Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phase-field method based simulation of martensitic transformation in porous alloys

Li Teng Qiu Wen-Ting Gong Shen

Citation:

Phase-field method based simulation of martensitic transformation in porous alloys

Li Teng, Qiu Wen-Ting, Gong Shen
PDF
HTML
Get Citation
  • Porous materials, characterized by the presence of interconnected pores, exhibit the properties different from their bulk counterparts. One of properties of interest is that the pores can influence the martensitic transformation in shape memory alloys (SMAs), which directly affects the material's shape memory effect and mechanical properties. The martensitic transformation is accompanied by the formation of different martensitic variants, which determine the overall morphology, distribution, and self-accommodation effect of the transformed regions. Previous experimental studies have shown that the presence of pores, particularly at the metal-air interface, can significantly affect the martensitic variant structure, leading to its thinning. This thinning effect has been found to be able to improve the damping performance of the alloy. Experimental observations have indicated that no relief of martensitic variants was found around the metal-air interface, but non-transformed regions were observed. These observations suggest that the metal-air interface in porous materials is not a free surface and plays a crucial role in influencing the martensitic transformation. To further investigate the effect of martensitic variant self-accommodation on different constrained interfaces in porous materials, a three-dimensional phase-field model based on the time dependent Ginzburg-Landau (TDGL) function is proposed in this study. The phase-field model can give a comprehensive understanding of the evolution of martensitic variants and their interaction with the constrained interfaces. Remarkably, the simulation results accord well with the experimental findings, demonstrating the presence of fine martensitic variants near the metal-air interface. The simulations under different interface constraint conditions reveal that increasing the specific surface area of porous materials is an effective strategy to obtain a more refined martensitic variant structure. The system’s total energy is minimized by reducing the strain energy, which leads to the formation of a greater number of fine martensitic variants. This finding suggests that controlling the specific surface area of porous materials can be a promising approach to tailoring the mechanical properties of SMAs for specific applications. In conclusion, the presence of metal-air interface in porous material significantly influences the evolution of the martensitic transformation in SMA. Experimental observations show that the introduction of pore can modify the martensitic variant structure, resulting in improved damping performance. The proposed phase-field model successfully captures the behavior of martensitic variants near constrained interface. The simulation results emphasize the importance of specific surface area in obtaining fine martensitic variant structures. These findings contribute to a more in-depth understanding of the role of porous materials in shaping the properties of SMAs and provide a valuable insight into their design and application in various fields.
      Corresponding author: Gong Shen, gongshen011@csu.edu.cn
    • Funds: Project supported by the National Key R&D Projects during the “Fourteenth Five Year Plan” of China (Grant No. 2021YFB3501003) and the National Natural Science Foundation of China (Grant No. 52271125).
    [1]

    王清周, 陆东梅, 崔春翔, 韩福生 2008 57 7083Google Scholar

    Wang Q Z, Lu D M, Cui C X, Han F S 2008 Acta Phys. Sin. 57 7083Google Scholar

    [2]

    Yang J, Wang Q Z, Yin F X, Cui C X, Ji P G, Li B. 2016 Mater. Sci. Eng. A 664 215Google Scholar

    [3]

    Ivanic I, Kozuh S, Grguric T H, Vrsalovic L, Gojic M 2022 Materials 15 1825Google Scholar

    [4]

    Haghdoust P, Lo Conte A, Cinquemani S, Lecis N 2020 Materials 13 529Google Scholar

    [5]

    Chang S-H, Liao B-S, Gholami-Kermanshahi M 2020 J. Alloys Compd. 847 156560Google Scholar

    [6]

    姜文全, 杜广煜, 巴德纯, 杨帆 2015 64 146801Google Scholar

    Jiang W Q, Du G Y, Ba D C, Yang F 2015 Acta Phys. Sin. 64 146801Google Scholar

    [7]

    Ji X W, Wang Q Z, Yin F X, Cui C X, Ji P G, Hao G L 2018 Compos. Part A Appl. Sci. Manuf. 107 21Google Scholar

    [8]

    Wang J, Cao Y F, Xu Y J, Gu X J, Zhu J H, Zhang W H 2022 Mech. Adv. Mate. 29 2142

    [9]

    Wang Q Z, Lu D M, Cui C X, Yan N J, Wang Q 2013 Mater. Lett. 92 82Google Scholar

    [10]

    Wang Q, Wang L W, Kang J, Wang Q Z, Cui C X, Su R, Narayanaswamy B 2020 J. Mater. Res. Technol. 9 7020Google Scholar

