Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Whitham modulation theory of defocusing nonlinear Schrödinger equation and the classification and evolutions of solutions with initial discontinuity

Gong Rui-Zhi Wang Deng-Shan

Citation:

Whitham modulation theory of defocusing nonlinear Schrödinger equation and the classification and evolutions of solutions with initial discontinuity

Gong Rui-Zhi, Wang Deng-Shan
PDF
HTML
Get Citation
  • Since the Whitham modulation theory was first proposed in 1965, it has been widely concerned because of its superiority in studying dispersive fluid dynamics and dealing with discontinuous initial value problems. In this paper, the Whitham modulation theory of the defocusing nonlinear Schrödinger equation is developed, and the classification and evolution of the solutions of discontinuous initial value problem are studied. Moreover, the dispersive shock wave region, the rarefaction wave region, the unmodulated wave region and the plateau region are distinguished. Particularly, the correctness of the results is verified by direct numerical simulation. Specifically, the solutions of 0-phase and 1-phase and their corresponding Whitham equations are derived by the finite gap integration method. Also the Whitham equation of genus N corresponding to the N-phase periodic wave solution is derived. The basic structures of rarefaction wave and dispersive shock wave are given, in which the boundaries of the regions are calculated in detail. The Riemann invariants and density distributions of dispersive fluids in each case are discussed. When the initial value is fixed as a special one, the vacuum point is considered and analyzed in detail. In addition, the oscillating front and the soliton front in the dispersive shock wave are considered. In fact, the Whitham modulation theory has many wonderful applications in real physics and engineering. The dam problem is investigated as a special Riemann problem, the piston problem of dispersive fluid is analyzed, and the novel undular bores are found.
      Corresponding author: Wang Deng-Shan, dswang@bnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11971067)
    [1]

    Whitham G B 1965 J. Fluid Mech. 22 273Google Scholar

    [2]

    Luke J C 1966 Proc. R. Soc. London, Ser. A 292 403

    [3]

    Flaschka H, Forest M G, McLaughlin D W 1980 Commun. Pure Appl. Math. 33 739Google Scholar

    [4]

    Hoefer M A, Ablowitz M J, Coddington I, Cornell E A, Engels P, Schweikhard V 2006 Phys. Rev. A 74 023623Google Scholar

    [5]

    Mo Y C, Kishek R A, Feldman D, Haber I, Beaudoin B, O’Shea P G, Thangaraj J C T 2013 Phys. Rev. Lett. 110 084802Google Scholar

    [6]

    Trillo S, Deng G, Biondini G, Klein M, Clauss G F, Chabchoub A, Onorato M 2016 Phys. Rev. Lett. 117 144102Google Scholar

    [7]

    Maiden M D, Lowman N K, Anderson D V, Schubert M E, Hoefer M A 2016 Phys. Rev. Lett. 116 174501Google Scholar

    [8]

    Xu G, Conforti M, Kudlinski A, Mussot A 2017 Phys. Rev. Lett. 118 254101Google Scholar

    [9]

    Wan W, Jia S, Fleischer J W 2007 Nat. Phys. 3 46Google Scholar

    [10]

    Conti C, Fratalocchi A, Peccianti M, Ruocco G, Trillo S 2009 Phys. Rev. Lett. 102 083902Google Scholar

    [11]

    Fatome J, Finot C, Millot G, Armaroli A, Trillo S 2014 Phys. Rev. X 4 021022

    [12]

    Wang J, Li J, Lu D, Guo Q, Hu W 2015 Phys. Rev. A 91 063819Google Scholar

    [13]

    Xu G, Mussot A, Kudlinski A, Trillo S, Copie F, Conforti M 2016 Opt. Lett. 41 2656Google Scholar

    [14]

    Millot G, Pitois S, Yan M, Hovhannisyan T, Bendahmane A, Hänsch T W, Picqué N 2016 Nat. Photonics 10 27Google Scholar

    [15]

    Bendahmane A, Xu G, Conforti M, Kudlinski A, Mussot A, Trillo S 2022 Nat. Commun. 13 3137Google Scholar

    [16]

    Jenkins R 2015 Nonlinearity 28 2131Google Scholar

    [17]

    Zhang X F, Wen L, Wang L X, Chen G P, Tan R B, Saito H 2022 Phys. Rev. A 105 033306Google Scholar

    [18]

    Bilman D, Buckingham R, Wang D S 2021 J. Diff. Equ. 297 320Google Scholar

    [19]

    Lou S Y, Hao X 2022 Phys. Lett. A 443 128203Google Scholar

    [20]

