guoqing.chang@iphy.ac.cn
    • Funds: Project supported by the Key Deployment Special Research Project of the Chinese Academy of Sciences (Grant No. PTYQ2022YZ0001), the National Natural Science Foundation of China (Grant Nos. 62175255, 62227822), and the National Key Research and Development Program of China (Grant No. 2021YFB3602602).
    [1]

    Chang G Q, Wei Z Y 2020 iScience 23 101101Google Scholar

    [2]

    Kirsche A, Gebhardt M, Klas R, Eisenbach L, Eschen W, Buldt J, Stark H, Rothhardt J, Limpert J 2023 Opt. Express 31 2744Google Scholar

    [3]

    Eidam T, Rothhardt J, Stutzki F, Jansen F, Hädrich S, Carstens H, Jauregui C, Limpert J, Tünnermann A 2011 Opt. Express 19 255Google Scholar

    [4]

    Eidam T, Wirth C, Jauregui C, Stutzki F, Jansen F, Otto H J, Schmidt O, Schreiber T, Limpert J, Tünnermann A 2011 Opt. Express 19 13218Google Scholar

    [5]

    Kienel M, Müller M, Klenke A, Limpert J, Tünnermann A 2016 Opt. Lett. 41 3343Google Scholar

    [6]

    Wan P, Yang L M, Liu J 2013 Opt. Express 21 29854Google Scholar

    [7]

    Stark H, Benner M, Buldt J, Klenke A, Limpert J 2023 Opt. Lett. 48 3007Google Scholar

    [8]

    Müller M, Aleshire C, Klenke A, Haddad E, Légaré F, Tünnermann A, Limpert J 2020 Opt. Lett. 45 3083Google Scholar

    [9]

    Jauregui C, Stihler C, Limpert J 2020 Adv. Opt. Photon. 12 429Google Scholar

    [10]

    Pedersen M E, Johansen M M, Olesen A S, Michieletto M, Gaponenko M, Maack M D 2022 Opt. Lett. 47 5172Google Scholar

    [11]

    王栋梁, 史卓, 王井上, 吴洪悦, 张晓辉, 常国庆 2024 73 134204Google Scholar

    Wang D L, Shi Z, Wang J S, Wu H Y, Zhang X H, Chang G Q 2024 Acta Phys. Sin. 73 134204Google Scholar

    [12]

    Peng S X, Wang Z H, Hu F L, Li Z Y, Zhang Q B, Lu P X 2024 Front. Optoelectron. 17 3Google Scholar

    [13]

    王志浩, 彭双喜, 徐浩, 李政言, 张庆斌, 陆培祥 2024 光学学报 44 1732017Google Scholar

    Wang Z H, Peng S X, Xu H, Li Z Y, Zhang Q B, Lu P X 2024 Acta Opt. Sin. 44 1732017Google Scholar

    [14]

    常洪祥, 靳凯凯, 张雨秋, 张嘉怡, 金坤, 李灿, 粟荣涛, 冷进勇, 周朴 2023 光学学报 43 1714008Google Scholar

    Chang H X, Jin K K, Zhang Y Q, Zhang J Y, Jin K, Li C, Su R T, Leng J Y, Zhou P 2023 Acta Opt. Sin. 43 1714008Google Scholar

    [15]

    王涛, 李灿, 刘洋, 任博, 唐振强, 常洪祥, 谢戈辉, 郭琨, 吴坚, 许将明, 冷进勇, 马鹏飞, 粟荣涛, 李文雪, 周朴 2023 红外与激光工程 52 20220869Google Scholar

    Wang T, Li C, Liu Y, Ren B, Tang Z Q, Chang H X, Xie G H, Guo K, Wu J, Xu J M, Leng J Y, Ma P F, Su R T, Li W X, Zhou P 2023 Infrared Laser Eng. 52 20220869Google Scholar

    [16]

    Ren B, Chang H X, Li C, Wang T, Jin K K, Zhang J Y, Guo K, Su R T, Leng J Y, Zhou P 2024 Front. Optoelectron. 17 14Google Scholar

    [17]

    Schimpf D N, Eidam T, Seise E, Hädrich S, Limpert J, Tünnermann A 2009 Opt. Express 17 18774Google Scholar

    [18]

    Yu C X, Kansky J E, Shaw S E J, Murphy D V, Higgs C 2006 Electron. Lett. 42 1024Google Scholar

