-
Ytterbium-doped ultrafast fiber lasers are widely used in scientific research, industrial processing, medical diagnosis, and other fields due to their excellent beam quality and high power output. The larger mode area allows the fiber to transmit higher peak-pulse power. The commercial rod-type Ytterbium-doped fiber with a core diameter of 85 μm, produced by NKT in Denmark, can produce ultra-short pulses on the order of 100 watts and 100 microjoules. Based on this rod-type fiber, we construct a chirped-pulse amplification (CPA) system in which the high-efficiency transmission gratings and temperature-tunable chirped fiber Bragg grating (CFBG) are used to compensate for dispersion. We investigate the effect of power input on the amplified power and pulse compression quality, and find that higher power input slows down the gain saturation and improves amplification efficiency. At power inputs of 20 W and 30 W, we obtain power outputs of 305 W and 323 W respectively, with an amplification efficiency of about 80%. To reduce the accumulation of nonlinear phase shift, we use circular polarization amplification. At low power outputs (less than 160 W), the effect of nonlinear phase accumulation on the compressed pulse is negligible, and the increase in power input increases the amplification efficiency. When the power output exceeds 200 W, the cumulative increase of nonlinear phase shift reduces the pulse compression quality, which implies that the input power is appropriately reduced to the power range between 5 W and 20 W. With a power input of 20 W and pump power of 429 W, the power output can reach 305 W. After pulse is compressed by using a diffraction-grating pair, this rod-type fiber CPA system can deliver 1 MHz, 264 fs pulses with 273 W in average power. These results provide an important experimental basis for optimizing the performance of high-power and high-energy ultrafast fiber lasers.
-
Keywords:
- ultrafast fiber laser /
- high average power /
- pulse amplification
[1] Jackson S D 2012 Nat. Photonics 6 423
Google Scholar
[2] Chang G, Wei Z 2020 iScience 23 101101
Google Scholar
[3] Strickland D, Mourou G 1985 Opt. Commun. 55 447
Google Scholar
[4] Richardson D J, Nilsson J, Clarkson W A 2010 JOSA B 27 B63
Google Scholar
[5] Zervas M N 2014 Int. J. Mod. Phys. B 28 1442009
Google Scholar
[6] Limpert J, Stutzki F, Jansen F, Otto H J, Eidam T, Jauregui C, Tünnermann A 2012 Light: Sci. Appl. 1 e8
Google Scholar
[7] Stutzki F, Jansen F, Otto H J, Jauregui C, Limpert J, Tünnermann A 2014 Optica 1 233
Google Scholar
[8] Eidam T, Rothhardt J, Stutzki F, Jansen F, Hädrich S, Carstens H, Jauregui C, Limpert J, Tünnermann A 2011 Opt. Express 19 255
Google Scholar
[9] Stutzki F, Jansen F, Liem A, Jauregui C, Limpert J, Tünnermann A 2012 Opt. Lett. 37 1073
Google Scholar
[10] Shi Z, Wang J S, Zhang Y, Wang J L, Wei Z Y, Chang G Q 2023 JOSA B 40 2429
Google Scholar
[11] Stark H, Benner M, Buldt J, Klenke A, Limpert J 2023 Opt. Lett. 48 3007
Google Scholar
[12] Müller M, Kienel M, Klenke A, Gottschall T, Shestaev E, Plötner M, Limpert J, Tünnermann A 2016 Opt. Lett. 41 3439
Google Scholar
[13] Stark H, Buldt J, Müller M, Klenke A, Limpert J 2021 Opt. Lett. 46 969
Google Scholar
[14] Pedersen M E, Johansen M M, Olesen A S, Michieletto M, Gaponenko M, Maack M D 2022 Opt. Lett. 47 5172
Google Scholar
[15] Limpert J, Roser F, Schimpf D N, Seise E, Eidam T, Hadrich S, Rothhardt J, Misas C J, Tunnermann A 2009 IEEE J. Sel. Topics Quantum Electron. 15 159
Google Scholar
[16] Schimpf D N, Eidam T, Seise E, Hädrich S, Limpert J, Tünnermann A 2009 Opt. Express 17 18774
Google Scholar
[17] Zhang Y, Chen R Z, Huang H D, Liu Y Z, Teng H, Fang S B, Liu W, Kaertner F, Wang J L, Chang G Q, Wei Z Y 2020 OSA Continuum 3 1988
Google Scholar
[18] Zhang Y, Wang J S, Teng H, Fang S B, Wang J L, Chang G Q, Wei Z Y 2021 Opt. Lett. 46 3115
Google Scholar
[19] Wang T, Li C, Ren B, Guo K, Wu J, Leng J, Zhou P 2023 High Power Laser Sci. Eng. 11 e25
Google Scholar
[20] Müller M, Aleshire C, Klenke A, Haddad E, Légaré F, Tünnermann A, Limpert J 2020 Opt. Lett. 45 3083
Google Scholar
[21] Müller M, Buldt J, Stark H, Grebing C, Limpert J 2021 Opt. Lett. 46 2678
Google Scholar
-
图 1 基于棒状光纤的CPA系统示意图(HR, 高反镜; ISO, 光隔离器; QWP, 1/4波片; L, 透镜; Rod-type fiber, 棒状光子晶体光纤; DM, 双色镜; LD system, 泵浦; TG, 透射光栅)
Figure 1. Schematic setup of the CPA system using the rod-type fiber (HR, high-reflection mirror; ISO, isolator; QWP, quarter-wave plate; L, lens; Rod-type fiber, rod photonic crystal fiber; DM, dichroic mirror; LD system, pump; TG, transmission grating).