    [11]

    Cui G D, Jiang R J, Li A, Zhang C S, Chen J Y 2018 Steel Res. Int. 89 1700357Google Scholar

    [12]

    James R D, Hane K F 2000 Acta Mater. 48 197Google Scholar

    [13]

    Wang B, Kang G, Yu C, Gu B, Yuan W F 2021 Int. J. Mech. Sci. 211 106677

    [14]

    Tourret D, Liu H, Llorca J 2022 Prog. Mater. Sci. 123 100810Google Scholar

    [15]

    Morrison K R, Cherukara M J, Kim H, Strachan A 2015 Acta Mater. 95 37Google Scholar

    [16]

    Li Y F, Zeng X G, Wang F 2020 J. Alloys Compd. 821 153509

    [17]

    Fu W, Li C, Duan R, Gao H, Di X, Wang D 2022 Mater. Sci. Eng. A 833 142567Google Scholar

    [18]

    Berry J, Perron A, Fattebert J, Roehling J D, Vrancken B, Roehling T T, Rosas D L, Turner J A, Khairallah S A, McKeown J T, Matthews M J 2021 Mater. Today 51 65Google Scholar

    [19]

    魏铖, 柯常波, 马海涛, 张新平 2018 金属学报 54 1204Google Scholar

    Wei C, Ke C B, Ma H T, Zhang X P 2018 Acta Metall. Sin. 54 1204Google Scholar

    [20]

    Terasaki H, Shintome Y, Takada A, Komizo Y, Morito S 2015 Mater. Today 2 S941

    [21]

    Wang Y U, Jin Y M, Khachaturyan A G 2004 Acta Mater. 52 1039Google Scholar

    [22]

    He B B, Huang M X, Ngan A H W, Zwaag V D 2014 Metall. Mater. Trans. A 45 4875Google Scholar

    [23]

    Song P, Ji Y, Chen L, Liu W B, Zhang C, Chen L Q, Yang Z G 2016 Comput. Mater. Sci. 117 139Google Scholar

    [24]

    Malik A, Yeddu H K, Amberg G, Borgenstam A, Ågren J 2012 Mater. Sci. Eng. A 556 221Google Scholar

    [25]

    Gutkin Y M, Mikaelyan K N, Verijenko V E 2001 Acta Mater. 49 3811Google Scholar

    [26]

    Man J, Zhang J, Rong Y, Zhou N 2010 Metall. Mater. Trans. A 42 1154

    [27]

    Gong S, Li Z, Xu G Y, Liu N, Zhao Y Y, Liang S Q 2011 J. Alloys Compd. 509 2924Google Scholar

    [28]

    Wang Y, Khachaturyan A G 1997 Acta Mater. 45 759Google Scholar

    [29]

    Khachaturyan A G 1983 Theory of Structural Transformations in Solids pp183–197

    [30]

    Zhong Y, Zhu T 2014 Acta Mater. 75 337Google Scholar

    [31]

    Artemev A, Jin Y, Khachaturyan A G 2001 Acta Mater. 49 1165Google Scholar

    [32]

    李周, 汪明朴, 徐根应, 曹玲飞, 张炳力 2002 材料热处理学报 23 16

    Li Z, Wang M P, Xu G Y, Cao L F, Zhang B L 2002 T. Mater. Heat. Treat. 23 16

    [33]

    Zhu J J, Liew K M 2003 Acta Mater. 51 2443Google Scholar

    [34]

    Wang Q Z, Han F S, Hao G L, Wu J 2006 Physica. Status. Solidi. A 203 825

    [35]

    Qian S, Geng Y, Wang Y, Pillsbury T E, Hada Y, Yamaguchi Y, Fujimoto K, Hwang Y H, Radermacher R, Cui J, Yuki Y, Toyotake K, Takeuchi I 2016 Philos. Trans. A. Math. Phys. Eng. Sci. 374 20150309

    [36]

    Petryk H, Stupkiewicz S, Maciejewski G 2010 J. Mech. Phys. Solids 58 373Google Scholar

  • 图 1  CuAlMn形状记忆合金的TEM照片与示意图 (a), (c)块状合金; (b), (d)多孔合金

    Figure 1.  TEM graphs and schematic diagrams of CuAlMn shape memory alloy: (a), (c) Bulk alloy; (b), (d) porous alloy.

