Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

An n-dimensional discrete hyperchaotic system and its application in audio encryption

Zhou Shuang Yin Yan-Li Wang Shi-Yu Zhang Ying-Qian

Citation:

An n-dimensional discrete hyperchaotic system and its application in audio encryption

Zhou Shuang, Yin Yan-Li, Wang Shi-Yu, Zhang Ying-Qian
cstr: 32037.14.aps.73.20241028
PDF
HTML
Get Citation
  • Discrete chaotic system, as a pseudo-random signal source, plays a very important role in realizing secure communication. However, many low-dimensional chaotic systems are prone to chaos degradation. Therefore, many scholars have studied the construction of high-dimensional chaotic systems. However, many existing algorithms for constructing high-dimensional chaotic systems have relatively high time complexity and relatively complex structures. To solve this problem, this paper explores an n-dimensional discrete hyperchaotic system with a simple structure. Firstly, the n-dimensional discrete hyperchaotic system is constructed by using sine function and power function and simple operations. Then, it is theoretically analyzed based on Jacobian matrix method that the system can have the positive Lyapunov exponents. Next, the algorithm time complexity, sample entropy, correlation dimension and other indexes are compared with those of the existing methods. The experimental results show that our system has a simple structure, high complexity and good algorithm time complexity. Therewith, a six-dimensional chaotic system is chosen as an example, and the phase diagram, bifurcation diagram, Lyapunov expnonents, complexity and other characteristics of the system are analyzed. The results show that the proposed system has good chaotic characteristics. Moreover, to show the application of the proposed system, we apply it to audio encryption. According to this system, we combine it with the XOR operation and true random numbers to explore a novel method of one-cipher audio encryption. Through experimental simulation, compared with some existing audio encryption algorithms, this algorithm can satisfy various statistical tests and resist various common attacks. It is also validated that the proposed system can be effectively applied to the field of audio encryption.
      Corresponding author: Zhou Shuang, zhoushuang@cqnu.edu.cn
    • Funds: Project supported by the Natural Science Foundation Project of Chongqing, China (Grant No. CSTB2023NSCQ-MSX0401).
    [1]

    Herbadji D, Herbadji A, haddad I, Kahia H, Belmeguenai A, Derouiche N 2024 Integration 97 102192Google Scholar

    [2]

    Joshi A B, Gaffar A 2024 Soft Comput. 28 5523Google Scholar

    [3]

    Yu F, Yu Q L, Chen H F, Kong X X, Molbel A A M, Cai S, Du S C 2022 Fractal Fract. 6 370Google Scholar

    [4]

    Wu R, Gao S, Wang X Y, Liu S B, Li Q, Erkan U, Tang X L 2022 Chaos, Soliton Fractals 165 112770Google Scholar

    [5]

    Wu R, Gao S, Iu H H, Zhou S, Erkan U, Toktas A, Tang X 2024 IEEE Internet Things J. 11 10214Google Scholar

    [6]

    Rahul B, Kuppusamy K, Senthilrajan A 2023 Multimed. Tools Appl. 82 43729Google Scholar

    [7]

    Demirtaş M 2023 Orclever Proc. Res. Dev. 2 28Google Scholar

    [8]

    Liu H J 2023 Multimed. Tools Appl. 82 27973Google Scholar

    [9]

    Cao Y F, Liu H J 2024 Multimed. Tools Appl. 83 79377Google Scholar

    [10]

    Zhu P X, Yang Q G 2023 Proc. Am. Math. Soc. 151 5353Google Scholar

    [11]

    王兴元, 王明军 2007 56 6843Google Scholar

    Wang X Y, Wang M J 2007 Acta Phys. Sin. 56 6843Google Scholar

    [12]

    Yang Q G, Zhu P X 2024 Int. J. Bifurcation Chaos 34 2450122Google Scholar

    [13]

    赵智鹏, 周双, 王兴元 2021 70 230502Google Scholar

    Zhao Z P, Zhou S, Wang X Y 2021 Acta Phys. Sin. 70 230502Google Scholar

    [14]

    扶龙香, 贺少波, 王会海, 孙克辉 2022 71 030501Google Scholar

    Fu L X, He S B, Wang H H, Sun K H 2022 Acta Phys. Sin. 71 030501Google Scholar

    [15]

    Hua Z Y, Zhang Y X, Bao H, Huang H J, Zhou Y C 2022 IEEE Trans. Circuits Syst. Regul. Pap. 69 784Google Scholar

    [16]

    Huang L L, Liu J, Xiang J H, Zhang Z F, Du X L 2022 Chaos, Soliton Fractals 160 112248Google Scholar

