Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Computational study on structure and electron affinities of carbon-containing triatomic molecules

Shan Shi-Min Lian Yi Xu Hai-Feng Yan Bing

Citation:

Computational study on structure and electron affinities of carbon-containing triatomic molecules

Shan Shi-Min, Lian Yi, Xu Hai-Feng, Yan Bing
PDF
HTML
Get Citation
  • The accurate measurement and calculation of molecular electron affinity has been a hot topic. The existing theoretical study does not consider the effects of different basic sets, or various correlation effects or zero point energy correction. In addition, there are some deviations of calculation results from experimental measurements. Therefore, we conduct a high-level ab initio study on the electron affinities of CO2, OCS, CS2 and their corresponding anions $ {\text{CO}}_{2}^{{ - }} $, OCS, $ {\text{CS}}_{2}^{{ - }} $ by adopting the coupled cluster with singles and doubles (triples) (CCSD(T)), spin-unrestricted open-shell coupled cluster with singles and doubles (triples) (UCCSD(T)), respectively. The equilibrium geometries of the ground states of these molecules are calculated under a series of extended correlation consistent basis sets aug-cc-pV (X+d)Z (X = T, Q, 5) and complete basis set extrapolation (CBS) limit. The effects of core-valence (CV) electron correlation and scalar relativistic (SR) on equilibrium geometry of the ground state are studied, and our results are compared with previous experimental observations and theoretical data. Our calculations are in good agreement with the previous results. It is found that the calculations of equilibrium geometries of these molecules tend to converge. It is noted that the scalar relativistic effect has little influence on the equilibrium structure of the neutral molecule, but it has more significant influence on the bond angle of $ {\text{CS}}_{2}^{{ - }} $.With the increase of atomic number, the core-valence correlation effect exerts a more remarkable influence on the equilibrium structures of ground states of CS2 and $ {\text{CS}}_{2}^{{ - }} $ molecules except for RC-S of OCS. Based on accurate structures, the adiabatic energy values of neutral molecules CO2, OCS, CS2 by CCSD(T) method and those of $ {\text{CO}}_{2}^{{ - }} $, OCS, $ {\text{CS}}_{2}^{{ - }} $ by using UCCSD(T) and spin-restricted open-shell coupled cluster with singles and doubles (triples) (RCCSD(T)) are calculated, respectively. And finally, the adiabatic electron affinities (EAs) of the neutral molecules CO2, OCS, CS2 are obtained. The effects of different basis sets, CBS, correlation effects and zero-point energy correction on the EA values of these molecules are investigated. It is found that both the scalar relativistic effect and the core-valence correlation effect affect the EAs of neutral molecules, and the core-valence correlation effect has a more significant effect on the EA value. The results show that the correlation effect has more significant influence on the adiabatic EA than the equilibrium structure of the ground state of neutral molecules. Based on the CBS+ΔCV+ΔDK+ΔZPE calculation, accurate EA information is acquired. Our results of EA values are within the experimental error. This work will enrich the information about spectral constants and electron affinities of carbon-containing triatomic molecules, and provide an important reference for experimental spectral analysis.
      Corresponding author: Xu Hai-Feng, xuhf@jlu.edu.cn ; Yan Bing, yanbing@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874177, 12174148, 12274178) and the Fundamental Research Program of Shanxi Province, China (Grant No. 202203021212116).
    [1]

    Rienstra K J C, Tschumper G S, Schaefer H F, Nandi S, Ellison G B 2002 Chem. Rev. 102 231Google Scholar

    [2]

    Cahen D, Kahn A 2003 Adv. Mater. 15 271Google Scholar

    [3]

    Ru P B, Bi E, Zhang Y, Wang Y B, Kong W Y, Tang W T, Zhang P, Wu Y Z, Chen W, Yang X D, Chen H, Han L Y 2020 Adv. Energy Mater. 10 1903487Google Scholar

    [4]

    Compton R N, Reinhardt P W, Cooper C D 1975 J. Chem. Phys. 63 3821Google Scholar

    [5]

    Holroyd R A, Cangwer T E, Allen A O 1975 Chem. Phys. Lett. 31 520Google Scholar

    [6]

    Surber E, Sanov A 2002 J. Chem. Phys. 116 5921Google Scholar

    [7]

    Chen E C M, Wentworth W E 1983 J. Phys. Chem. 87 45Google Scholar

    [8]

