搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ni-Mn杂化对Mn50Ni41-xSn9Cux合金中马氏体相变温度和马氏体相磁性的影响

申建雷 李萌萌 赵瑞斌 李国科 马丽 甄聪棉 候登录

引用本文:
Citation:

Ni-Mn杂化对Mn50Ni41-xSn9Cux合金中马氏体相变温度和马氏体相磁性的影响

申建雷, 李萌萌, 赵瑞斌, 李国科, 马丽, 甄聪棉, 候登录

Role of Ni-Mn hybridization in the martensitic transformation and magnetism of Mn50Ni41-xSn9Cux alloys

Shen Jian-Lei, Li Meng-Meng, Zhao Rui-Bin, Li Guo-Ke, Ma Li, Zhen Cong-Mian, Hou Deng-Lu
PDF
导出引用
  • 研究了Ni-Mn杂化对Mn50Ni41-xSn9Cux合金马氏体相变温度和马氏体相磁性的影响.研究表明:在Mn50Ni41-xSn9Cux(x=0,1,3,5)合金中,随着Cu含量增加,马氏体相变温度和居里温度均降低;自发交换偏置场也随着Cu含量的增加从1182 Oe(1 Oe=79.5775 A/m)降低到0 Oe.马氏体相变温度和马氏体相磁性的变化归因于掺杂Cu削弱了体系中Ni 3d eg与Mn 3d之间的杂化.
    Due to its magnetostructural phase transition (the structural phase transition and the magnetic phase transition are strongly coupled together and occur simultaneously),Mn-based Heusler alloys exhibit attractive physical effects,such as ferromagnetic shape memory effect,magnetostrain effect,magnetocaloric effect,magnetoresistance effect,and exchange bias effect.These effects are receiving increasing attentions from the applications in actuating,sensing,magnetic cooling,heat pump,and energy conversion.However,Mn-based Heusler alloys display these potentially useful magnetic effects only in the vicinity of the magnetostructural transformation temperature.Therefore,from the application point of view,being able to tune the magnetostructural transformation temperature and the magnetism simultaneously is highly desirable.Recently,our group has developed a new Mn-based Heusler alloy (Mn2NiSn) with magnetostructural phase transition.Considering that the magnetostructural transformation temperature of Mn50Ni41Sn9 alloy is relatively high (278 K) and its magnetism is relatively weak (19.5 emu/g at 5 K,1 emu/g=1 Am2kg-1),we expect to lower its magnetostructural transformation temperature and enhance its magnetism in order to expand its scope of application.In this paper,the role of Ni-Mn hybridization on the martensitic transformation temperature and the magnetism of the martensitic state of Mn50Ni41Sn9Cux alloys was studied.XRD measurement shows that the lattice constants increase with increasing Cu content in Mn50Ni41-xSn9Cux (x=0,1,3,5) alloys,and thus Ni-Mn hybridizatiidion between normal Ni 3d e g and excess Mn 3d decreases due to the lattice expansion and the decrease in the Ni content. The weakened Ni-Mn hybridization leads to the decrease of both the martensitic transformation temperature and the austenitic Curie temperature from 278 K and 290 K to 129 K and 237 K,respectively.It should be pointed out that the phenomenological and conventional valence electron concentration rule has not been able to explain the change of the martensitic transformation temperature in Mn50Ni41-xSn9Cux alloys,and only the microscopic Ni-Mn hybridization theory can explain that.Ni-Mn hybridization not only affects the martensitic transformation but also influences the magnetism of the martensitic state.It is found that the martensite is changed from a canonical spin glass to a cluster spin glass and its saturation magnetization increases from 19.5 emu/g to 24.1 emu/g.Furthermore,both the ac magnetic susceptibility and the magnetic relaxation measurements show that the system has changed gradually from a spin glass state with coexistence of ferromagnetic and antiferromagnetic interaction to a single ferromagnetic state.Therefore, increasing the Cu content in Mn50Ni41-xSn9Cux alloys has been proven to be an effective way of enhancing the ferromagnetic interaction of the martensitic state.Tuning the exchange interaction of the system is very crucial to tailoring the exchange bias effect of the system.With different Cu contents,a continuous tailoring of the spontaneous exchange bias field from 0 Oe (1 Oe=79.5775 A/m) to 1182 Oe is realized.The method of changing the Ni-Mn hybridization strength mentioned above provides a new way to control the martensitic transformation temperature and the magnetic properties of the martensitic state.
      通信作者: 马丽, majimei@126.com
    • 基金项目: 河北省自然科学基金(批准号:E2016205268)、国家自然科学基金(批准号:11504247)和河北省高等学校科学研究项目(批准号:QN2015013)资助的课题.
      Corresponding author: Ma Li, majimei@126.com
    • Funds: Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. E2016205268), the National Natural Science Foundation of China (Grant No. 11504247), and the Colleges and Universities in Hebei Province Science and Technology Research Project, China (Grant No. QN2015013).
    [1]