    Zhao L C, Xin G G, Yang Z Y, Yang W L 2022 Phys. D 435 133283Google Scholar

    [21]

    Wang D S, Xu L, Xuan Z 2022 J. Nonlinear Sci. 32 3Google Scholar

    [22]

    Liu Y, Wang D S 2022 Stud. Appl. Math. 149 588Google Scholar

    [23]

    Abeya A, Biondini G, Hoefer M A 2023 J. Phys. A: Math. Theor. 56 025701Google Scholar

    [24]

    Saleh B, Smyth N F 2023 Proc. R. Soc. A 479 20220580Google Scholar

    [25]

    Gong R, Wang D S 2022 Appl. Math. Lett. 126 107795Google Scholar

    [26]

    Gong R, Wang D S 2022 Phys. D 439 133398Google Scholar

    [27]

    El G A, Geogjaev V V, Gurevich A V, Krylov A L 1995 Phys. D 87 186Google Scholar

    [28]

    Congy T, El G A, Hoefer M A, Shearer M 2019 Stud. Appl. Math. 142 241Google Scholar

    [29]

    Dressler R F 1954 Assemblé Général de Rome 38 319

    [30]

    Dressler R F 1952 J. Res. Nat. Bur. Stand. 49 2356

    [31]

    Congy T, Ivanov S K, Kamchatnov A M, Pavloff N 2017 Chaos 27 083107Google Scholar

  • 图 1  两种类型的稀疏波结构 (a) $\lambda_{2}$为常数; (b) $\lambda_{1}$为常数

    Figure 1.  Two types of RW structure: (a) $\lambda_{2}$ is constant; (b) $\lambda_{1}$ is constant

    图 2  两种冲击波结构及其对应的色散冲击波

    Figure 2.  Two types of DSW structure and their corresponding dispersive shock waves

    图 3  方程(1)在特殊初值问题(83)式和(84)式下的演化情形 (a)$\rho_0=1/4,\; v_0=1$; (b)$\rho_0=9/4,\; v_0=-1$

    Figure 3.  Evolution of the Eq. (1) under special initial value problems Eq. (83) and Eq. (84): (a) $\rho_0= 1/4, \;v_0=1$; (b) $\rho_0= 9/4, $$ v_0=-1$

    图 4  方程(1)在特殊初值问题(83)式和(84)式下的演化情形 (a) $\rho=9/16,\; v=-0.5,\; d=-0.5$; (b) $\rho=1/4, \;v=-1,\; d=0$; (c) $\rho= 1/16, \;v=-1.5,\; d=0.5$; (d) $\rho=0.0001, \;v=-1.98,\; d=0.98$

    Figure 4.  Evolution of the Eq. (1) under special initial value problems Eq. (83) and Eq. (84): (a) $\rho=9/ 16, \;v=-0.5, \;d=-0.5$; (b) $\rho= $$ 1/4, \;v=-1, \;d=0$; (c) $\rho=1/16,\; v=-1.5, \;d=0.5$; (d) $\rho=0.0001, \;v=-1.98,\; d=0.98$

    图 5  一般间断初值问题(7)式的分类图

    Figure 5.  Classification of solutions to discontinuous initial value problems Eq. (7)

    图 6  情况A下(a)黎曼不变量的分布、(b)密度函数ρ的波形结构、(c)速度函数v的波形结构与(d)密度函数ρ的演化过程. 其中, 参数选择为$t=5,\ \lambda_2^{{\rm{L}}}=0,\ \lambda_1^{{\rm{L}}}=1, \ \lambda_2^{{\rm{R}}}=-2,\ \lambda_1^{{\rm{R}}}=-1$

    Figure 6.  (a) Distribution of Riemann invariants, (b) the waveform structure of density function ρ, (c) the waveform structure of velocity function v and (d) the evolution process of density function ρ for Case A. The parameters are $t=5,\ \lambda_2^{{\rm{L}}}=0,\ \lambda_1^{{\rm{L}}}= 1, $$ \ \lambda_2^{{\rm{R}}}=-2,\ \lambda_1^{{\rm{R}}}=-1$

    图 7  情况A—情况E在$(v, \rho)$平面中解的行为

    Figure 7.  Behavior of the solution in the $(v, \rho)$ plane for Case A–Case E

    图 8  情况B下(a)黎曼不变量的分布、(b)密度函数ρ的波形结构、(c)速度函数v的波形结构与(d)密度函数ρ的演化过程. 其中, 参数选择为$t=5, \;\lambda_2^{{\rm{L}}}=-1,\; \lambda_1^{{\rm{L}}}=1,\; \lambda_2^{{\rm{R}}}=-2,\; \lambda_1^{{\rm{R}}}=0$