    [17]

    Fan C L, Ding Q 2022 Chaos, Soliton Fractals 161 112323Google Scholar

    [18]

    Zhao M D, Liu H J 2023 Int. J. Bifurcation Chaos 33 2350070Google Scholar

    [19]

    Zhang Y X, Hua Z Y, Bao H, Huang H J, Zhou Y C 2023 IEEE Trans. Syst. Man Cybern Syst. 53 6516Google Scholar

    [20]

    Ding D W, Zhu H F, Zhang H W, Yang Z L, Xie D 2024 Chaos, Soliton Fractals 185 115168Google Scholar

    [21]

    MacQueen J 1967 Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, USA, June 21– July 18 1965 and December 27, 1965–January 7, 1966 p281

    [22]

    Wang C F, Fan C L, Ding Q 2018 Int. J. Bifurcation Chaos 28 1850084Google Scholar

    [23]

    Termonia Y 1984 Phys. Rev. A 29 1612Google Scholar

    [24]

    Richman J S, Moorman J R 2000 Am. J. Physiol-Heart C 278 H2039Google Scholar

    [25]

    Grassberger P, Procaccia I 1983 Phys. Rev. Lett. 50 346Google Scholar

    [26]

    Zeng J, Wang Y M, Li X Y, Guang Y R, Wang C F, Ding Q 2023 Phys. Scr. 98 075212Google Scholar

    [27]

    Liu R R, Liu H J, Zhao M D 2023 Integration 93 102071Google Scholar

    [28]

    Xing Y N, Zeng J, Dong W J, Zhang J, Guo P T, Ding Q 2024 Phys. Scr. 99 035231Google Scholar

    [29]

    Kumar A, Dua M 2023 Appl. Acoust. 203 109196Google Scholar

  • 图 1  (a) x1 -x2 -x3相图; (b) x4 -x5 -x6相图

    Figure 1.  (a) x1 -x2 -x3 phase diagram; (b) x4 -x5 -x6 phase diagram.

    图 2  分岔图

    Figure 2.  Bifurcation diagram.

    图 3  Lyapunov指数

    Figure 3.  Lyapunov exponent.

    图 4  敏感性分析

    Figure 4.  Sensitivity analysis

    图 5  音频加密与解密仿真(第1列为原始音频波形图; 第2列为加密音频波形图; 第3列为解密音频波形图) (a) 1-67152-A-17.wav的加密与解密; (b) 1-121951-A-8.wav的加密与解密; (c) 5-261464-A-23.wav的加密与解密

    Figure 5.  Audio encryption and decryption simulation (the first column is the original audio waveform diagram; the second column is an encrypted audio waveform diagram; the third column decrypts the audio waveform diagram): (a) Encryption and decryption of 1-67152-A-17.wav; (b) encryption and decryption of 1-121951-A-8.wav; (c) encryption and decryption of 5-261464-A-23.wav.

    图 6  选择明文攻击 (a) 1-67152-A-17.wav XOR 1-121951-A-8.wav; (b) 5-261464-A-23.wav XOR 1-67152-A-17.wav; (c) 1-121951-A-8.wav XOR 5-261464-A-23.wav; (d) 加密后的 1-67152-A-17.wav XOR加密后的 1-121951-A-8.wav; (e) 加密后的 5-261464-A-23.wav XOR 加密后的1-67152-A-17.wav; (f) 加密后的 1-121951-A-8.wav XOR加密后的 5-261464-A-23.wav

    Figure 6.  Chosen-plaintext attack: (a) 1-67152-A-17.wav XOR 1-121951-A-8.wav; (b) 5-261464-A-23.wav XOR 1-67152-A-17.wav; (c) 1-121951-A-8.wav XOR 5-261464-A-23.wav; (d) encrypted 1-67152-A-17.wav XOR encrypted 1-121951-A-8.wav; (e) Encrypted 5-261464-A-23.wav XOR Encrypted 1-67152-A-17.wav; (f) encrypted 1-121951-A-8.wav XOR encrypted 5-261464-A-23.wav.

    表 1  不同方法的时间复杂度对比

    Table 1.  Comparison of time complexity of different methods.

    离散混沌系统 元素加法个数 矩阵乘法复杂度 算法时间复杂度
    Wang et al., 2018[22] $n(n - 1)$ $O({n^3})$ $O({n^3})$
    Hua et al., 2022[15] ${{n(n - 1)}}/{2}$ $O({n^3})$ $O({n^3})$
    Fan et al., 2022[17] $n(n-1)$ $O({n^3})$ $O({n^3})$
    Liu et al., 2023[18] ${{n(n - 1)}}/{2}$ $O({n^3})$ $O({n^3})$
    本文方法 $ 3n-4 \; ({b_i} \ne 0)$
    $ 2 n - 4\; ({b_i}=0)$
    $O(n)$
    DownLoad: CSV

    表 2  不同维度下各个变量动力学指标平均值分析

    Table 2.  Analysis of average dynamic indicators of variables across different dimensions.

