Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nd3+:GdScO3 crystal field energy level and fitting

Fan Ying Zhang Qing-Li Gao Jin-Yun Gao Yu-Xi Huang Lei Liu Yao

Citation:

Nd3+:GdScO3 crystal field energy level and fitting

Fan Ying, Zhang Qing-Li, Gao Jin-Yun, Gao Yu-Xi, Huang Lei, Liu Yao
PDF
HTML
Get Citation
  • Gadolinium scandate (GdScO3) crystal has a perovskite structure, belonging to an orthogonal system, and its space group is Pnma (No. 62). Due to the disordered distributions of Sc3+ and Gd3+ ions, different cation sites can be replaced by doped ions, which indicates that GdScO3 crystal has a high tolerance for structural distortion. Compared with other oxide crystals, GdScO3 crystal has lower phonon energy of about 452 cm–1, which reduces non-radiative relaxation between adjacent energy levels and has strong thermal stability. In addition, GdScO3 crystal birefringence is large, and as a laser material, it can eliminate the adverse effects caused by thermal birefringence, such as thermal depolarization loss. As an active ion, Nd3+(4f3) is an ideal four-level system. Therefore, Nd3+:GdScO3 crystal has a broad application prospect as a laser crystal matrix material. However, the study of Nd3+:GdScO3 crystal field energy level fitting and crystal field parameters has not been reported to the authors’ knowledge. Neodymium-doped gadolinium scandiate (Nd3+:GdScO3) crystal is grown by the Czochralski method. The absorption spectrum in a range of 250—2650 nm is tested at a low temperature (8 K), and the emission spectrum at room temperature is also tested. The experimental energy levels of Nd3+ are analyzed and 66 experimental Stark levels of Nd3+:GdScO3 are identified. For the doped trivalent rare earth ion crystals, the energy level structure of rare earth ion is related to its luminescence characteristics, so it is necessary to study its energy level structure. In recent decades, parametric crystal field models have been widely applied to various rare-earth ion doped garnet crystals. The parametric model is used to analyze and fit the crystal field energy levels of Nd3+ doped orthogonal GdScO3. The fitted root mean square error is 13.17 cm–1. The resulting free ion parameters and crystal field parameters are calculated and analyzed, and the crystal field intensity is calculated. Fitting results show that the parameterized Stark levels are in good agreement with the experimental spectra, and the results are ideal. Comparing with Nd3+:YAP and Nd3+:YAG, the crystal field strength of Nd3+:GdScO3 is weak. The weak crystal field strength may be one of the reasons for the excellent laser properties of Nd3+:GdScO3 crystals. But its microscopic mechanism needs further studying. All the data presented in this paper are openly available at https://www.doi.org/10.57760/sciencedb.15702.
      Corresponding author: Zhang Qing-Li, zql@aiofm.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFB3605700), the National Natural Science Foundation of China (Grant Nos. 52272011, 11875248), the Youth Innovation Promotion Association of Chinese Academy of Sciences, China (Grant No. 2023463), and the Anhui Provincial Laboratory Key Fund, China (Grant No. AHL20220ZR04).
    [1]

    Pan Z B, Cai H Q, Huang H, Yu H H, Zhang H J, Wang J Y 2014 J. Alloys Compd. 607 16Google Scholar

    [2]

    Pan Z B, Cong H J, Yu H H, Tian L, Yuan H, Cai H Q, Zhang H J, Huang H, Wang J Y, Wang Q, Wei Z Y, Zhang Z G 2013 Opt. Express 21 6091Google Scholar

    [3]

    Wang G J, Long X F, Zhang L Z, Lin Z B, Wang G F 2013 Opt. Mater. 35 2703Google Scholar

    [4]

    Uecker R, Wilke H, Schlom D G, Velickov B, Reiche P, Polity A, Bernhagen M, Rossberg M 2006 J. Cryst. Growth 295 84Google Scholar

    [5]

    Peng F, Liu W P, Luo J Q, Sun D L, Chen Y Z, Zhang H L, Ding S J, Zhang Q L 2018 CrystEngComm 20 6291Google Scholar

    [6]

