Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Temperature-independent multi-parameter sensor based on polarization maintaining fiber Bragg grating

Li Jian-Yu Dong Zhong-Ji Zhang Ji-Hong Shi Wen-Hui Zheng Jia-Jin Wei Wei

Citation:

Temperature-independent multi-parameter sensor based on polarization maintaining fiber Bragg grating

Li Jian-Yu, Dong Zhong-Ji, Zhang Ji-Hong, Shi Wen-Hui, Zheng Jia-Jin, Wei Wei
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Dynamic multi-parameter detection is of great significance in predicting fatigue damage to structures such as tunnels, bridges, and pipelines. Developing a high-sensitivity, environmentally friendly, low-cost, and easy-to-operate multi-parameter dynamic detection technology has always been the goal of the industry. The polarization-maintaining fiber Bragg grating (PM-FBG) has a special grating structure composed of fiber Bragg grating (FBG) directly written into high birefringence and polarization-maintaining fiber, and it supports two distinct polarization eigenmodes with two effective refractive indices. The PM-FBG couples the light beams polarized along the two principal axes corresponding to slow axis and fast axis at two different Bragg wavelengths. The two peaks of PM-FBG have different responses to external changes, which may be used to solve the cross-sensitivity problem of FBG sensor and realize the simultaneous multi-parameter measurement of the temperature, longitudinal strain, transverse strain, or twist. In order to solve the problems of complex structure and principle and high production cost of FBG-based multi-parameter sensors, a novel multi-parameter fiber-optic sensor with high sensitivity and temperature independence is designed based on PM-FBG in this work. The PM-FBG sensor proposed can simultaneously measure the changes of displacement and twist in two vertical directions at a certain point and has the function of temperature self-compensation. The external structure of the sensor is fabricated by using three-dimensional printing technology through the fused deposition method and the raw material for creating different components through using polylactic acid. Experimental results show that the fast axis and slow axis of the sensor have different temperature responses, with linear sensitivities of 11.4 pm/℃ and 10.6 pm/℃, respectively, and the temperature compensation coefficient and average torsional sensitivity of the PM-FBG sensor are 0.8 pm/℃ and 0.20 dB/(°), respectively. The fast axis and slow axis of the PM-FBG sensor have the same response to displacement, with a sensitivity of 31.5 pm/mm and an adjustable range of 0–20 mm. The sensitivity to displacement, torsion, and temperature sensitivities of the sensor are all superior over those of commercial FBG sensors. By changing the temperature field around the sensor, its displacement- and torsion-sensing performances are not affected, thereby realizing the temperature self-compensation. Consequently, the proposed sensor has potential applications in the multi-parameter dynamic detection due to its simple structure, high sensitivity, good mechanical strength, and low cost.
      Corresponding author: Zheng Jia-Jin, zhengjj@njupt.edu.cn ; Wei Wei, weiwei@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62075100) and the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX21_0704).
    [1]

    Yu B, Lin F, Wang M R, Ning H, Ling B D, Rao Y Y 2022 Sci. Rep. 12 18281Google Scholar

    [2]

    Fan Z C, Diao X Z, Hu K J, Zhang Y, Huang Z Y, Kang Y B, Yan H, 2020 Sci. Rep. 10 12330Google Scholar

    [3]

    Jinachandran S, Rajan G 2021 Mater. Des. 14 897Google Scholar

    [4]

    Zhu C, Zhuang Y Y, Liu B, Huang J 2022 IEEE Trans. Instrum. Meas. 71 7008212Google Scholar

    [5]

    Jinachandran, S, Li H, Xi J T, Prusty B G, Semenova Y, Farrell G, Rajan G 2018 IEEE Sens. J. 18 8739Google Scholar

    [6]

    Fu D Y, Liu X J, Shang J Y, Sun W M, Liu Y J 2020 IEEE Photon. Technol. Lett. 32 747Google Scholar

    [7]

    Wang F, Pang K B, Ma T, Wang X, Liu Y F 2020 Opt. Laser Technol. 130 106333Google Scholar

    [8]