    图 2  无界面约束下的CuAlMn形状记忆合金马氏体相变的相场模拟结果 (a) 20000步长下的3D模拟结果; (b) 20000步长下的2D模拟切面; (c)各变体含量随模拟步长的变化, 其中变体1—4分别用红、绿、蓝、灰表示(下同)

    Figure 2.  Phase-field simulations of CuAlMn martensitic transformation without interface constraint: (a) 3D simulation image at 20000 steps; (b) 2D simulation section at 20000 steps; (c) content of each variant with simulation step, variants 1–4 are represented by red, green, blue, and gray respectively (the same below).

    图 3  CuAlMn合金在非自由界面约束下的马氏体相变相场模拟结果 (a)模型中的非自由界面示意图; (b) 20000步长下的3D模拟照片; (c)各变体含量随模拟步长的变化; (d) 20000步长下的2D模拟切面

    Figure 3.  Phase-field simulations of CuAlMn martensitic transformation under non-free interface constraint: (a) Schematic diagram of non-free interface in the model; (b) 3D simulation image at 20000 steps; (c) content of each variant with simulation step; (d) 2D simulation section at 20000 steps.

    图 4  CuAlMn合金在非自由界面约束下的水平切面形貌及自由能密度分布 (a), (b)在无界面约束的模拟结果(图2)中添加非相变组织后的形貌及自由能密度分布; (c), (d)非自由界面约束下的形貌及自由能密度分布. 其中(b), (d)中的颜色代表自由能的相对大小(下同)

    Figure 4.  The morphology and distribution of the free energy density of CuAlMn alloy in horizonal section under non-free interface constraint: (a), (b) Morphology and free energy density distribution with non-transformed structure added in the simulation results without interface constraints (Fig. 2); (c), (d) morphology and free energy density under non-free interface constraint. The color in (b) and (d) represents the relative size of free energy density (the same below).

    图 5  CuAlMn合金在局部非自由界面约束下的马氏体相变相场模拟 (a), (b)模型中的局部非自由界面示意图; (c), (d)在无界面约束的模拟结果(图2)中添加局部界面约束后的水平切面形貌及自由能密度分布; (e)各变体含量模拟结果; (f), (g)局部界面约束下的水平切面形貌及其自由能密度分布

    Figure 5.  Phase-field simulations of martensitic transformation of CuAlMn alloy under localized non-free interface constraint: (a), (b) Schematic diagram of localized non-free interface in the model; (c), (d) morphology and free energy density distribution in horizonal section with localized non-free interface added in the simulation results without interface constraints (Fig. 2); (e) content of each variant with simulation step; (f), (g) morphology and free energy density in horizonal section under localized non-free interface constraint.

    图 6  CuAlMn合金在双重非自由界面约束下的马氏体相变 (a), (b)TEM照片; (c)20000步长下的3D模拟照片; (d), (e)模型中的孔洞示意图; (f) 20000步长下的2D模拟切面; (g)各变体含量模拟结果

    Figure 6.  Martensitic transformation of CuAlMn alloy under the double non-free interface constraint: (a), (b) TEM images; (c) 3D simulation image at 20000 steps; (d), (e) schematic diagram of double non-free interface in the model; (f) 2D simulation section at 20000 steps; (g) content of each variant with simulation step.

    图 7  双重非自由界面约束下水平切面形貌及自由能密度分布 (a), (b)在无界面约束的模拟结果(图2)中添加双重界面约束后的形貌及自由能密度分布; (c), (d)双重界面约束下的形貌及自由能密度分布

    Figure 7.  The morphology and distribution of the free energy density in horizonal section under double non-free interface constraint: (a), (b) Morphology and free energy density distribution with double non-free interface added in the simulation results without interface constraints (Fig. 2); (c), (d) morphology and free energy density under double non-free interface constraint.

    图 8  CuAlMn合金在四重非自由界面约束下的马氏体相变相场模拟结果, 3D模拟形貌, 2D切面形貌, 各变体含量变化以及自由能分布示意图 (a)—(d)单个半径r = 67.5 nm的四重界面约束; (e)—(h)单个半径r = 45 nm的四重界面约束

    Figure 8.  Phase-field simulations of the martensitic transformation of CuAlMn alloy under quadruple non-free interface constraint, 3D simulation morphology, 2D section morphology, variation of content of various variants and free energy distribution diagram: (a)–(d) Under the quadruple interface constraint of a single radius r = 67.5 nm; (e)–(h) under the quadruple interface constraint of a single radius r = 45 nm.