    [19]

    Weiss S B, Weber M E, Goodno G D 2012 Opt. Lett. 37 455Google Scholar

    [20]

    Goodno G D, Weiss S B 2012 Opt. Express 20 14945Google Scholar

    [21]

    Rainville A, Whittlesey M, Pasquale C, et al. 2024 Optica 11 1540Google Scholar

  • 图 1  四路相干合成系统示意图, 其中Front end为光纤前端, QWP为1/4波片, HWP为半波片, TFP为薄膜偏振片, DM为双色镜, HR为高反镜, L为透镜, PBS为偏振分束棱镜, PZT为压电陶瓷, LD为半导体泵浦源, Rod-type fiber为棒状光纤, BS为分束镜, Filter为滤波片, PD为光电探测器, Control circuit为电控锁相回路, TG为透射光栅对

    Figure 1.  Schematic setup of the four-channel coherent beam combining system, where Front end is fiber front end, QWP is quarter-wave plate, HWP is half-wave plate, TFP is thin-film polarizer, DM is dichroic mirror, HR is high-reflection mirror, L is lens, PBS is polarizing beam splitter, PZT is piezo-electric ceramic transducer, LD is laser diode pump, Rod-type fiber is rod photonic crystal fiber, BS is beam splitter, Filter is spectrum filter, PD is photodetector, Control circuit is electronic phase control circuit, TG is transmission gratings.

    图 2  输出功率和效率与泵浦功率的关系

    Figure 2.  Relationship between output power, efficiency and pump power.

    图 3  压缩后脉冲的自相关、光谱与光束质量

    Figure 3.  Autocorrelation trace, spectrum and beam quality factor of compressed pulse.

    图 4  不同时间尺度下的功率稳定性

    Figure 4.  Power stability under different time scales.

    图 5  500 kHz时输出功率和效率与泵浦功率的关系

    Figure 5.  Relationship between output power, efficiency and pump power at 500 kHz.

    图 6  500 kHz时的自相关、光谱与功率稳定性

    Figure 6.  Autocorrelation trace, spectrum and power stability at 500 kHz.

    Baidu
  • [1]

    Chang G Q, Wei Z Y 2020 iScience 23 101101Google Scholar

    [2]

    Kirsche A, Gebhardt M, Klas R, Eisenbach L, Eschen W, Buldt J, Stark H, Rothhardt J, Limpert J 2023 Opt. Express 31 2744Google Scholar

    [3]

    Eidam T, Rothhardt J, Stutzki F, Jansen F, Hädrich S, Carstens H, Jauregui C, Limpert J, Tünnermann A 2011 Opt. Express 19 255Google Scholar

    [4]

    Eidam T, Wirth C, Jauregui C, Stutzki F, Jansen F, Otto H J, Schmidt O, Schreiber T, Limpert J, Tünnermann A 2011 Opt. Express 19 13218Google Scholar

    [5]

    Kienel M, Müller M, Klenke A, Limpert J, Tünnermann A 2016 Opt. Lett. 41 3343Google Scholar

    [6]

    Wan P, Yang L M, Liu J 2013 Opt. Express 21 29854Google Scholar

    [7]

    Stark H, Benner M, Buldt J, Klenke A, Limpert J 2023 Opt. Lett. 48 3007Google Scholar

    [8]

    Müller M, Aleshire C, Klenke A, Haddad E, Légaré F, Tünnermann A, Limpert J 2020 Opt. Lett. 45 3083Google Scholar

    [9]

    Jauregui C, Stihler C, Limpert J 2020 Adv. Opt. Photon. 12 429Google Scholar

    [10]

    Pedersen M E, Johansen M M, Olesen A S, Michieletto M, Gaponenko M, Maack M D 2022 Opt. Lett. 47 5172Google Scholar

    [11]

    王栋梁, 史卓, 王井上, 吴洪悦, 张晓辉, 常国庆 2024 73 134204Google Scholar

    Wang D L, Shi Z, Wang J S, Wu H Y, Zhang X H, Chang G Q 2024 Acta Phys. Sin. 73 134204Google Scholar

    [12]

    Peng S X, Wang Z H, Hu F L, Li Z Y, Zhang Q B, Lu P X 2024 Front. Optoelectron. 17 3Google Scholar

    [13]