    Gupta S K, Grover V, Shukla R, Srinivasu K, Natarajan V, Tyagi A K 2016 Chem. Eng. J. 283 114Google Scholar

    [7]

    Wang D H, Hou W T, Li N, Xue Y Y, Wang Q G, Xu X D, Li D Z, Zhao H Y, Xu J 2019 Opt. Mater. Express 9 4218Google Scholar

    [8]

    Li Q, Dong J, Wang Q G, Xue Y Y, Tang H, Xu X D, Xu J 2020 Opt. Mater. 109 110298Google Scholar

    [9]

    Arsenev P A, Bienert K E, Sviridova R K 1972 Phys. Status Solidi A 9 K103Google Scholar

    [10]

    Amanyan S N, Arsen’ev P A, Bagdasarov Kh S, Kevorkov A M, Korolev D I, Potemkin A V, Femin V V 1983 J. Appl. Spectrosc. 38 343Google Scholar

    [11]

    Zhang Y H, Huang C, Xu M, Fang Q, Li S, Lin W, Deng G, Zhao C, Hang Y 2023 Opt. Laser Technol. 167 109709Google Scholar

    [12]

    Hou W, Zhao H, Qin Z, Liu J, Wang D, Xue Y Y, Wang Q G, Xie G, Xu X, Xu J 2020 Opt. Mater. Express 10 2730Google Scholar

    [13]

    Peng F, Liu W P, Zhang Q L, Luo J Q, Sun D L, Sun G H, Zhang D M, Wang X F 2018 J. Lumin. 201 176Google Scholar

    [14]

    Zhang Y H, Li S M, Du X, Guo J, Gong Q R, Tao S L, Zhang P X, Fang Q N, Pan S L, Zhao C C, Liang X Y, Hang Y 2021 Opt. Lett. 46 3641Google Scholar

    [15]

    Hu D H, Dong J S, Tian J, Wang W D, Wang Q G, Xue Y Y, Xu X D, Xu J 2021 J. Lumin. 238 118243Google Scholar

    [16]

    Wang W D, Tian J, Li N, Liu J, Hu D H, Dong J S, Lin H, Wang Q G, Xue Y Y, Xu X D, Li D Z, Wang Z S, Xu J 2022 Opt. Mater. Express 12 468Google Scholar

    [17]

    高进云, 孙敦陆, 罗建乔, 李秀丽, 刘文鹏, 张庆礼, 殷绍唐 2014 63 220302Google Scholar

    Gao J Y, Sun D L, Luo J Q, Li X L, Liu W P, Zhang Q L, Yin S T 2014 Acta Phys. Sin. 63 220302Google Scholar

    [18]

    Duan C K, Tanner P A, Makhov V N, Kirm M 2007 Phys. Rev. B 75 195130Google Scholar

    [19]

    Gao J Y, Zhang Q L, Sun D L, Luo J Q, Liu W P, Yin S T 2012 Opt. Commun. 285 4420Google Scholar

    [20]

    高进云, 张庆礼, 王小飞, 刘文鹏, 孙贵华, 孙敦陆, 殷绍唐 2015 64 220302Google Scholar

    Gao J Y, Zhang Q L, Wang X F, Liu W P, Sun G H, Sun D L, Yin S T 2015 Acta Phys. Sin. 64 220302Google Scholar

    [21]

    Burdick G W, Jayasankar C K, Richardson F S, Reid M F 1994 Phys. Rev. B 50 16309Google Scholar

    [22]

    da Gama A A S, de Sá G F, Porcher P, Caro P 1981 J. Chem. Phys. 75 2583Google Scholar

    [23]

    Guo R Q, Wang F Y, Wang S X, Wu K, Lu D Z, Liang F, Yu H H, Zhang H J 2023 Cryst. Growth Des. 23 3761Google Scholar

  • 图 1  8 K下Nd3+:GdScO3晶体(原子百分比为5%)在250—500 nm波段的吸收光谱

    Figure 1.  Absorption spectra of Nd3+:GdScO3 crystal (atomic percentage is 5%) in a range of 250–500 nm at 8 K.

    图 2  8 K下Nd3+:GdScO3晶体(原子百分比为5%)在500—700 nm波段的吸收光谱

    Figure 2.  Absorption spectra of Nd3+:GdScO3 crystal (atomic percentage is 5%) in a range of 500–700 nm at 8 K.