-
[1] Jackson S D 2012 Nat. Photonics 6 423
Google Scholar
[2] Chang G, Wei Z 2020 iScience 23 101101
Google Scholar
[3] Strickland D, Mourou G 1985 Opt. Commun. 55 447
Google Scholar
[4] Richardson D J, Nilsson J, Clarkson W A 2010 JOSA B 27 B63
Google Scholar
[5] Zervas M N 2014 Int. J. Mod. Phys. B 28 1442009
Google Scholar
[6] Limpert J, Stutzki F, Jansen F, Otto H J, Eidam T, Jauregui C, Tünnermann A 2012 Light: Sci. Appl. 1 e8
Google Scholar
[7] Stutzki F, Jansen F, Otto H J, Jauregui C, Limpert J, Tünnermann A 2014 Optica 1 233
Google Scholar
[8] Eidam T, Rothhardt J, Stutzki F, Jansen F, Hädrich S, Carstens H, Jauregui C, Limpert J, Tünnermann A 2011 Opt. Express 19 255
Google Scholar
[9] Stutzki F, Jansen F, Liem A, Jauregui C, Limpert J, Tünnermann A 2012 Opt. Lett. 37 1073
Google Scholar
[10] Shi Z, Wang J S, Zhang Y, Wang J L, Wei Z Y, Chang G Q 2023 JOSA B 40 2429
Google Scholar
[11] Stark H, Benner M, Buldt J, Klenke A, Limpert J 2023 Opt. Lett. 48 3007
Google Scholar
[12] Müller M, Kienel M, Klenke A, Gottschall T, Shestaev E, Plötner M, Limpert J, Tünnermann A 2016 Opt. Lett. 41 3439
Google Scholar
[13] Stark H, Buldt J, Müller M, Klenke A, Limpert J 2021 Opt. Lett. 46 969
Google Scholar
[14] Pedersen M E, Johansen M M, Olesen A S, Michieletto M, Gaponenko M, Maack M D 2022 Opt. Lett. 47 5172
Google Scholar
[15] Limpert J, Roser F, Schimpf D N, Seise E, Eidam T, Hadrich S, Rothhardt J, Misas C J, Tunnermann A 2009 IEEE J. Sel. Topics Quantum Electron. 15 159
Google Scholar
[16] Schimpf D N, Eidam T, Seise E, Hädrich S, Limpert J, Tünnermann A 2009 Opt. Express 17 18774
Google Scholar
[17] Zhang Y, Chen R Z, Huang H D, Liu Y Z, Teng H, Fang S B, Liu W, Kaertner F, Wang J L, Chang G Q, Wei Z Y 2020 OSA Continuum 3 1988
Google Scholar
[18] Zhang Y, Wang J S, Teng H, Fang S B, Wang J L, Chang G Q, Wei Z Y 2021 Opt. Lett. 46 3115
Google Scholar
[19] Wang T, Li C, Ren B, Guo K, Wu J, Leng J, Zhou P 2023 High Power Laser Sci. Eng. 11 e25
Google Scholar
[20] Müller M, Aleshire C, Klenke A, Haddad E, Légaré F, Tünnermann A, Limpert J 2020 Opt. Lett. 45 3083
Google Scholar
[21] Müller M, Buldt J, Stark H, Grebing C, Limpert J 2021 Opt. Lett. 46 2678
Google Scholar
Catalog
Metrics
- Abstract views: 3024
- PDF Downloads: 117
- Cited By: 0