    图 9  CuAlMn合金在方形非自由界面约束下的马氏体相变相场模拟, 3D模拟形貌, 2D切面形貌, 各变体含量变化以及自由能分布示意图 (a)—(d)边长L = 243 nm的方形界面约束; (e)—(h)边长L = 198 nm的方形界面约束

    Figure 9.  Phase-field simulations of the martensitic transformation of CuAlMn alloy under square non-free interface constraint, 3D simulation morphology, 2D section morphology, variation of content of various variants and free energy distribution diagram: (a)–(d) Under the square interface constraint of a single side length L = 243 nm; (e)–(h) under the square interface constraint of a single side length L = 198 nm.

    Baidu
  • [1]

    王清周, 陆东梅, 崔春翔, 韩福生 2008 57 7083Google Scholar

    Wang Q Z, Lu D M, Cui C X, Han F S 2008 Acta Phys. Sin. 57 7083Google Scholar

    [2]

    Yang J, Wang Q Z, Yin F X, Cui C X, Ji P G, Li B. 2016 Mater. Sci. Eng. A 664 215Google Scholar

    [3]

    Ivanic I, Kozuh S, Grguric T H, Vrsalovic L, Gojic M 2022 Materials 15 1825Google Scholar

    [4]

    Haghdoust P, Lo Conte A, Cinquemani S, Lecis N 2020 Materials 13 529Google Scholar

    [5]

    Chang S-H, Liao B-S, Gholami-Kermanshahi M 2020 J. Alloys Compd. 847 156560Google Scholar

    [6]

    姜文全, 杜广煜, 巴德纯, 杨帆 2015 64 146801Google Scholar

    Jiang W Q, Du G Y, Ba D C, Yang F 2015 Acta Phys. Sin. 64 146801Google Scholar

    [7]

    Ji X W, Wang Q Z, Yin F X, Cui C X, Ji P G, Hao G L 2018 Compos. Part A Appl. Sci. Manuf. 107 21Google Scholar

    [8]

    Wang J, Cao Y F, Xu Y J, Gu X J, Zhu J H, Zhang W H 2022 Mech. Adv. Mate. 29 2142

    [9]

    Wang Q Z, Lu D M, Cui C X, Yan N J, Wang Q 2013 Mater. Lett. 92 82Google Scholar

    [10]

    Wang Q, Wang L W, Kang J, Wang Q Z, Cui C X, Su R, Narayanaswamy B 2020 J. Mater. Res. Technol. 9 7020Google Scholar

    [11]

    Cui G D, Jiang R J, Li A, Zhang C S, Chen J Y 2018 Steel Res. Int. 89 1700357Google Scholar

    [12]

    James R D, Hane K F 2000 Acta Mater. 48 197Google Scholar

    [13]

    Wang B, Kang G, Yu C, Gu B, Yuan W F 2021 Int. J. Mech. Sci. 211 106677

    [14]

    Tourret D, Liu H, Llorca J 2022 Prog. Mater. Sci. 123 100810Google Scholar

    [15]

    Morrison K R, Cherukara M J, Kim H, Strachan A 2015 Acta Mater. 95 37Google Scholar

    [16]

    Li Y F, Zeng X G, Wang F 2020 J. Alloys Compd. 821 153509

    [17]

    Fu W, Li C, Duan R, Gao H, Di X, Wang D 2022 Mater. Sci. Eng. A 833 142567Google Scholar

    [18]

    Berry J, Perron A, Fattebert J, Roehling J D, Vrancken B, Roehling T T, Rosas D L, Turner J A, Khairallah S A, McKeown J T, Matthews M J 2021 Mater. Today 51 65Google Scholar

    [19]

    魏铖, 柯常波, 马海涛, 张新平 2018 金属学报 54 1204Google Scholar

    Wei C, Ke C B, Ma H T, Zhang X P 2018 Acta Metall. Sin. 54 1204Google Scholar

    [20]

    Terasaki H, Shintome Y, Takada A, Komizo Y, Morito S 2015 Mater. Today 2 S941

    [21]

    Wang Y U, Jin Y M, Khachaturyan A G 2004 Acta Mater. 52 1039Google Scholar

    [22]

    He B B, Huang M X, Ngan A H W, Zwaag V D 2014 Metall. Mater. Trans. A 45 4875Google Scholar

    [23]

    Song P, Ji Y, Chen L, Liu W B, Zhang C, Chen L Q, Yang Z G 2016 Comput. Mater. Sci. 117 139Google Scholar

    [24]

    Malik A, Yeddu H K, Amberg G, Borgenstam A, Ågren J 2012 Mater. Sci. Eng. A 556 221Google Scholar