    Hughes B M, Lifshitzt C, Tiernan T O 1973 J. Chem. Phys. 59 3162Google Scholar

    [9]

    Oakes J M, Barney Ellison G 1986 Tetrahedron. 42 6263Google Scholar

    [10]

    Schiedt J, Weinkauf R 1997 Chem. Phys. Lett. 274 18Google Scholar

    [11]

    Misaizu F, Tsunoyama H, Yasumura Y, Ohshimo K, Ohno K 2004 Chem. Phys. Lett. 389 241Google Scholar

    [12]

    Cavanagh S J, Gibson S T, Lewis B R 2012 J. Chem. Phys. 137 144304Google Scholar

    [13]

    Herzberg G 1966 Molecular Spectra & Molecular Structure III (Polyatomic Molecules) (New York: Van Nostrand Reinhold) p145

    [14]

    Hartman K O, Hisatsune I C 1966 J. Chem. Phys. 44 1913Google Scholar

    [15]

    Ovenall D W, Whiffen D H 1961 Mol. Phys. 4 135Google Scholar

    [16]

    Lahaye J G, Vandenhaute R, Fayt A 1987 J. Mol. Spectrosc. 123 48Google Scholar

    [17]

    Suzuki I 1975 Bull. Chem. Soc. Jpn. 48 1685Google Scholar

    [18]

    Bennett J E, Mile B, Thomas A 1967 Trans. Faraday Soc. 63 262Google Scholar

    [19]

    Yu D, Rauk A, Armstrong D A 1992 J. Phys. Chem. 96 6031Google Scholar

    [20]

    Gutsev G L, Bartlett R J, Compton R N 1998 J. Chem. Phys. 108 6756Google Scholar

    [21]

    Barsotti S, Sommerfeld T, Ruf M W, Hotop H 2004 Int. J. Massspectrom. 233 181

    [22]

    Pacansky J, Wahlgren U, Bagus P S 1975 J. Chem. Phys. 62 2740Google Scholar

    [23]

    Yoshioka Y, Schaefer H F, Jordan K D 1981 J. Chem. Phys. 75 1040Google Scholar

    [24]

    Surber E, Ananthavel S P, Sanov A 2002 J. Chem. Phys. 116 1920Google Scholar

    [25]

    Joachim W H, Knowles P J, Knizia G, Manby F R, Schütz M 2012 Wiley Interdiscip. Rev. : Comput. Mol. Sci. 2 242Google Scholar

    [26]

    Bartlett R J, Watts J D, Kucharski S A, Noga J 1990 Chem. Phys. Lett. 165 513Google Scholar

    [27]

    Dunning T H, Peterson K A, Wilson A K 2001 J. Chem. Phys. 114 9244Google Scholar

    [28]

    Fellera D, Peterson K A, Daniel C T 2006 J. Chem. Phys. 124 054107Google Scholar

    [29]

    Fellera D, Peterson K A 2007 J. Chem. Phys. 126 114105Google Scholar

    [30]

    Peterson K A, Woon D E, Dunning T H 1994 J. Chem. Phys. 100 7410Google Scholar

    [31]

    Dunning T H 1989 J. Chem. Phys. 90 1007Google Scholar

    [32]

    Reiher M, Wolf A 2004 J. Chem. Phys. 121 2037Google Scholar

    [33]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215Google Scholar

    [34]

    Peterson K A, Dunning T H 2002 J. Chem. Phys. 117 10548Google Scholar

    [35]

    Lu T, Chen F W 2012 J. Comput. Chem. 33 580Google Scholar

  • 图 1  (a) CO2基态分子轨道图; (b) OCS基态分子轨道图; (c) CS2基态分子轨道图

    Figure 1.  (a) Molecular orbital of the ground state of CO2; (b) molecular orbital of the ground state of OCS; (c) molecular orbital of the ground state of CS2.

    图 2  (a) $ {\text{CO}}_2^ - $基态分子轨道图; (b) $ {\mathrm{OC{S}}^ - } $基态分子轨道图; (c) $ {\mathrm{C}}{\text{S}}_2^ - $基态分子轨道图

    Figure 2.  (a) Molecular orbital of the ground state of $ {\text{CO}}_2^ - $; (b) molecular orbital of the ground state of $ {\mathrm{OC{S}}^ - } $; (c) molecular orbital of the ground state of $ {\mathrm{C}}{\text{S}}_2^ - $.