    图 3  8 K下Nd3+:GdScO3晶体(原子百分比为5%)在700—1000 nm波段的吸收光谱

    Figure 3.  Absorption spectra of Nd3+:GdScO3 crystal (atomic percentage is 5%) in a range of 700–1000 nm at 8 K.

    图 4  8 K下Nd3+:GdScO3晶体(原子百分比为5%)在1000—2650 nm波段的吸收光谱

    Figure 4.  Absorption spectra of Nd3+:GdScO3 crystal (atomic percentage is 5%) in a range of 1000–2650 nm at 8 K.

    图 5  室温下Nd3+:GdScO3晶体在850—1500 nm波段的发射光谱

    Figure 5.  Emission spectra of Nd3+:GdScO3 crystals in the 850–1500 nm band at room temperature.

    表 1  Nd3+:GdScO3晶体(原子百分比为5%)中的能级

    Table 1.  Energy level of Nd3+:GdScO3 crystals (atomic percentage is 5%).

    2S+1L Nd3+:GdScO3的能级/cm–1
    4I9/2 0, 95, 156, 384.9, 600
    4I11/2 2081.9, 2193.7, 2376.8
    4I13/2 3888, 3980, 4024.8, 4137.5, 4182.4, 4253.2
    4I15/2 5798, 5917.6, 5975.9, 6108, 6154.6,
    6251.6, 6374, 6438.3
    4F3/2 11410.3
    2H9/2 + 4F5/2 12315.2, 12410, 12459.5, 12554.9,
    12578.6, 12634.2, 12706.5, 12771.4
    4F7/2 + 4S3/2 13234.5, 13326.2, 13422.8, 13462.6
    4F9/2 14547.6, 14641.3, 14723.2, 14814.8
    2H(2)11/2 15822.8, 15949
    4G5/2 + 2G7/2 16801.1, 16931, 17027, 17170.3, 17283.1,
    4G7/2 18789.9, 18946.6
    4G7/2 + 2K13/2 19245.6, 19394.9, 19561.8, 19723.9
    2D3/2 + 4G11/2 20929.3, 21079.3, 21186.4
    2G9/2 + 2K15/2 21395, 21607.6, 21805.5
    2P1/2 23041.5
    2D(1)5/2 23463.2
    2P3/2 25974
    4D3/2 + 4D5/2 + 2I11/2 27685.5, 28264.6, 28885
    2I13/2 + 2L15/2 + 4D7/2 30012, 30303, 31250, 31948.9
    2H(1)9/2 32531, 32916.4
    2D5/2 33783.8
    2F(2)5/2 37735.8
    2F(2)7/2 39308.2
    DownLoad: CSV

    表 2  Nd3+:GdScO3晶体场能级拟合计算

    Table 2.  Crystal-field energy levels fitting of Nd3+:GdScO3.