    Sempionatto J R, Lin M Y, Yin L, Ernesto D, Pei K X, Thitaporn S, Silva A, Ahmed A K, Zhang F Y, Tostado N, Xu S, Wang J 2021 Nat. Biomed. Eng. 5 737Google Scholar

    [9]

    Caucheteur C, Guo T, Albert J 2017 J. Light. Technol. 35 3311Google Scholar

    [10]

    Jiang C, Liu Y Q, Mou C B 2021 IEEE Photon. Technol. Lett. 33 358Google Scholar

    [11]

    Ding Z H, Tan Z W, Gao Y S, Wu Y, Yin B 2020 Optik 221 165352Google Scholar

    [12]

    Liu Q, Li Q, Sun Y D, Chai Q, Zhang B, Liu C, Sun T, Liu W, Sun J D, Ren Z H, Chu P K 2019 Opt. Commun. 452 185Google Scholar

    [13]

    Huang J, Pham D T, Ji C Q, Wang Z C, Zhou Z D 2019 Measurement 134 226Google Scholar

    [14]

    Leal-Junior A G, Theodosiou A, Min R, Casas J, Diaz C R, Dosantos W M, Pontes M J, Siqueira, Adriano A S, Marques C, Kalli C, Frizera A 2019 IEEE Sens. J. 19 4054Google Scholar

    [15]

    Xu H B, Li F, Gao Y, Wang W 2020 IEEE Sens. J. 20 14857Google Scholar

    [16]

    Lu L D, Xu Y G, Dong M L, Zhu L Q 2022 IEEE Sens. J. 22 338Google Scholar

    [17]

    Liu C, Jiang Y J, Du B B, Wang T, Feng D Y, Jiang B Q, Yang D X 2019 Sens. Actuator A Phys. 290 172Google Scholar

    [18]

    Barot D, Wang G, Duan L Z 2019 IEEE Photon. Technol. Lett. 31 709Google Scholar

    [19]

    Yang F, Fang Z J, Pan Z Q, Ye Q, Cai H W, Qu R H 2012 Opt. Express 20 28839Google Scholar

    [20]

    Chen G H, Liu L Y, Jia H Z, Yu J M, Xu L, Wang W C 2004 IEEE Photon. Technol. Lett. 16 221Google Scholar

    [21]

    Guo T, Liu F, Du F, Zhang Z, Li C, Guan B O, Albert J 2013 Opt. Express 21 19097Google Scholar

  • 图 1  (a) PMF截面示意图; (b) PM-FBG结构示意图

    Figure 1.  (a) Schematic cross-section of PMF; (b) schematic structure of PM-FBG.

    图 2  本文设计的PM-FBG传感器实物图

    Figure 2.  The physical image of the PM-FBG sensor designed in this paper.

    图 3  PM-FBG传感器测试系统示意图

    Figure 3.  Schematic diagram of PM-FBG sensor testing system.

    图 4  (a) PM-FBG传感器不同温度下光谱图; (b) PM-FBG的快轴和慢轴波长差与温度的关系

    Figure 4.  (a) Spectra of PM-FBG sensor at different temperatures; (b) temperature versus wavelength difference corresponding to the fast axis and slow axis.

    图 5  (a) PM-FBG传感器不同扭转角度光谱图; (b)对应于图(a)的峰值强度变化曲线

    Figure 5.  (a) Spectral response of PM-FBG sensor versus rotation over –90° to 90°; (b) individual peak intensities extracted from the spectra of (a).

    图 6  PM-FBG传感器位移传感性能测试 (a)弯曲测量实验装置; (b)曲率为0—11 m–1的光谱响应; (c) 曲率-波长; (d) 位移-波长(快轴, 慢轴)

    Figure 6.  Displacement sensing performance test of PM-FBG sensor: (a)Experimental setup for bending measurement; (b) spectral response of curvature over 0 to 11 m–1; (c) curvature versus wavelength; (d) displacement versus wavelength of the fast axis and slow axis.

    图 7  PM-FBG传感器多参数同时测量 (a) 温度对位移的影响; (b) 温度对扭转的影响

    Figure 7.  Cross measurement of different parameters by PM-FBG sensor: (a) Influence of temperature on displacement; (b) influence of temperature on torsion.