    Liu G D, Chen J L, Liu Z H, Dai X F, Wu G H, Zhang B, Zhang X X 2005 Appl. Phys. Lett. 87 262504

    [2]

    Koyama K, Okada H, Watanabe K, Kanomata T, Kainuma R, Ito W, Oikawa K, Ishida K 2006 Appl. Phys. Lett. 89 182510

    [3]

    Planes A, Manosa L, Acet M 2009 J. Phys.:Condens. Matter 21 233201

    [4]

    Chernenko V A 1999 Scripta Mater. 40 523

    [5]

    Jiang C B, Muhammad Y, Deng L F, Wu W, Xu H B 2004 Acta Mater. 52 2779

    [6]

    Krenke T, Moya X, Aksoy S, Acet M, Entel P, Mañsa L, Planes A, Elerman Y, Ycel A, Wassermann E F 2007 J. Magn. Magn. Mater. 310 2788

    [7]

    Ye M, Kimura A, Miura Y, Shirai M, Cui Y T, Shimada K, Namatame H, Taniguchi M, Ueda S, Kobayashi K, Kainuma R, Shishido T, Fukushima K, Kanomata T 2010 Phys. Rev. Lett. 104 176401

    [8]

    Priolkar K R, Bhobe P A, Lobo D N, D'Souza S W, Barman S R, Chakrabarti A, Emura S 2013 Phys. Rev. B 87 144412

    [9]

    Priolkar K R, Lobo D N, Bhobe P A, Emura S, Nigam A K 2011 Europhys. Lett. 94 38006

    [10]

    Nogues J, Schuller I K 1999 J. Magn. Magn. Mater. 192 203

    [11]

    Ma L, Wang S Q, Li Y Z, Zhen C M, Hou D L, Wang W H, Chen J L, Wu G H 2012 J. Appl. Phys. 112 083902

    [12]

    Ma L, Wang W H, Lu J B, Li J Q, Zhen C M, Hou D L, Wu G H 2011 Appl. Phys. Lett. 99 182507

    [13]

    Wang J M, Li P P, Jiang C B 2013 Intermetallics 34 14

    [14]

    Ren S K, Zou W Q, Gao J, Jiang X L, Zhang F M, Du Y W 2004 Solid State Commun. 131 185

    [15]

    Buchelnikov V D, Entel P, Taskaev S V, Sokolovskiy V V, Hucht A, Ogura M, Akai H, Gruner M E, Nayak S K 2008 Phys. Rev. B 78 184427

    [16]

    Khan M, Jung J, Stoyko S S, Mar A, Quetz A, Samanta T, Dubenko I, Ali N, Stadler S, Chow K H 2012 Appl. Phys. Lett. 100 172403

    [17]

    Bhobe P A, Priolkar K R, Sarode P R 2008 J. Phys. D:Appl. Phys. 41 045004

    [18]

    Maji B, Suresh K G, Nigam A K 2011 J. Phys.:Condens. Matter 23 506002

    [19]

    Mydosh J A 1993 Spin Glass:An Experimental Introduction (London:Taylor & Francis) pp68-76

    [20]

    Malinowski A, Bezusyy V L, Minikayev R, Dziawa P, Syryanyy Y, Sawicki M 2011 Phys. Rev. B 84 024409

    [21]

    Mulder C A M, Duyneveldt A J, Mydosh J A 1981 Phys. Rev. B 23 1384

    [22]

    Hessinger J, Knorr K 1990 Phys. Rev. Lett. 65 2674

    [23]

    Bhattacharyya A, Giri S, Majumdar S 2011 Phys. Rev. B 83 134427

    [24]

    Bai S V, Rajasekharan T 1984 J. Magn. Magn. Mater. 42 198

  • [1]

    Liu G D, Chen J L, Liu Z H, Dai X F, Wu G H, Zhang B, Zhang X X 2005 Appl. Phys. Lett. 87 262504

    [2]

    Koyama K, Okada H, Watanabe K, Kanomata T, Kainuma R, Ito W, Oikawa K, Ishida K 2006 Appl. Phys. Lett. 89 182510

    [3]

    Planes A, Manosa L, Acet M 2009 J. Phys.:Condens. Matter 21 233201

    [4]

    Chernenko V A 1999 Scripta Mater. 40 523

    [5]