    2S+1LJ Nd3+:GdScO3的能级
    Ecalc Eexp ΔE/cm–1
    4I9/2 –6.16 0 6.16
    94.83 95 0.16
    171.56 156 –15.57
    373.37 384.9 11.52
    613.97 600 –13.97
    4I11/2 2083.40 2081.9 –1.5
    2178.01 2193.7 15.69
    2357.63 2376.8 19.17
    4I13/2 3920.90 3888.0 –32.9
    3982.08 3980.0 –2.08
    4028.62 4024.8 –3.83
    4141.91 4137.5 –4.42
    4183.76 4182.4 –1.36
    4274.03 4253.2 –20.83
    4I15/2 5782.82 5798.0 15.18
    5904.53 5917.6 13.06
    5975.49 5975.9 0.40
    6168.43 6154.6 –13.84
    6249.49 6251.6 2.10
    6350.18 6374.0 23.81
    4F3/2 11398.61 11410.3 11.69
    2H(2)9/2 + 4F5/2 12335.88 12315.2 –20.69
    12408.68 12410.0 1.31
    12471.35 12459.5 –11.86
    12543.56 12554.9 11.33
    12592.03 12578.6 –13.44
    12625.69 12634.2 8.51
    2H(2)9/2 12684.20 12706.5 22.29
    12766.74 12771.4 4.65
    4F7/2 13325.10 13326.2 1.10
    13432.37 13422.8 –9.58
    4S3/2 13462.96 13462.6 –0.37
    4F9/2 14650.75 14641.3 –9.45
    14717.67 14723.2 5.52
    14810.44 14814.8 4.35
    2H(2)11/2 15824.13 15822.8 –1.33
    15959.86 15949.0 –10.87
    4G5/2 16940.85 16931.0 –9.85
    17018.99 17027.0 8.00
    4G7/2 17275.08 17283.1 8.02
    18788.91 18789.9 0.99
    18941.16 18946.6 5.43
    2K13/2 19261.72 19245.6 –16.13
    19732.11 19723.9 –8.22
    4G9/2 19389.21 19394.9 5.69
    19549.45 19561.8 12.34
    2G(1)9/2 + 2D(1)3/2 20930.64 20929.3 –1.34
    2G(1)9/2 + 2K15/2 21059.54 21079.3 19.76
    21409.62 21395.0 –14.67
    4G11/2 21172.41 21186.4 13.99
    21613.10 21607.6 –5.51
    2K15/2 21409.62 21394.9 –14.67
    4G11/2 + 2K15/2 21817.38 21805.5 –11.89
    2P1/2 23040.12 23041.5 1.37
    2P3/2 25970.86 25974.0 3.14
    4D3/2 + 4D5/2 27683.17 27685.5 2.33
    4D5/2 28261.54 28264.6 3.05
    2I11/2 28882.52 28885.0 2.48
    2I13/2 30007.88 30012.0 4.11
    4D7/2 30308.17 30303.0 –5.17
    2L17/2 31241.68 31250.0 8.31
    31947.28 31948.9 3.02
    2H(1)9/2 32527.98 32531.0 4.89
    2D(2)3/2 32928.03 32916.4 –11.64
    2D(2)5/2 + 2H(1)11/2 33789.05 33783.8 –5.26
    2F(2)5/2 37739.95 37735.8 –4.15
    2F(2)7/2 39308.14 39308.2 0.05
    DownLoad: CSV

    表 3  Nd3+掺杂在不同基质中参数的对比

    Table 3.  Comparison of parameters of Nd3+ doping in different matrices.

    参数 Nd3+:GdScO3
    /cm–1
    Nd3+:YAG
    /cm–1
    Nd3+:YAP
    /cm–1
    $ {E_{{\text{avg}}}} $ 24041 24097 24119
    $ {F^2} $ 70382 70845 70925
    $ {F^4} $ 51265 51235 50794
    $ {F^6} $ 34639 34717 35424
    $ \xi $ 883 876 875
    $ \alpha $ 21.1 21.1 23
    $ \beta $ –645 –645 –691
    $ \gamma $ 1660 1660 1690
    $ {T^2} $ 482 345 458
    $ {T^3} $ 13 46 38.4
    $ {T^4} $ 87 61 75.8
    $ {T^6} $ –249 –272 –290
    $ {T^7} $ 560 318 237
    $ {T^8} $ 400 271 496
    $ M $ 1.62 1.62 1.9
    $ P $ 107 107 206
    $ B_0^2 $ –737 –405 –154
    $ B_2^2 $ 539+[0i] 179 578
    $ B_0^4 $ –789 –2823 –541
    $ B_2^4 $ 1058 +30i 540 967+24i
    $ B_4^4 $ –9+788i 1239 –309+608i
    $ B_0^6 $ –550 955 –671
    $ B_2^6 $ 695–22i –390 512–18i
    $ B_4^6 $ 1262+[0i] 1610 1611+[0i]
    $ B_6^6 $ 49+174i –281 0+132i
    $ \sigma $ 13.17 31.1 15.6
    Nv 2709 4215 3406
    DownLoad: CSV
    Baidu
  • [1]

    Pan Z B, Cai H Q, Huang H, Yu H H, Zhang H J, Wang J Y 2014 J. Alloys Compd. 607 16Google Scholar

    [2]