    维度KESECD
    30.43122.01202.1857
    40.42122.04462.8712
    50.43202.09732.2378
    60.42262.93212.7423
    DownLoad: CSV

    表 3  不同6D混沌系统的6个变量平均值对比

    Table 3.  Comparison of average values of six variables across different 6D chaotic systems.

    系统 CD SE
    Zhao et al., 2023[18] 2.8493 2.0191
    Zeng et al., 2023[26] 2.8115 2.2268
    Liu et al., 2023[27] 2.8893 2.6958
    Xing et al., 2024[28] 1.4833 1.6015
    新的混沌系统 2.7423 2.9321
    DownLoad: CSV

    表 4  TestU01测试结果(未通过的数量)

    Table 4.  TestU01 test results (number of failures).

    变量(增益1015) $ {x_1} $ $ {x_2} $ $ {x_3} $ $ {x_4} $ $ {x_5} $ $ {x_6} $
    SmallCrush(15) 0 0 0 0 2 0
    Crush(144) 6 4 7 6 78 4
    DownLoad: CSV

    表 5  原始音频相关系数

    Table 5.  Correlation coefficients of original audio files.

    音频 明文
    $ A_{n}, A_{n+1} $ $ A_{n}, A_{n+2} $ $ A_{n}, A_{n+3} $
    1-67152-A-17.wav 0.8980 0.6885 0.5066
    1-121951-A-8.wav 0.9695 0.8840 0.7583
    5-261464-A-23.wav 0.9559 0.8041 0.6811
    平均 0.9411 0.7922 0.6487
    DownLoad: CSV

    表 6  加密音频相关系数

    Table 6.  Correlation coefficients of encrypted audio files.

    音频 密文
    $ A_{n}, A_{n+1} $ $ A_{n}, A_{n+2} $ $ A_{n}, A_{n+3} $
    1-67152-A-17.wav –0.0029 –0.0036 0.0011
    1-121951-A-8.wav –0.0017 0.0017 –0.0013
    5-261464-A-23.wav 0.0020 0.0019 0.0027
    绝对值平均 0.0022 0.0024 0.0017
    DownLoad: CSV

    表 7  加密音频相关系数对比

    Table 7.  Comparison of correlation coefficients of encrypted audio files.

    算法 本文 Rahul et al., 2023[6] Kumar et al., 2023[29] Cao et al., 2024[9] Wu et al., 2024[5]
    相关系数 0.0022 0.000013 0.0019 0.002512 0.0013
    DownLoad: CSV

    表 8  加密音频的信息熵

    Table 8.  Information entropy of encrypted audio files

    音频 明文 密文
    1-67152-A-17.wav1.05777.9993
    1-121951-A-8.wav1.94807.9993
    5-261464-A-23.wav1.30217.9993
    平均1.43597.9993
    DownLoad: CSV

    表 9  加密效率

    Table 9.  Encryption efficiency.

    音频 大小 加密时间/s 速度/(s·KB–1)
    1-67152-A-17.wav4300.28090.00065
    1-121951-A-8.wav4300.20970.00048
    5-261464-A-23.wav4300.21670.00050
    平均4300.23570.00054
    DownLoad: CSV

    表 10  加密效率对比

    Table 10.  Comparison of encryption efficiency.

    算法 本文算法 Wu et al., 2024[5] Joshi et al., 2024[2] Kumar et al., 2023[29]
    速度/(s·KB–1) 0.00054 0.00030 1.8309 0.0041
    DownLoad: CSV
    Baidu
  • [1]

    Herbadji D, Herbadji A, haddad I, Kahia H, Belmeguenai A, Derouiche N 2024 Integration 97 102192Google Scholar

    [2]

    Joshi A B, Gaffar A 2024 Soft Comput. 28 5523Google Scholar

    [3]

    Yu F, Yu Q L, Chen H F, Kong X X, Molbel A A M, Cai S, Du S C 2022 Fractal Fract. 6 370Google Scholar

    [4]

    Wu R, Gao S, Wang X Y, Liu S B, Li Q, Erkan U, Tang X L 2022 Chaos, Soliton Fractals 165 112770Google Scholar

    [5]