    [25]

    Gutkin Y M, Mikaelyan K N, Verijenko V E 2001 Acta Mater. 49 3811Google Scholar

    [26]

    Man J, Zhang J, Rong Y, Zhou N 2010 Metall. Mater. Trans. A 42 1154

    [27]

    Gong S, Li Z, Xu G Y, Liu N, Zhao Y Y, Liang S Q 2011 J. Alloys Compd. 509 2924Google Scholar

    [28]

    Wang Y, Khachaturyan A G 1997 Acta Mater. 45 759Google Scholar

    [29]

    Khachaturyan A G 1983 Theory of Structural Transformations in Solids pp183–197

    [30]

    Zhong Y, Zhu T 2014 Acta Mater. 75 337Google Scholar

    [31]

    Artemev A, Jin Y, Khachaturyan A G 2001 Acta Mater. 49 1165Google Scholar

    [32]

    李周, 汪明朴, 徐根应, 曹玲飞, 张炳力 2002 材料热处理学报 23 16

    Li Z, Wang M P, Xu G Y, Cao L F, Zhang B L 2002 T. Mater. Heat. Treat. 23 16

    [33]

    Zhu J J, Liew K M 2003 Acta Mater. 51 2443Google Scholar

    [34]

    Wang Q Z, Han F S, Hao G L, Wu J 2006 Physica. Status. Solidi. A 203 825

    [35]

    Qian S, Geng Y, Wang Y, Pillsbury T E, Hada Y, Yamaguchi Y, Fujimoto K, Hwang Y H, Radermacher R, Cui J, Yuki Y, Toyotake K, Takeuchi I 2016 Philos. Trans. A. Math. Phys. Eng. Sci. 374 20150309

    [36]

    Petryk H, Stupkiewicz S, Maciejewski G 2010 J. Mech. Phys. Solids 58 373Google Scholar