    Pan Z B, Cong H J, Yu H H, Tian L, Yuan H, Cai H Q, Zhang H J, Huang H, Wang J Y, Wang Q, Wei Z Y, Zhang Z G 2013 Opt. Express 21 6091Google Scholar

    [3]

    Wang G J, Long X F, Zhang L Z, Lin Z B, Wang G F 2013 Opt. Mater. 35 2703Google Scholar

    [4]

    Uecker R, Wilke H, Schlom D G, Velickov B, Reiche P, Polity A, Bernhagen M, Rossberg M 2006 J. Cryst. Growth 295 84Google Scholar

    [5]

    Peng F, Liu W P, Luo J Q, Sun D L, Chen Y Z, Zhang H L, Ding S J, Zhang Q L 2018 CrystEngComm 20 6291Google Scholar

    [6]

    Gupta S K, Grover V, Shukla R, Srinivasu K, Natarajan V, Tyagi A K 2016 Chem. Eng. J. 283 114Google Scholar

    [7]

    Wang D H, Hou W T, Li N, Xue Y Y, Wang Q G, Xu X D, Li D Z, Zhao H Y, Xu J 2019 Opt. Mater. Express 9 4218Google Scholar

    [8]

    Li Q, Dong J, Wang Q G, Xue Y Y, Tang H, Xu X D, Xu J 2020 Opt. Mater. 109 110298Google Scholar

    [9]

    Arsenev P A, Bienert K E, Sviridova R K 1972 Phys. Status Solidi A 9 K103Google Scholar

    [10]

    Amanyan S N, Arsen’ev P A, Bagdasarov Kh S, Kevorkov A M, Korolev D I, Potemkin A V, Femin V V 1983 J. Appl. Spectrosc. 38 343Google Scholar

    [11]

    Zhang Y H, Huang C, Xu M, Fang Q, Li S, Lin W, Deng G, Zhao C, Hang Y 2023 Opt. Laser Technol. 167 109709Google Scholar

    [12]

    Hou W, Zhao H, Qin Z, Liu J, Wang D, Xue Y Y, Wang Q G, Xie G, Xu X, Xu J 2020 Opt. Mater. Express 10 2730Google Scholar

    [13]

    Peng F, Liu W P, Zhang Q L, Luo J Q, Sun D L, Sun G H, Zhang D M, Wang X F 2018 J. Lumin. 201 176Google Scholar

    [14]

    Zhang Y H, Li S M, Du X, Guo J, Gong Q R, Tao S L, Zhang P X, Fang Q N, Pan S L, Zhao C C, Liang X Y, Hang Y 2021 Opt. Lett. 46 3641Google Scholar

    [15]

    Hu D H, Dong J S, Tian J, Wang W D, Wang Q G, Xue Y Y, Xu X D, Xu J 2021 J. Lumin. 238 118243Google Scholar

    [16]

    Wang W D, Tian J, Li N, Liu J, Hu D H, Dong J S, Lin H, Wang Q G, Xue Y Y, Xu X D, Li D Z, Wang Z S, Xu J 2022 Opt. Mater. Express 12 468Google Scholar

    [17]

    高进云, 孙敦陆, 罗建乔, 李秀丽, 刘文鹏, 张庆礼, 殷绍唐 2014 63 220302Google Scholar

    Gao J Y, Sun D L, Luo J Q, Li X L, Liu W P, Zhang Q L, Yin S T 2014 Acta Phys. Sin. 63 220302Google Scholar

    [18]

    Duan C K, Tanner P A, Makhov V N, Kirm M 2007 Phys. Rev. B 75 195130Google Scholar

    [19]

    Gao J Y, Zhang Q L, Sun D L, Luo J Q, Liu W P, Yin S T 2012 Opt. Commun. 285 4420Google Scholar

    [20]

    高进云, 张庆礼, 王小飞, 刘文鹏, 孙贵华, 孙敦陆, 殷绍唐 2015 64 220302Google Scholar

    Gao J Y, Zhang Q L, Wang X F, Liu W P, Sun G H, Sun D L, Yin S T 2015 Acta Phys. Sin. 64 220302Google Scholar

    [21]

    Burdick G W, Jayasankar C K, Richardson F S, Reid M F 1994 Phys. Rev. B 50 16309Google Scholar