    Wu R, Gao S, Iu H H, Zhou S, Erkan U, Toktas A, Tang X 2024 IEEE Internet Things J. 11 10214Google Scholar

    [6]

    Rahul B, Kuppusamy K, Senthilrajan A 2023 Multimed. Tools Appl. 82 43729Google Scholar

    [7]

    Demirtaş M 2023 Orclever Proc. Res. Dev. 2 28Google Scholar

    [8]

    Liu H J 2023 Multimed. Tools Appl. 82 27973Google Scholar

    [9]

    Cao Y F, Liu H J 2024 Multimed. Tools Appl. 83 79377Google Scholar

    [10]

    Zhu P X, Yang Q G 2023 Proc. Am. Math. Soc. 151 5353Google Scholar

    [11]

    王兴元, 王明军 2007 56 6843Google Scholar

    Wang X Y, Wang M J 2007 Acta Phys. Sin. 56 6843Google Scholar

    [12]

    Yang Q G, Zhu P X 2024 Int. J. Bifurcation Chaos 34 2450122Google Scholar

    [13]

    赵智鹏, 周双, 王兴元 2021 70 230502Google Scholar

    Zhao Z P, Zhou S, Wang X Y 2021 Acta Phys. Sin. 70 230502Google Scholar

    [14]

    扶龙香, 贺少波, 王会海, 孙克辉 2022 71 030501Google Scholar

    Fu L X, He S B, Wang H H, Sun K H 2022 Acta Phys. Sin. 71 030501Google Scholar

    [15]

    Hua Z Y, Zhang Y X, Bao H, Huang H J, Zhou Y C 2022 IEEE Trans. Circuits Syst. Regul. Pap. 69 784Google Scholar

    [16]

    Huang L L, Liu J, Xiang J H, Zhang Z F, Du X L 2022 Chaos, Soliton Fractals 160 112248Google Scholar

    [17]

    Fan C L, Ding Q 2022 Chaos, Soliton Fractals 161 112323Google Scholar

    [18]

    Zhao M D, Liu H J 2023 Int. J. Bifurcation Chaos 33 2350070Google Scholar

    [19]

    Zhang Y X, Hua Z Y, Bao H, Huang H J, Zhou Y C 2023 IEEE Trans. Syst. Man Cybern Syst. 53 6516Google Scholar

    [20]

    Ding D W, Zhu H F, Zhang H W, Yang Z L, Xie D 2024 Chaos, Soliton Fractals 185 115168Google Scholar

    [21]

    MacQueen J 1967 Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, USA, June 21– July 18 1965 and December 27, 1965–January 7, 1966 p281

    [22]

    Wang C F, Fan C L, Ding Q 2018 Int. J. Bifurcation Chaos 28 1850084Google Scholar

    [23]

    Termonia Y 1984 Phys. Rev. A 29 1612Google Scholar

    [24]

    Richman J S, Moorman J R 2000 Am. J. Physiol-Heart C 278 H2039Google Scholar

    [25]

    Grassberger P, Procaccia I 1983 Phys. Rev. Lett. 50 346Google Scholar

    [26]

    Zeng J, Wang Y M, Li X Y, Guang Y R, Wang C F, Ding Q 2023 Phys. Scr. 98 075212Google Scholar

    [27]

    Liu R R, Liu H J, Zhao M D 2023 Integration 93 102071Google Scholar

    [28]

    Xing Y N, Zeng J, Dong W J, Zhang J, Guo P T, Ding Q 2024 Phys. Scr. 99 035231Google Scholar

    [29]