    Figure 8.  (a) Distribution of Riemann invariants, (b) the waveform structure of density function ρ, (c) the waveform structure of velocity function v and (d) the evolution process of density function ρ for Case B. The parameters are $t=5, \;\lambda_2^{{\rm{L}}}=-1, $$ \;\lambda_1^{{\rm{L}}}=1,\; \lambda_2^{{\rm{R}}}=-2,\; \lambda_1^{{\rm{R}}}=0$

    图 9  情况C下(a)黎曼不变量的分布、(b)密度函数ρ的波形结构、(c)速度函数v的波形结构与(d)密度函数ρ的演化过程. 其中, 参数选择为$t=8,\; \lambda_2^{{\rm{L}}}=-1,\; \lambda_1^{{\rm{L}}}=0, \;\lambda_2^{{\rm{R}}}=-2,\; \lambda_1^{{\rm{R}}}=2$

    Figure 9.  (a) Distribution of Riemann invariants, (b) the waveform structure of density function ρ, (c) the waveform structure of velocity function v and (d) the evolution process of density function ρ for Case C. The parameters are $t=8, \;\lambda_2^{{\rm{L}}}=-1,\; $$ \lambda_1^{{\rm{L}}}=0,\; \lambda_2^{{\rm{R}}}=-2,\; \lambda_1^{{\rm{R}}}=2$

    图 10  情况D下(a)黎曼不变量的分布、(b)密度函数ρ的波形结构、(c)速度函数v的波形结构与(d)密度函数ρ的演化过程. 其中, 参数选择为$t=5,\; \lambda_2^{{\rm{L}}}=-2, \;\lambda_1^{{\rm{L}}}=1,\; \lambda_2^{{\rm{R}}}=-1,\; \lambda_1^{{\rm{R}}}=0$

    Figure 10.  (a) Distribution of Riemann invariants, (b) the waveform structure of density function ρ, (c) the waveform structure of velocity function v and (d) the evolution process of density function ρ for Case D. The parameters are $t=5,\; \lambda_2^{{\rm{L}}}=-2, $$ \;\lambda_1^{{\rm{L}}}=1,\; \lambda_2^{{\rm{R}}}=-1,\; \lambda_1^{{\rm{R}}}=0$

    图 11  情况A大坝问题的(a)黎曼不变量与(b)密度函数的分布图. 其中时间为$t=5$

    Figure 11.  (a) Distribution of Riemann invariants and (b) density function for the dam problem for Case A, where $t=5$

    图 12  情况D大坝问题的(a)黎曼不变量与(b)密度函数的分布图. 其中时间为$t=5$

    Figure 12.  (a) Distribution of Riemann invariants and (b) density function for the dam problem for Case D, where $t=5$

    图 13  情况E下(a)黎曼不变量的分布、(b)密度函数ρ的波形结构、(c)速度函数v的波形结构与(d)密度函数ρ的演化过程. 其中, 参数选择为$t=8,\; \lambda_2^{{\rm{L}}}=-1, \;\lambda_1^{{\rm{L}}}=1,\; \lambda_2^{{\rm{R}}}=0,\; \lambda_1^{{\rm{R}}}=2$

    Figure 13.  (a) Distribution of Riemann invariants, (b) the waveform structure of density function ρ, (c) the waveform structure of velocity function v and (d) the evolution process of density function ρ for Case E. The parameters are $t=8,\;\lambda_2^{{\rm{L}}}=-1, $$ \;\lambda_1^{{\rm{L}}}=1, \;\lambda_2^{{\rm{R}}}=0,\; \lambda_1^{{\rm{R}}}=2$

    图 14  情况E的特殊情形下, (a)黎曼不变量的分布、(b)密度函数ρ的波形结构和(c)密度函数ρ分量的演化过程. 其中, 参数选择为$t=8,\; \lambda_2^{{\rm{L}}}=-1,\; \lambda_1^{{\rm{L}}}=\lambda_2^{{\rm{R}}}=1,\; \lambda_1^{{\rm{R}}}=$2

    Figure 14.  (a) Distribution of Riemann invariants, (b) the waveform structure of density function ρ and (c) the evolution process of density function ρ for the special case of Case E. The parameters are $t=8,\; \lambda_2^{{\rm{L}}}=-1,\; \lambda_1^{{\rm{L}}}=\lambda_2^{{\rm{R}}}=1,\; \lambda_1^{{\rm{R}}}=2$