    Jiang C B, Muhammad Y, Deng L F, Wu W, Xu H B 2004 Acta Mater. 52 2779

    [6]

    Krenke T, Moya X, Aksoy S, Acet M, Entel P, Mañsa L, Planes A, Elerman Y, Ycel A, Wassermann E F 2007 J. Magn. Magn. Mater. 310 2788

    [7]

    Ye M, Kimura A, Miura Y, Shirai M, Cui Y T, Shimada K, Namatame H, Taniguchi M, Ueda S, Kobayashi K, Kainuma R, Shishido T, Fukushima K, Kanomata T 2010 Phys. Rev. Lett. 104 176401

    [8]

    Priolkar K R, Bhobe P A, Lobo D N, D'Souza S W, Barman S R, Chakrabarti A, Emura S 2013 Phys. Rev. B 87 144412

    [9]

    Priolkar K R, Lobo D N, Bhobe P A, Emura S, Nigam A K 2011 Europhys. Lett. 94 38006

    [10]

    Nogues J, Schuller I K 1999 J. Magn. Magn. Mater. 192 203

    [11]

    Ma L, Wang S Q, Li Y Z, Zhen C M, Hou D L, Wang W H, Chen J L, Wu G H 2012 J. Appl. Phys. 112 083902

    [12]

    Ma L, Wang W H, Lu J B, Li J Q, Zhen C M, Hou D L, Wu G H 2011 Appl. Phys. Lett. 99 182507

    [13]

    Wang J M, Li P P, Jiang C B 2013 Intermetallics 34 14

    [14]

    Ren S K, Zou W Q, Gao J, Jiang X L, Zhang F M, Du Y W 2004 Solid State Commun. 131 185

    [15]

    Buchelnikov V D, Entel P, Taskaev S V, Sokolovskiy V V, Hucht A, Ogura M, Akai H, Gruner M E, Nayak S K 2008 Phys. Rev. B 78 184427

    [16]

    Khan M, Jung J, Stoyko S S, Mar A, Quetz A, Samanta T, Dubenko I, Ali N, Stadler S, Chow K H 2012 Appl. Phys. Lett. 100 172403

    [17]

    Bhobe P A, Priolkar K R, Sarode P R 2008 J. Phys. D:Appl. Phys. 41 045004

    [18]

    Maji B, Suresh K G, Nigam A K 2011 J. Phys.:Condens. Matter 23 506002

    [19]

    Mydosh J A 1993 Spin Glass:An Experimental Introduction (London:Taylor & Francis) pp68-76

    [20]

    Malinowski A, Bezusyy V L, Minikayev R, Dziawa P, Syryanyy Y, Sawicki M 2011 Phys. Rev. B 84 024409

    [21]

    Mulder C A M, Duyneveldt A J, Mydosh J A 1981 Phys. Rev. B 23 1384

    [22]

    Hessinger J, Knorr K 1990 Phys. Rev. Lett. 65 2674

    [23]

    Bhattacharyya A, Giri S, Majumdar S 2011 Phys. Rev. B 83 134427

    [24]