    Kumar A, Dua M 2023 Appl. Acoust. 203 109196Google Scholar

  • [1] Ma Zhao-Zhao, Yang Qing-Chao, Zhou Rui-Ping. Lyapunov exponent algorithm based on perturbation theory for discontinuous systems. Acta Physica Sinica, 2021, 70(24): 240501. doi: 10.7498/aps.70.20210492
    [2] Li Qing-Du, Guo Jian-Li. Algorithm for calculating the Lyapunov exponents of switching system and its application. Acta Physica Sinica, 2014, 63(10): 100501. doi: 10.7498/aps.63.100501
    [3] Wu Hao, Hou Wei, Wang Wen-Xiang, Yan Peng-Cheng. Try to use Lyapunov exponent to discuss the abrupt climate change and its precursory signals. Acta Physica Sinica, 2013, 62(12): 129204. doi: 10.7498/aps.62.129204
    [4] Li Chun-Lai, Yu Si-Min. A new hyperchaotic system and its adaptive tracking control. Acta Physica Sinica, 2012, 61(4): 040504. doi: 10.7498/aps.61.040504
    [5] Zang Hong-Yan, Fan Xiu-Bin, Min Le-Quan, Han Dan-Dan. Research of Lyapunov exponent of S-boxes. Acta Physica Sinica, 2012, 61(20): 200508. doi: 10.7498/aps.61.200508
    [6] Liu Yang-Zheng, Lin Chang-Sheng, Li Xin-Chao, Liu Hai-Peng, Wang Zhong-Lin. The Logistic-Unified hybrid chaotic system. Acta Physica Sinica, 2011, 60(3): 030502. doi: 10.7498/aps.60.030502
    [7] Feng Chao-Wen, Cai Li, Kang Qiang, Peng Wei-Dong, Bai Peng, Wang Jia-Fu. Realization of the discrete chaotic system based on SET-MOS circuits. Acta Physica Sinica, 2011, 60(11): 110502. doi: 10.7498/aps.60.110502
    [8] Liu Yong. Phase synchronization of coupling systems. Acta Physica Sinica, 2009, 58(2): 749-755. doi: 10.7498/aps.58.749
    [9] Jia Hong-Yan, Chen Zeng-Qiang, Yuan Zhu-Zhi. Generation and circuit implementation of a large range hyper-chaotic system. Acta Physica Sinica, 2009, 58(7): 4469-4476. doi: 10.7498/aps.58.4469
    [10] Tang Liang-Rui, Li Jing, Fan Bing. A new four-dimensional hyperchaotic system and its circuit simulation. Acta Physica Sinica, 2009, 58(3): 1446-1455. doi: 10.7498/aps.58.1446
    [11] Liu Yang-Zheng, Jiang Chang-Sheng. Building and analysis of properties of a class of correlative and switchable hyperchaotic system. Acta Physica Sinica, 2009, 58(2): 771-778. doi: 10.7498/aps.58.771
    [12] Liu Ming-Hua, Feng Jiu-Chao. A new hyperchaotic system. Acta Physica Sinica, 2009, 58(7): 4457-4462. doi: 10.7498/aps.58.4457
    [13] Yang Yong-Feng, Wu Ya-Feng, Ren Xing-Min, Qin Wei-Yang, Zhi Xi-Zhe, Qiu Yan. The largest Lyapunov prediction method for the end issue of empirical mode decomposition. Acta Physica Sinica, 2009, 58(6): 3742-3746. doi: 10.7498/aps.58.3742
    [14] He Si-Hua, Yang Shao-Qing, Shi Ai-Guo, Li Tian-Wei. Detection of ship targets on the sea surface based on Lyapunov exponents of image block. Acta Physica Sinica, 2009, 58(2): 794-801. doi: 10.7498/aps.58.794
    [15] Yu Si-Yao, Guo Shu-Xu, Gao Feng-Li. Calculation of the Lyapunov exponent for low frequency noise in semiconductor laser and chaos indentification. Acta Physica Sinica, 2009, 58(8): 5214-5217. doi: 10.7498/aps.58.5214
    [16] Zhang Xiao-Dan, Liu Xiang, Zhao Pin-Dong. Methods for calculating the main-axis Lyapunov exponents of a type of chaotic systems with delay. Acta Physica Sinica, 2009, 58(7): 4415-4420. doi: 10.7498/aps.58.4415
    [17] Zhang Yong, Guan Wei. Predication of multivariable chaotic time series based on maximal Lyapunov exponent. Acta Physica Sinica, 2009, 58(2): 756-763. doi: 10.7498/aps.58.756
    [18] Liu Yang-Zheng, Jiang Chang-Sheng, Lin Chang-Sheng, Sun Han. Four-dimensional switchable hyperchaotic system. Acta Physica Sinica, 2007, 56(9): 5131-5135. doi: 10.7498/aps.56.5131
    [19] Wang Xing-Yuan, Wang Ming-Jun. Hyperchaotic Lorenz system. Acta Physica Sinica, 2007, 56(9): 5136-5141. doi: 10.7498/aps.56.5136
    [20] Sheng Li-Yuan, Sun Ke-Hui, Li Chuan-Bing. Study of a discrete chaotic system based on tangent-delay for elliptic reflecting cavity and its properties. Acta Physica Sinica, 2004, 53(9): 2871-2876. doi: 10.7498/aps.53.2871
Metrics
  • Abstract views:  449
  • PDF Downloads:  38
  • Cited By: 0
Publishing process
  • Received Date:  24 July 2024
  • Accepted Date:  26 August 2024
  • Available Online:  19 September 2024
  • Published Online:  05 November 2024

/

返回文章
返回
Baidu
map