    表 1  CO2, OCS, CS2及其阴离子在不同基组与CBS极限下基态的键长与键角

    Table 1.  Equilibrium bond distance and bond angle of the ground state of CO2, OCS, CS2 and the corresponding anions as a function of different basis sets and CBS limit.

    AV(T+d)Z AV(Q+d)Z AV(5+d)Z CBS
    CO2 RC-O 1.167 1.163 1.162 1.162
    ${\text{CO}}_2^ - $ RC-O 1.237 1.232 1.231 1.230
    ∠OCO/(°) 137.6 137.7 137.8 137.9
    OCS RC-O 1.163 1.159 1.158 1.158
    RC-S 1.571 1.567 1.566 1.565
    ${\mathrm{OCS}}^{ - } $ RC-O 1.214 1.210 1.209 1.208
    RC-S 1.710 1.705 1.703 1.701
    ∠OCS/(°) 136.5 136.4 136.5 136.5
    CS2 RC-S 1.562 1.558 1.557 1.555
    $ {\text{CS}}_{2}^{{ - }} $ RC-S 1.641 1.636 1.634 1.633
    ∠SCS/(°) 143.3 143.5 143.6 143.7
    DownLoad: CSV

    表 2  CO2, OCS, CS2及其应阴离子在不同关联效应下基态的键长与键角

    Table 2.  Equilibrium bond distance and bond angle of the ground state of CO2, OCS, CS2 and the corresponding anions as a function of different correlation effect.

    本工作计算结果 其他计算结果 实验结果
    CBS ΔCV ΔDK Total
    CO2 R C-O 1.162 –0.002 0 1.160 1.143 [19]/1.179 [19]/1.1614 [20]/1.164 [20]/1.167 [21] 1.162 [13]
    $ {\text{CO}}_{2}^{{ - }} $ R C-O 1.230 –0.002 0 1.228 1.225 [19]/1.256 [19]/1.230 [20]/1.233 [20]/1.237 [21] 1.25 [14]
    ∠OCO/(°) 137.9 0.1 0 138.0 135 [19]/134.2 [19]/137.9 [20]/137.7 [20]/136.7 [21] 134 [15]
    OCS R C-O 1.158 –0.002 0 1.156 1.158 [20]/1.161 [20])/1.163 [21] 1.156 [16]
    R C-S 1.565 –0.003 0 1.562 1.566 [20]/1.563 [20]/1.575 [21] 1.561 [16]
    ${\mathrm{OCS}}^{ - } $ R C-O 1.208 –0.002 0 1.206 1.208 [20]/1.209 [20]/1.213 [21]
    R C-S 1.701 –0.005 0 1.696 1.704 [20]/1.707 [20]/1.716 [21]
    ∠OCS/(°) 136.5 0.1 0 136.6 136.5 [20]/136.3 [20]/136.2 [21]
    CS2 R C-S 1.555 –0.003 0 1.552 1.558 [20]/1.557 [20]/1.565 [21] 1.556 [17]
    $ {\text{CS}}_{2}^{{ - }} $ R C-S 1.633 –0.004 0 1.629 1.635 [20]/1.630 [20]/1.646 [21]
    ∠SCS/(°) 143.7 0.2 –0.1 143.8 144 [20]/145.2 [20]/142.7 [21] 141 [18]
    DownLoad: CSV

    表 3  CO2分子的绝热电子亲和能以及与以往理论和实验数据对比

    Table 3.  Adiabatic electron affinity of CO2 compared to previous theoretical and experimental data.

    绝热电子亲和能/eV
    UCCSD(T) RCCSD(T)
    AV(T+d)Z –0.631 –0.654
    AV(Q+d)Z –0.630 –0.653
    AV(5+d)Z –0.624 –0.648
    Q5-CBS –0.616 –0.640
    TQ5-CBS –0.619 –0.643
    ΔCV –0.012
    ΔDK –0.003
    ΔZPE 0.090
    Total –0.541a)/–0.544b) –0.565a)/–0.568b)
    Experiment –0.6 ± 0.2 [4]/–0.44±0.2 [5]
    Calculation –0.36 [22]/–0.669 [20]/–0.544 [21]
    注: a)Q5-CBS+ΔCV+ΔDK+ΔZPE result.
    b)TQ5-CBS+ΔCV+ΔDK+ΔZPE result.
    DownLoad: CSV

    表 5  CS2分子的电子亲和能以及与以往理论和实验数据对比

    Table 5.  Adiabatic electron affinity of CS2 compared to previous theoretical and experimental data.