    [22]

    da Gama A A S, de Sá G F, Porcher P, Caro P 1981 J. Chem. Phys. 75 2583Google Scholar

    [23]

    Guo R Q, Wang F Y, Wang S X, Wu K, Lu D Z, Liang F, Yu H H, Zhang H J 2023 Cryst. Growth Des. 23 3761Google Scholar

  • [1] Sun Gui-Hua, Zhang Qing-Li, Luo Jian-Qiao, Wang Xiao-Fei, Gu Chang-Jiang. Growth and spectral properties of Pr, Yb, Ho:GdScO3 crystal. Acta Physica Sinica, 2024, 73(5): 059801. doi: 10.7498/aps.73.20231362
    [2] Sun gui hua, Zhang qingli, Luo jianqiao, Wang xiaofei, Gu changjiang. Growth and spectral properties of Pr,Yb,Ho:GdScO3 crystals. Acta Physica Sinica, 2023, 0(0): . doi: 10.7498/aps.72.20231362
    [3] Li Jia-Hong, Sun Gui-Hua, Zhang Qing-Li, Wang Xiao-Fei, Zhang De-Ming, Liu Wen-Peng, Gao Jin-Yun, Zheng Li-Li, Han Song, Chen Zhao, Yin Shao-Tang. Effect of annealing atmosphere on the structure and spectral properties of GdScO3 and Yb:GdScO3 crystals. Acta Physica Sinica, 2022, 71(16): 164206. doi: 10.7498/aps.71.20220196
    [4] Xing Rong, Xie Shuang-Yuan, Xu Jing-Ping, Yang Ya-Ping. Characteristics of the spontaneous emission field and spectrum of a two-level atom in a dynamic photonic crystal. Acta Physica Sinica, 2016, 65(19): 194204. doi: 10.7498/aps.65.194204
    [5] Gao Jin-Yun, Zhang Qing-Li, Wang Xiao-Fei, Liu Wen-Peng, Sun Gui-Hua, Sun Dun-Lu, Yin Shao-Tang. Absorption spectrum analysis and crystal-field calculation of Nd3+ doped in GdTaO4 crystal. Acta Physica Sinica, 2015, 64(12): 124209. doi: 10.7498/aps.64.124209
    [6] Gao Jin-Yun, Sun Dun-Lu, Luo Jian-Qiao, Li Xiu-Li, Liu Wen-Peng, Zhang Qing-Li, Yin Shao-Tang. Absorption spectra and crystal-field modeling of Er3+ doped in Y3Sc2Ga3O12 crystal. Acta Physica Sinica, 2014, 63(14): 144205. doi: 10.7498/aps.63.144205
    [7] Li Xiu-Ping, Wang Shan-Jin, Chen Qiong, Luo Shi-Yu. Parametric excitation and stability of crystalline undulator radiation. Acta Physica Sinica, 2013, 62(22): 224102. doi: 10.7498/aps.62.224102
    [8] Gao Jin-Yun, Zhang Qing-Li, Sun Dun-Lu, Liu Wen-Peng, Yang Hua-Jun, Wang Xiao-Fei, Yin Shao-Tang. Ab-initio calculations of the crystal-field parameters and energy level structure for Yb3+ doped in tantalate. Acta Physica Sinica, 2013, 62(1): 013102. doi: 10.7498/aps.62.013102
    [9] Xie Shuang-Yuan, Hu Xiang. Entanglement between a two-level atom and spontaneous emission field in anisotropic photonic crystal. Acta Physica Sinica, 2010, 59(9): 6172-6177. doi: 10.7498/aps.59.6172
    [10] Deng Liu-Yong, Hu Yi-Hua, Wang Yin-Hai, Wu Hao-Yi, Xie Wei. Influence of doping of Dy3+/Nd3+ on the trap levels of Sr4Al14O25:Eu2+. Acta Physica Sinica, 2010, 59(5): 3402-3407. doi: 10.7498/aps.59.3402