    Bai S V, Rajasekharan T 1984 J. Magn. Magn. Mater. 42 198

  • [1] 金淼, 白静, 徐佳鑫, 姜鑫珺, 章羽, 刘新, 赵骧, 左良. Fe掺杂对Ni-Mn-Ti全d族Heusler合金马氏体相变和磁性能影响的研究.  , 2023, 72(4): 046301. doi: 10.7498/aps.72.20222037
    [2] 孙凯晨, 刘爽, 高瑞瑞, 时翔宇, 刘何燕, 罗鸿志. Zn掺杂对Heusler型磁性形状记忆合金Ni2FeGa1–xZnx (x = 0—1)电子结构、磁性与马氏体相变影响的第一性原理研究.  , 2021, 70(13): 137101. doi: 10.7498/aps.70.20202179
    [3] Algethami Obaidallah A, 李歌天, 柳祝红, 马星桥. Heusler合金Mn50–xCrxNi42Sn8的相变、磁性与交换偏置效应.  , 2020, 69(5): 058102. doi: 10.7498/aps.69.20191551
    [4] 张元磊, 李哲, 徐坤, 敬超. 哈斯勒合金Ni-Fe-Mn-In的马氏体相变与磁特性研究.  , 2015, 64(6): 066402. doi: 10.7498/aps.64.066402
    [5] 周广宏, 潘旋, 朱雨富. BiFeO3/Ni81Fe19磁性双层膜中的交换偏置及其热稳定性研究.  , 2013, 62(9): 097501. doi: 10.7498/aps.62.097501
    [6] 张洪武, 周文平, 刘恩克, 王文洪, 吴光恒. Heusler合金NiCoMnSn中的磁场驱动马氏体相变、超自旋玻璃和交换偏置.  , 2013, 62(14): 147501. doi: 10.7498/aps.62.147501
    [7] 宋瑞宁, 朱伟, 刘恩克, 李贵江, 陈京兰, 王文洪, 李祥, 吴光恒. 内应力对Mn2NiGa铁磁形状记忆合金的结构、相变和磁性能的影响.  , 2012, 61(2): 027501. doi: 10.7498/aps.61.027501
    [8] 罗礼进, 仲崇贵, 董正超, 方靖淮, 周朋霞, 江学范. Heusler合金Mn2NiGe马氏体相变的带Jahn-Teller效应研究.  , 2012, 61(20): 207503. doi: 10.7498/aps.61.207503
    [9] 崔玉亭, 游素琴, 武亮, 马勇, 陈京兰, 潘复生, 吴光恒. Ni53.2Mn22.6Ga24.2单晶的两步热弹性马氏体相变及其应力应变特性.  , 2009, 58(12): 8596-8601. doi: 10.7498/aps.58.8596
    [10] 张浩雷, 李哲, 乔燕飞, 曹世勋, 张金仓, 敬超. 哈斯勒合金Ni-Co-Mn-Sn的马氏体相变及其磁热效应研究.  , 2009, 58(11): 7857-7863. doi: 10.7498/aps.58.7857
    [11] 王清周, 陆东梅, 崔春翔, 韩福生. 利用内耗研究淬火空位对Cu-11.9Al-2.5Mn(wt%)形状记忆合金逆马氏体相变温度的影响.  , 2008, 57(11): 7083-7087. doi: 10.7498/aps.57.7083
    [12] 敬 超, 李 哲, 陈继萍, 鲁玉明, 曹世勋, 张金仓. 哈斯勒合金Ni-Mn-Sn的马氏体相变与反磁热性质.  , 2008, 57(6): 3780-3785. doi: 10.7498/aps.57.3780
    [13] 敬 超, 陈继萍, 李 哲, 曹世勋, 张金仓. 哈斯勒合金Ni50Mn35In15的马氏体相变及其磁热效应.  , 2008, 57(7): 4450-4455. doi: 10.7498/aps.57.4450
    [14] 朱志永, 王文全, 苗元华, 王岩松, 陈丽婕, 代学芳, 刘国栋, 陈京兰, 吴光恒. 掺杂对Ni51.5Mn25Ga23.5相变行为和磁性的影响.  , 2005, 54(10): 4894-4897. doi: 10.7498/aps.54.4894
    [15] 崔玉亭, 朱亚波, 廖克俊, 王万录. Ni2MnGa单晶马氏体相变过程摩擦耗能的热动力学计算.  , 2004, 53(3): 861-866. doi: 10.7498/aps.53.861
    [16] 王文洪, 柳祝红, 陈京兰, 吴光恒, 梁婷, 徐惠彬, 蔡伟, 郑玉峰, 赵连城. 铁磁形状记忆合金Ni52.5Mn23.5Ga24马氏体相变热滞后的研究.  , 2002, 51(3): 635-639. doi: 10.7498/aps.51.635
    [17] 高淑侠, 王文洪, 柳祝红, 陈京兰, 吴光恒, 梁婷, 徐惠彬, 蔡伟, 郑玉峰, 赵连城. 铁磁形状记忆合金Ni52.2Mn23.8Ga24的马氏体相变及其物理表征.  , 2002, 51(2): 332-336. doi: 10.7498/aps.51.332
    [18] 滕蛟, 蔡建旺, 熊小涛, 赖武彦, 朱逢吾. (Ni0.81Fe0.19)1-xCrx作为种子层对NiFe/FeMn交换偏置的影响.  , 2002, 51(12): 2849-2853. doi: 10.7498/aps.51.2849
    [19] 柳祝红, 胡凤霞, 王文洪, 陈京兰, 吴光恒, 高书侠, 敖玲. 哈斯勒合金Ni-Mn-Ga的马氏体相变和磁增强双向形状记忆效应.  , 2001, 50(2): 233-238. doi: 10.7498/aps.50.233
    [20] 敬 超, 金晓峰, 董国胜, 龚小燕, 郁黎明, 郑卫民. 分子束外延生长Fe/Fe50Mn50双层膜的交换偏置.  , 2000, 49(10): 2022-2026. doi: 10.7498/aps.49.2022
计量
  • 文章访问数:  5697
  • PDF下载量:  238
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-04
  • 修回日期:  2016-09-05
  • 刊出日期:  2016-12-05

/

返回文章
返回
Baidu
map