    绝热电子亲和能/eV
    UCCSD(T) RCCSD(T)
    AV(T+d)Z 0.359 0.337
    AV(Q+d)Z 0.399 0.377
    AV(5+d)Z 0.407 0.384
    Q5-CBS 0.417 0.394
    TQ5-CBS 0.412 0.389
    ΔCV –0.013
    ΔDK –0.009
    ΔZPE 0.053
    Total 0.448 a)/0.443 b) 0.425 a)/0.420 b)
    Experiment 0.6 ± 0.1 [7]/≤0.8 [10]/0.58±0.05 [11]/
    0.5525(13) [12]
    Calculation 0.406 [20]/0.382 [20]/0.457 [21]/0.54 [11]
    注: a)Q5-CBS+ΔCV+ΔDK+ΔZPE result.
    b)TQ5-CBS+ΔCV+ΔDK+ΔZPE result.
    DownLoad: CSV

    表 4  OCS分子的电子亲和能以及与以往理论和实验数据对比

    Table 4.  Adiabatic electron affinity of OCS compared to previous theoretical and experimental data.

    绝热电子亲和能/eV
    UCCSD(T) RCCSD(T)
    AV(T+d)Z –0.098 –0.119
    AV(Q+d)Z –0.073 –0.095
    AV(5+d)Z –0.069 –0.091
    Q5-CBS –0.062 –0.0839
    TQ5-CBS –0.066 –0.0876
    ΔCV –0.016
    ΔDK –0.004
    ΔZPE 0.070
    Total –0.012 a)/–0.016 b) –0.034 a)/–0.038 b)
    Experiment 0.46±0.2 [4]/–0.04 [6]
    Calculation –0.007 [21]/–0.059±0.061 [24]
    注: a)Q5-CBS+ΔCV+ΔDK+ΔZPE result.
    b)TQ5-CBS+ΔCV+ΔDK+ΔZPE result.
    DownLoad: CSV
    Baidu
  • [1]

    Rienstra K J C, Tschumper G S, Schaefer H F, Nandi S, Ellison G B 2002 Chem. Rev. 102 231Google Scholar

    [2]

    Cahen D, Kahn A 2003 Adv. Mater. 15 271Google Scholar

    [3]

    Ru P B, Bi E, Zhang Y, Wang Y B, Kong W Y, Tang W T, Zhang P, Wu Y Z, Chen W, Yang X D, Chen H, Han L Y 2020 Adv. Energy Mater. 10 1903487Google Scholar

    [4]

    Compton R N, Reinhardt P W, Cooper C D 1975 J. Chem. Phys. 63 3821Google Scholar

    [5]

    Holroyd R A, Cangwer T E, Allen A O 1975 Chem. Phys. Lett. 31 520Google Scholar

    [6]

    Surber E, Sanov A 2002 J. Chem. Phys. 116 5921Google Scholar

    [7]

    Chen E C M, Wentworth W E 1983 J. Phys. Chem. 87 45Google Scholar

    [8]

    Hughes B M, Lifshitzt C, Tiernan T O 1973 J. Chem. Phys. 59 3162Google Scholar

    [9]

    Oakes J M, Barney Ellison G 1986 Tetrahedron. 42 6263Google Scholar

    [10]

    Schiedt J, Weinkauf R 1997 Chem. Phys. Lett. 274 18Google Scholar

    [11]

    Misaizu F, Tsunoyama H, Yasumura Y, Ohshimo K, Ohno K 2004 Chem. Phys. Lett. 389 241Google Scholar

    [12]

    Cavanagh S J, Gibson S T, Lewis B R 2012 J. Chem. Phys. 137 144304Google Scholar

    [13]

    Herzberg G 1966 Molecular Spectra & Molecular Structure III (Polyatomic Molecules) (New York: Van Nostrand Reinhold) p145

    [14]

    Hartman K O, Hisatsune I C 1966 J. Chem. Phys. 44 1913Google Scholar

    [15]

    Ovenall D W, Whiffen D H 1961 Mol. Phys. 4 135Google Scholar

    [16]