    [11] Guo Chang-Xin, Tan Xiao-Liang, Liu Wen-Peng, Yin Shao-Tang, Jiang Hai-He, Xiao Jin, Xia Shang-Da, Zhang Qing-Li, Zhou Wen-Long. Crystal field energy-levels of Nd3+:Gd3Sc2Al3O12 and fitting. Acta Physica Sinica, 2010, 59(10): 7306-7313. doi: 10.7498/aps.59.7306
    [12] Wang Ce, Chen Xiao-Bo, Zhang Chun-Lin, Zhang Yun-Zhi, Chen Luan, Ma Hui, Li Song, Gao Ai-Hua. Optical parameters and energy level splitting of Er3+ in Er3+: GdVO4. Acta Physica Sinica, 2007, 56(10): 6090-6097. doi: 10.7498/aps.56.6090
    [13] Han Lin, Song Feng, Wan Cong-Shang, Zou Chang-Guang, Yan Li-Hua, Zhang Kang, Tian Jian-Guo. Spectroscopic properties of self-exited Raman scattering of the Nd3+:SrMoO4 crystal. Acta Physica Sinica, 2007, 56(3): 1751-1757. doi: 10.7498/aps.56.1751
    [14] Yin Chun-Hao, Jiao Yang, Song Ning, Ru Rui-Peng, Yang Liu, Zhang Lei. The effect of doping CsNiCl3 crystal with Mg2+ on its ground level and Zero-field splitting parameters with Jahn-Teller effect. Acta Physica Sinica, 2006, 55(10): 5471-5478. doi: 10.7498/aps.55.5471
    [15] XIE SHUANG-YUAN, YANG YA-PING, LIN ZHI-XIN, WU XIANG. SPONTANEOUS EMISSION FROM A DRIVEN ATOM EMBEDDED IN A PHOTONIC CRYSTAL. Acta Physica Sinica, 1999, 48(8): 1459-1469. doi: 10.7498/aps.48.1459
    [16] GUO CHANG-XIN, GUI HONG-BIN, LI BI-LIN. HIGH PRESSURE LOW TEMPERATURE LUMINESCENCE AND CRYSTAL PARAMETERS OF Na5Eu(WO4)4. Acta Physica Sinica, 1996, 45(8): 1409-1417. doi: 10.7498/aps.45.1409
    [17] GUO CHANG-XIN, LI BI-LIN. SPECTRA AND CRYSTAL PARAMETERS OF HOST LUMINESCENT CRYSTAL Na5Eu(MoO4)4 UNDER HIGH PRESSURE. Acta Physica Sinica, 1993, 42(1): 101-105. doi: 10.7498/aps.42.101
    [18] XU YI-SUN, MA DONG-PIN, SONG ZENG-FU, LI DA-FEN, GU YING-JUN. THERMAL SHIFTS OF SUB-LEVELS R1 AND R2 IN YAlO3:Nd3+. Acta Physica Sinica, 1986, 35(2): 213-219. doi: 10.7498/aps.35.213
    [19] HUA DAO-HONG, JIANG JIE, LI DA-FEN, MA DONG-PING, XU YI-SUN, SONG ZENG-FU. CALCULATION OF ENERGY VALUE OF STARK SUB-LEVELS IN LaF3:Nd3+. Acta Physica Sinica, 1986, 35(11): 1465-1472. doi: 10.7498/aps.35.1465
    [20] SONG ZENG-FU, ZHANG HE-YI, XU YAO-ZHOU, LUO ZHEN-JI, JIAN HONG-ZHONG, XI DE-FA, WANG TAI-FU, LIANG MIN-JI. THE ABSORPTION SPECTRUM AND QUANTUM STATES OF NEODYMIUM ION (Nd3+) IN SINGLE CRYSTAL OF ANHYDROUS NEODYMIUM CHLORIDE AND ANHYDROUS PRASEDYMIUM CHLORIDE. Acta Physica Sinica, 1980, 29(5): 602-608. doi: 10.7498/aps.29.602
  • supplement Nd3+GdScO3晶体场能级及拟合分析数据包.zip supplement
Metrics
  • Abstract views:  2465
  • PDF Downloads:  86
  • Cited By: 0
Publishing process
  • Received Date:  12 September 2023
  • Accepted Date:  08 October 2023
  • Available Online:  24 November 2023
  • Published Online:  20 February 2024

/

返回文章
返回
Baidu
map