    图 8  PM-FBG传感器多参量同时测量光谱图

    Figure 8.  PM-FBG sensor simultaneously measures multi-parameters spectral graph.

    Baidu
  • [1]

    Yu B, Lin F, Wang M R, Ning H, Ling B D, Rao Y Y 2022 Sci. Rep. 12 18281Google Scholar

    [2]

    Fan Z C, Diao X Z, Hu K J, Zhang Y, Huang Z Y, Kang Y B, Yan H, 2020 Sci. Rep. 10 12330Google Scholar

    [3]

    Jinachandran S, Rajan G 2021 Mater. Des. 14 897Google Scholar

    [4]

    Zhu C, Zhuang Y Y, Liu B, Huang J 2022 IEEE Trans. Instrum. Meas. 71 7008212Google Scholar

    [5]

    Jinachandran, S, Li H, Xi J T, Prusty B G, Semenova Y, Farrell G, Rajan G 2018 IEEE Sens. J. 18 8739Google Scholar

    [6]

    Fu D Y, Liu X J, Shang J Y, Sun W M, Liu Y J 2020 IEEE Photon. Technol. Lett. 32 747Google Scholar

    [7]

    Wang F, Pang K B, Ma T, Wang X, Liu Y F 2020 Opt. Laser Technol. 130 106333Google Scholar

    [8]

    Sempionatto J R, Lin M Y, Yin L, Ernesto D, Pei K X, Thitaporn S, Silva A, Ahmed A K, Zhang F Y, Tostado N, Xu S, Wang J 2021 Nat. Biomed. Eng. 5 737Google Scholar

    [9]

    Caucheteur C, Guo T, Albert J 2017 J. Light. Technol. 35 3311Google Scholar

    [10]

    Jiang C, Liu Y Q, Mou C B 2021 IEEE Photon. Technol. Lett. 33 358Google Scholar

    [11]

    Ding Z H, Tan Z W, Gao Y S, Wu Y, Yin B 2020 Optik 221 165352Google Scholar

    [12]

    Liu Q, Li Q, Sun Y D, Chai Q, Zhang B, Liu C, Sun T, Liu W, Sun J D, Ren Z H, Chu P K 2019 Opt. Commun. 452 185Google Scholar

    [13]

    Huang J, Pham D T, Ji C Q, Wang Z C, Zhou Z D 2019 Measurement 134 226Google Scholar

    [14]

    Leal-Junior A G, Theodosiou A, Min R, Casas J, Diaz C R, Dosantos W M, Pontes M J, Siqueira, Adriano A S, Marques C, Kalli C, Frizera A 2019 IEEE Sens. J. 19 4054Google Scholar

    [15]

    Xu H B, Li F, Gao Y, Wang W 2020 IEEE Sens. J. 20 14857Google Scholar

    [16]

    Lu L D, Xu Y G, Dong M L, Zhu L Q 2022 IEEE Sens. J. 22 338Google Scholar

    [17]

    Liu C, Jiang Y J, Du B B, Wang T, Feng D Y, Jiang B Q, Yang D X 2019 Sens. Actuator A Phys. 290 172Google Scholar

    [18]

    Barot D, Wang G, Duan L Z 2019 IEEE Photon. Technol. Lett. 31 709Google Scholar

    [19]

    Yang F, Fang Z J, Pan Z Q, Ye Q, Cai H W, Qu R H 2012 Opt. Express 20 28839Google Scholar

    [20]

    Chen G H, Liu L Y, Jia H Z, Yu J M, Xu L, Wang W C 2004 IEEE Photon. Technol. Lett. 16 221Google Scholar

    [21]

    Guo T, Liu F, Du F, Zhang Z, Li C, Guan B O, Albert J 2013 Opt. Express 21 19097Google Scholar

Metrics
  • Abstract views:  4279
  • PDF Downloads:  118
  • Cited By: 0
Publishing process
  • Received Date:  28 March 2023
  • Accepted Date:  05 May 2023
  • Available Online:  16 May 2023
  • Published Online:  20 July 2023

/

返回文章
返回
Baidu
map