    Lahaye J G, Vandenhaute R, Fayt A 1987 J. Mol. Spectrosc. 123 48Google Scholar

    [17]

    Suzuki I 1975 Bull. Chem. Soc. Jpn. 48 1685Google Scholar

    [18]

    Bennett J E, Mile B, Thomas A 1967 Trans. Faraday Soc. 63 262Google Scholar

    [19]

    Yu D, Rauk A, Armstrong D A 1992 J. Phys. Chem. 96 6031Google Scholar

    [20]

    Gutsev G L, Bartlett R J, Compton R N 1998 J. Chem. Phys. 108 6756Google Scholar

    [21]

    Barsotti S, Sommerfeld T, Ruf M W, Hotop H 2004 Int. J. Massspectrom. 233 181

    [22]

    Pacansky J, Wahlgren U, Bagus P S 1975 J. Chem. Phys. 62 2740Google Scholar

    [23]

    Yoshioka Y, Schaefer H F, Jordan K D 1981 J. Chem. Phys. 75 1040Google Scholar

    [24]

    Surber E, Ananthavel S P, Sanov A 2002 J. Chem. Phys. 116 1920Google Scholar

    [25]

    Joachim W H, Knowles P J, Knizia G, Manby F R, Schütz M 2012 Wiley Interdiscip. Rev. : Comput. Mol. Sci. 2 242Google Scholar

    [26]

    Bartlett R J, Watts J D, Kucharski S A, Noga J 1990 Chem. Phys. Lett. 165 513Google Scholar

    [27]

    Dunning T H, Peterson K A, Wilson A K 2001 J. Chem. Phys. 114 9244Google Scholar

    [28]

    Fellera D, Peterson K A, Daniel C T 2006 J. Chem. Phys. 124 054107Google Scholar

    [29]

    Fellera D, Peterson K A 2007 J. Chem. Phys. 126 114105Google Scholar

    [30]

    Peterson K A, Woon D E, Dunning T H 1994 J. Chem. Phys. 100 7410Google Scholar

    [31]

    Dunning T H 1989 J. Chem. Phys. 90 1007Google Scholar

    [32]

    Reiher M, Wolf A 2004 J. Chem. Phys. 121 2037Google Scholar

    [33]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215Google Scholar

    [34]

    Peterson K A, Dunning T H 2002 J. Chem. Phys. 117 10548Google Scholar

    [35]