    王志浩, 彭双喜, 徐浩, 李政言, 张庆斌, 陆培祥 2024 光学学报 44 1732017Google Scholar

    Wang Z H, Peng S X, Xu H, Li Z Y, Zhang Q B, Lu P X 2024 Acta Opt. Sin. 44 1732017Google Scholar

    [14]

    常洪祥, 靳凯凯, 张雨秋, 张嘉怡, 金坤, 李灿, 粟荣涛, 冷进勇, 周朴 2023 光学学报 43 1714008Google Scholar

    Chang H X, Jin K K, Zhang Y Q, Zhang J Y, Jin K, Li C, Su R T, Leng J Y, Zhou P 2023 Acta Opt. Sin. 43 1714008Google Scholar

    [15]

    王涛, 李灿, 刘洋, 任博, 唐振强, 常洪祥, 谢戈辉, 郭琨, 吴坚, 许将明, 冷进勇, 马鹏飞, 粟荣涛, 李文雪, 周朴 2023 红外与激光工程 52 20220869Google Scholar

    Wang T, Li C, Liu Y, Ren B, Tang Z Q, Chang H X, Xie G H, Guo K, Wu J, Xu J M, Leng J Y, Ma P F, Su R T, Li W X, Zhou P 2023 Infrared Laser Eng. 52 20220869Google Scholar

    [16]

    Ren B, Chang H X, Li C, Wang T, Jin K K, Zhang J Y, Guo K, Su R T, Leng J Y, Zhou P 2024 Front. Optoelectron. 17 14Google Scholar

    [17]

    Schimpf D N, Eidam T, Seise E, Hädrich S, Limpert J, Tünnermann A 2009 Opt. Express 17 18774Google Scholar

    [18]

    Yu C X, Kansky J E, Shaw S E J, Murphy D V, Higgs C 2006 Electron. Lett. 42 1024Google Scholar

    [19]

    Weiss S B, Weber M E, Goodno G D 2012 Opt. Lett. 37 455Google Scholar

    [20]

    Goodno G D, Weiss S B 2012 Opt. Express 20 14945Google Scholar

    [21]