  • [1] Cheng Da-Zhao, Liu Cai-Yan, Zhang Chao-Ran, Qu Jia-Hui, Zhang Jing. Phase field simulation of intra/intergranular pore morphology evolution in neutron-irradiated austenitic stainless steel. Acta Physica Sinica, 2024, 73(22): 224601. doi: 10.7498/aps.73.20241353
    [2] Qi Hai-Dong, Wang Jing, Chen Zhong-Jun, Wu Zhong-Hua, Song Xi-Ping. Influence of temperature on lattice constants of martensite and ferrite. Acta Physica Sinica, 2022, 71(9): 098301. doi: 10.7498/aps.71.20211954
    [3] Liang De-Shan, Huang Hou-Bing, Zhao Ya-Nan, Liu Zhu-Hong, Wang Hao-Yu, Ma Xing-Qiao. Size effect of topological charge in disc-like nematic liquid crystal films. Acta Physica Sinica, 2021, 70(4): 044202. doi: 10.7498/aps.70.20201623
    [4] Wei Zhao-Zhao, Ma Xiao, Ke Chang-Bo, Zhang Xin-Ping. Molecular dynamics simulation of migration behavior of FCC-BCC atomic terrace-step phase boundary in iron-based alloy. Acta Physica Sinica, 2020, 69(13): 136102. doi: 10.7498/aps.69.20191903
    [5] Li Yang, Su Ting, Liang Hong, Xu Jiang-Rong. Phase field lattice Boltzmann model for two-phase flow coupled with additional interfacial force. Acta Physica Sinica, 2018, 67(22): 224701. doi: 10.7498/aps.67.20181230
    [6] Li Yu-Jie, Huang Jun-Jie, Xiao Xu-Bin. Numerical study of droplet impact on the inner surface of a cylinder. Acta Physica Sinica, 2018, 67(18): 184701. doi: 10.7498/aps.67.20180364
    [7] Shen Jian-Lei, Li Meng-Meng, Zhao Rui-Bin, Li Guo-Ke, Ma Li, Zhen Cong-Mian, Hou Deng-Lu. Role of Ni-Mn hybridization in the martensitic transformation and magnetism of Mn50Ni41-xSn9Cux alloys. Acta Physica Sinica, 2016, 65(24): 247501. doi: 10.7498/aps.65.247501
    [8] Yuan Shu-Qiang, Shen Zheng-Xiang, Zhou Chun-Hua, Liu Feng-Tao, Wang Fang, Yang Hui, Chen Jiong. Variation of parameters and recovery in crystal lattice of 30CrMnSiNi2A. Acta Physica Sinica, 2014, 63(3): 030702. doi: 10.7498/aps.63.030702
    [9] Wang Tao, Li Jun-Jie, Wang Jin-Cheng. Phase field modeling of the influence of interfacial wettability and solid volume fraction on the kinetics of coarsening. Acta Physica Sinica, 2013, 62(10): 106402. doi: 10.7498/aps.62.106402
    [10] Luo Li-Jin, Zhong Chong-Gui, Dong Zheng-Chao, Fang Jing-Huai, Zhou Peng-Xia, Jiang Xue-Fan. A band Jahn-Teller effect in the martensitic phase transition of the Heusler alloy Mn2NiGe. Acta Physica Sinica, 2012, 61(20): 207503. doi: 10.7498/aps.61.207503
    [11] Zhao Da-Wen, Li Jin-Fu. Phase-field modeling of the effect of liquid-solid interface anisotropies on free dendritic growth. Acta Physica Sinica, 2009, 58(10): 7094-7100. doi: 10.7498/aps.58.7094
    [12] Ma Li, Zhu Zhi-Yong, Li Min, Yu Shi-Dan, Cui Qi-Liang, Zhou Qiang, Chen Jing-Lan, Wu Guang-Heng. Structure and magnetic properties of stress-induced martensites in ferromagnetic shape memory alloy Mn2NiGa. Acta Physica Sinica, 2009, 58(5): 3479-3484. doi: 10.7498/aps.58.3479
    [13] Zhang Hao-Lei, Li Zhe, Qiao Yan-Fei, Cao Shi-Xun, Zhang Jin-Cang, Jing Chao. Martensitic transformation and magnetocaloric effect in Ni-Co-Mn-Sn Heusler alloy. Acta Physica Sinica, 2009, 58(11): 7857-7863. doi: 10.7498/aps.58.7857
    [14] Chen Yun, Kang Xiu-Hong, Li Dian-Zhong. Phase-field modeling of free dendritic growth with adaptive finite element method. Acta Physica Sinica, 2009, 58(1): 390-398. doi: 10.7498/aps.58.390
    [15] Chen Yun, Kang Xiu-Hong, Xiao Na-Min, Zheng Cheng-Wu, Li Dian-Zhong. Phase field modelling of grain growth in polycrystalline material. Acta Physica Sinica, 2009, 58(13): 124-S131. doi: 10.7498/aps.58.124
    [16] Jing Chao, Chen Ji-Ping, Li Zhe, Cao Shi-Xun, Zhang Jin-Cang. Martensitic transformation and magnetocaloric effect in Ni50Mn35In15 Heusler alloy. Acta Physica Sinica, 2008, 57(7): 4450-4455. doi: 10.7498/aps.57.4450
    [17] Wan Jian-Feng, Fei Yan-Qiong, Wang Jian-Nong. Effect of Fe and Co on the electronic structure of (110) martensite twin boundary in Ni2MnGa alloy. Acta Physica Sinica, 2006, 55(5): 2444-2448. doi: 10.7498/aps.55.2444
    [18] LIU ZHU-HONG, HU FENG-XIA, WANG WEN-HONG, CHEN JING-LAN, WU GUANG-HENG, GAO SHU-XIA, AO LING. INVESTIGATION ON MARTENSITIC TRANSFORMATION AND FIELD-INDUCED TWO-WAY SHAPE MEMORY EFFECT OF Ni-Mn-Ga ALLOY. Acta Physica Sinica, 2001, 50(2): 233-238. doi: 10.7498/aps.50.233
    [19] YAO GUAN-HUA, XU ZHI-ZHAN. COHERENT EFFECTS IN INTENSE LASER-FIELD INDUCED AUTOIONIZATION. Acta Physica Sinica, 1988, 37(11): 1760-1766. doi: 10.7498/aps.37.1760
    [20] YI HU-CHUN, ZHU MIN, YANG DA-ZHI. GROUP THEORETICAL DETERMINATION OF TWIN BOUNDARIES IN R-PHASE AND MARTENSITE OF Ni-Ti SHAPE MEMORY ALLOY. Acta Physica Sinica, 1988, 37(8): 1376-1380. doi: 10.7498/aps.37.1376
Metrics
  • Abstract views:  2835
  • PDF Downloads:  170
  • Cited By: 0
Publishing process
  • Received Date:  16 February 2023
  • Accepted Date:  15 April 2023
  • Available Online:  25 May 2023
  • Published Online:  20 July 2023

/

返回文章
返回
Baidu
map