    Lu T, Chen F W 2012 J. Comput. Chem. 33 580Google Scholar

  • [1] Peng Ya-Jing, Jiang Yan-Xue. Analyses of the influences of molecular vacancy defect on the geometrical structure, electronic structure and vibration characteristics of Hexogeon energetic material. Acta Physica Sinica, 2015, 64(24): 243102. doi: 10.7498/aps.64.243102
    [2] Ruan Wen, Xie An-Dong, Yu Xiao-Guang, Wu Dong-Lan. Geometric structure and electronic characteristics of NaBn (n=19) clusters. Acta Physica Sinica, 2012, 61(4): 043102. doi: 10.7498/aps.61.043102
    [3] Sun Jian-Min, Zhao Gao-Feng, Wang Xian-Wei, Yang Wen, Liu Yan, Wang Yuan-Xu. Study of structural and electronic properties of Cu-adsorbed (SiO2)n(n=1—8) clusters with the DFT. Acta Physica Sinica, 2010, 59(11): 7830-7837. doi: 10.7498/aps.59.7830
    [4] Feng Hai-Ran, Li Peng, Zheng Yu-Jun, Ding Shi-Liang. Dynamical entanglement of vibrations in the linear triatomic molecule by the algebraic approach. Acta Physica Sinica, 2010, 59(8): 5246-5250. doi: 10.7498/aps.59.5246
    [5] Jin Rong, Chen Xiao-Hong. Structure and properties of ZrnPd clusters by density-functional theory. Acta Physica Sinica, 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [6] Liu Li-Ren, Lei Xue-Ling, Chen Hang, Zhu Heng-Jiang. Geometry and electronic properties of Bn(n=2—15) clusters. Acta Physica Sinica, 2009, 58(8): 5355-5361. doi: 10.7498/aps.58.5355
    [7] Feng Hai-Ran, Ding Shi-Liang. Control of vibrational excitation for the linear triatomic molecule by the Lie-algebra approach. Acta Physica Sinica, 2008, 57(3): 1626-1631. doi: 10.7498/aps.57.1626
    [8] Ren Feng-Zhu, Wang Yuan-Xu, Tian Fu-Yang, Zhao Wen-Jie, Luo You-Hua. Density-functional study of ZrnCo(n=1—13) cluster structers and their magnetism. Acta Physica Sinica, 2008, 57(4): 2165-2173. doi: 10.7498/aps.57.2165
    [9] Ren Feng-Zhu, Luo You-Hua. Structure, electronic properties and magnetism of La-doped Be clusters BenLa. Acta Physica Sinica, 2008, 57(12): 7623-7629. doi: 10.7498/aps.57.7623
    [10] Sheng Xiao-Hong, Zhu Zheng-He, Gao Tao, Luo Shun-Zhong. Molecular structure of AlHn(n=1—3) and thermodynamic stability of AlH3. Acta Physica Sinica, 2006, 55(7): 3420-3432. doi: 10.7498/aps.55.3420
    [11] Mao Hua-Ping, Wang Hong-Yan, Zhu Zheng-He, Tang Yong-Jian. Geometry and electronic properties of bimetallic AunY(n=1—9) clusters. Acta Physica Sinica, 2006, 55(9): 4542-4547. doi: 10.7498/aps.55.4542
    [12] Mao Hua-Ping, Yang Lan-Rong, Wang Hong-Yan, Zhu Zheng-He, Tang Yong-Jian. Calculation of ionization potential and geometry of small yttrium metal clusters. Acta Physica Sinica, 2005, 54(11): 5126-5129. doi: 10.7498/aps.54.5126
    [13] Mao Hua-Ping, Ma Mei-Zhong. Geometry and electronic properties of Aun(n =2—9)clusters. Acta Physica Sinica, 2004, 53(6): 1766-1771. doi: 10.7498/aps.53.1766
    [14] Ma Jian-Xin, Jia Yu, Liang Er-Jun, Wang Xiao-Chun, Wang Fei, Hu Xing. First-principles calculations on the geometry and the electronic structure of Pb Te(001) surface. Acta Physica Sinica, 2003, 52(12): 3155-3161. doi: 10.7498/aps.52.3155
    [15] Xiao Qi, Qiu Guan-Zhou, Hu Yue-Hua, Wang Dian-Zuo. . Acta Physica Sinica, 2002, 51(9): 2133-2138. doi: 10.7498/aps.51.2133
    [16] SHEN HAN-XIN, ZHU ZI-ZHONG, HUANG MEI-CHUN. THE GEOMETRY AND ELECTRONIC PROPERTIES OF NiAl. Acta Physica Sinica, 2001, 50(1): 95-98. doi: 10.7498/aps.50.95
    [17] DING CHANG-GENG, YANG JIN-LONG, LI QUN-XIANG. GEOMETRICAL AND ELECTRONIC STRUCTURES OF VANADIUM CLUSTERS, AND THEIR EVOLUTION FROM MOLECULAR TO BULK PHASE . Acta Physica Sinica, 2001, 50(10): 1907-1913. doi: 10.7498/aps.50.1907
    [18] Luo Cheng-lin, Zhou Yan-huai, Zhang Yi. Structure Simulation of Nickel Clusters by Transferable Tight-Binding Potential. Acta Physica Sinica, 2000, 49(1): 54-56. doi: 10.7498/aps.49.54
    [19] ZHENG YU-JUN, DING SHI-LIANG. DYNAMICAL SYMMETRY GROUP FOR VIBRATIONAL SPECTRA OF TRIATOMIC MOLECULES. Acta Physica Sinica, 1999, 48(3): 438-445. doi: 10.7498/aps.48.438
    [20] XIE FANG-QING, HUANG MING-BAO, XIA YU-XING. A STUDY OF ArCN EXCIPLEX (I)——ROHF CALCULATSONS OF ELECTRONIC STATES. Acta Physica Sinica, 1994, 43(3): 351-355. doi: 10.7498/aps.43.351
Metrics
  • Abstract views:  1543
  • PDF Downloads:  58
  • Cited By: 0
Publishing process
  • Received Date:  28 November 2023
  • Accepted Date:  06 April 2024
  • Available Online:  28 April 2024
  • Published Online:  20 May 2024

/

返回文章
返回
Baidu
map