    Rainville A, Whittlesey M, Pasquale C, et al. 2024 Optica 11 1540Google Scholar

  • [1] Wang Dong-Liang, Shi Zhuo, Wang Jing-Shang, Wu Hong-Yue, Zhang Xiao-Hui, Chang Guo-Qing. 1 MHz, 273 W average power Ytterbium-doped rod-type fiber chirped pulse amplification system. Acta Physica Sinica, 2024, 73(13): 134204. doi: 10.7498/aps.73.20240300
    [2] Wang Jing-Shang, Zhang Yao, Wang Jun-Li, Wei Zhi-Yi, Chang Guo-Qing. Recent progress of coherent combining technology in femtosecond fiber lasers. Acta Physica Sinica, 2021, 70(3): 034206. doi: 10.7498/aps.70.20201683
    [3] Huang Pei,  Fang Shao-Bo,  Huang Hang-Dong,  Hou Xun,  Wei Zhi-Yi. Coherent synthesis of ultrashort pulses based on balanced optical cross-correlator. Acta Physica Sinica, 2018, 67(24): 244204. doi: 10.7498/aps.67.20181851
    [4] Zhou Ze-Min, Zeng Xin-Wu, Gong Chang-Chao, Zhao Yun, Tian Zhang-Fu. Experimental investigations on coherent combination of high-power and high-intensity air-modulated speakers. Acta Physica Sinica, 2013, 62(13): 134305. doi: 10.7498/aps.62.134305
    [5] Geng Chao, Luo Wen, Tan Yi, Liu Hong-Mei, Mu Jin-Bo, Li Xin-Yang. Experimental study on coherent beam combination of fiber amplifiers using adaptive power-in-the-bucket cost function. Acta Physica Sinica, 2013, 62(22): 224202. doi: 10.7498/aps.62.224202
    [6] Su Rong-Tao, Zhou Pu, Wang Xiao-Lin, Ji Xiang, Xu Xiao-Jun. Influence of temporal error with different pulse shapes on coherent beam combination system. Acta Physica Sinica, 2012, 61(8): 084206. doi: 10.7498/aps.61.084206
    [7] Li Jian-Long, Feng Guo-Ying, Zhou Shou-Huan, Li Wei. Study of the M2 factor for the single-aperture coherent laser beam synthesis system. Acta Physica Sinica, 2012, 61(9): 094206. doi: 10.7498/aps.61.094206
    [8] Geng Chao, Li Xin-Yang, Zhang Xiao-Jun, Rao Chang-Hui. Experimental investigation on coherent beam combination of a three-element fiber array based on target-in-the-loop technique. Acta Physica Sinica, 2012, 61(3): 034204. doi: 10.7498/aps.61.034204
    [9] Zhu Ya-Dong, Xiao Hu, Wang Xiao-Lin, Ma Yan-Xing, Zhou Pu. Coherent beam combination of two high power double clad fiber lasers by using an all-fiber Michelson cavity. Acta Physica Sinica, 2012, 61(5): 054210. doi: 10.7498/aps.61.054210
    [10] Wang Xiao-Lin, Zhou Pu, Ma Yan-Xing, Ma Hao-Tong, Li Xiao, Xu Xiao-Jun, Zhao Yi-Jun. Phase noise detection method in fiber lasers based onphase modulation and demodulation. Acta Physica Sinica, 2011, 60(8): 084203. doi: 10.7498/aps.60.084203
    [11] Lian Tian-Hong, Wang Shi-Yu, Guo Zhen, Li Bing-Bin, Cai De-Fang, Wen Jian-Guo. A coherently combined laser beam for lidar. Acta Physica Sinica, 2011, 60(12): 124208. doi: 10.7498/aps.60.124208
    [12] Geng Chao, Li Xin-Yang, Zhang Xiao-Jun, Rao Chang-Hui. Influence and simulated correction of tip/tilt phase error on fiber laser coherent beam combination. Acta Physica Sinica, 2011, 60(11): 114202. doi: 10.7498/aps.60.114202
    [13] Fan Xin-Yan, Liu Jing-Jiao, Liu Jin-Sheng, Wu Jing-Li. Theoretical and experimental study of multi-element coherent fiber array. Acta Physica Sinica, 2010, 59(4): 2462-2470. doi: 10.7498/aps.59.2462
    [14] Wang Xiao-Lin, Zhou Pu, Ma Yan-Xing, Ma Hao-Tong, Xu Xiao-Jun, Liu Ze-Jin, Zhao Yi-Jun. Coherent beam combining of multi-wavelength lasers based on stochastic parallel gradient descent algorithm. Acta Physica Sinica, 2010, 59(8): 5474-5478. doi: 10.7498/aps.59.5474
    [15] Han Wei-Tao, Hou Lan-Tian, Geng Peng-Cheng. Numerical and experimental study on coherent combining of double cladding multi-core photonic crystal fiber. Acta Physica Sinica, 2010, 59(10): 7091-7095. doi: 10.7498/aps.59.7091
    [16] Wang Xiao-Lin, Zhou Pu, Ma Yan-Xing, Ma Hao-Tong, Xu Xiao-Jun, Liu Ze-Jin, Zhao Yi-Jun. High precision phase control system in coherent combining of fiber laser based on stochastic parallel gradient descent algorithm. Acta Physica Sinica, 2010, 59(2): 973-979. doi: 10.7498/aps.59.973
    [17] Lei Bing, Feng Ying, Liu Ze-Jin. Phase locking of three fiber lasers using an all-fiber coupling loop. Acta Physica Sinica, 2008, 57(10): 6419-6424. doi: 10.7498/aps.57.6419
    [18] Xiao Rui, Hou Jing, Jiang Zong-Fu. Effect of partial coherence laser arrays on far-field output properties. Acta Physica Sinica, 2008, 57(2): 853-859. doi: 10.7498/aps.57.853
    [19] Xiao Rui, Zhou Pu, Hou Jing, Jiang Zong-Fu, Liu Ming. Effect of partial coherence of laser has on the irradiance distribution of coherent combining of fiber laser arrays in far field. Acta Physica Sinica, 2007, 56(2): 819-823. doi: 10.7498/aps.56.819
    [20] Xiao Rui, Hou Jing, Jiang Zong-Fu, Liu Ming. Experimental research of coherent combining of three fiber amplifiers. Acta Physica Sinica, 2006, 55(12): 6464-6469. doi: 10.7498/aps.55.6464
Metrics
  • Abstract views:  1590
  • PDF Downloads:  169
  • Cited By: 0
Publishing process
  • Received Date:  21 October 2024
  • Accepted Date:  20 November 2024
  • Available Online:  28 November 2024
  • Published Online:  05 January 2025

/

返回文章
返回
Baidu
map