    图 15  情况F中(a)黎曼不变量的分布、(b)密度函数ρ的波形结构和(c)密度函数ρ的演化过程. 其中, 参数选择为$t=8,\; $$ \lambda_2^{{\rm{L}}}=-1, \;\lambda_1^{{\rm{L}}}=0,\; \lambda_2^{{\rm{R}}}=1,\; \lambda_1^{{\rm{R}}}=2$

    Figure 15.  (a) Distribution of Riemann invariants, (b) the waveform structure of density function ρ and (c) the evolution process of density function ρ for Case F. The parameters are $t=8, \;\lambda_2^{{\rm{L}}}=-1,\; \lambda_1^{{\rm{L}}}=0,\; \lambda_2^{{\rm{R}}}=1,\; \lambda_1^{{\rm{R}}}=2$

    图 16  活塞问题中, (a)黎曼不变量的分布与(b)密度函数ρ的波形结构, 其中时间选取为$t=5$

    Figure 16.  (a) Distribution of the Riemann invariant and (b) the waveform structure of the density function ρ in the piston problem, where $t=5$

    Baidu
  • [1]

    Whitham G B 1965 J. Fluid Mech. 22 273Google Scholar

    [2]

    Luke J C 1966 Proc. R. Soc. London, Ser. A 292 403

    [3]

    Flaschka H, Forest M G, McLaughlin D W 1980 Commun. Pure Appl. Math. 33 739Google Scholar

    [4]

    Hoefer M A, Ablowitz M J, Coddington I, Cornell E A, Engels P, Schweikhard V 2006 Phys. Rev. A 74 023623Google Scholar

    [5]

    Mo Y C, Kishek R A, Feldman D, Haber I, Beaudoin B, O’Shea P G, Thangaraj J C T 2013 Phys. Rev. Lett. 110 084802Google Scholar

    [6]

    Trillo S, Deng G, Biondini G, Klein M, Clauss G F, Chabchoub A, Onorato M 2016 Phys. Rev. Lett. 117 144102Google Scholar

    [7]

    Maiden M D, Lowman N K, Anderson D V, Schubert M E, Hoefer M A 2016 Phys. Rev. Lett. 116 174501Google Scholar

    [8]

    Xu G, Conforti M, Kudlinski A, Mussot A 2017 Phys. Rev. Lett. 118 254101Google Scholar

    [9]

    Wan W, Jia S, Fleischer J W 2007 Nat. Phys. 3 46Google Scholar

    [10]

    Conti C, Fratalocchi A, Peccianti M, Ruocco G, Trillo S 2009 Phys. Rev. Lett. 102 083902Google Scholar

    [11]

    Fatome J, Finot C, Millot G, Armaroli A, Trillo S 2014 Phys. Rev. X 4 021022

    [12]

    Wang J, Li J, Lu D, Guo Q, Hu W 2015 Phys. Rev. A 91 063819Google Scholar

    [13]

    Xu G, Mussot A, Kudlinski A, Trillo S, Copie F, Conforti M 2016 Opt. Lett. 41 2656Google Scholar

    [14]

    Millot G, Pitois S, Yan M, Hovhannisyan T, Bendahmane A, Hänsch T W, Picqué N 2016 Nat. Photonics 10 27Google Scholar

    [15]

    Bendahmane A, Xu G, Conforti M, Kudlinski A, Mussot A, Trillo S 2022 Nat. Commun. 13 3137Google Scholar

    [16]

    Jenkins R 2015 Nonlinearity 28 2131Google Scholar

    [17]

    Zhang X F, Wen L, Wang L X, Chen G P, Tan R B, Saito H 2022 Phys. Rev. A 105 033306Google Scholar

    [18]

    Bilman D, Buckingham R, Wang D S 2021 J. Diff. Equ. 297 320Google Scholar

    [19]

    Lou S Y, Hao X 2022 Phys. Lett. A 443 128203Google Scholar

    [20]

    Zhao L C, Xin G G, Yang Z Y, Yang W L 2022 Phys. D 435 133283Google Scholar

    [21]

    Wang D S, Xu L, Xuan Z 2022 J. Nonlinear Sci. 32 3Google Scholar

    [22]

    Liu Y, Wang D S 2022 Stud. Appl. Math. 149 588Google Scholar

    [23]

    Abeya A, Biondini G, Hoefer M A 2023 J. Phys. A: Math. Theor. 56 025701Google Scholar

    [24]

    Saleh B, Smyth N F 2023 Proc. R. Soc. A 479 20220580Google Scholar

    [25]

    Gong R, Wang D S 2022 Appl. Math. Lett. 126 107795Google Scholar

    [26]

    Gong R, Wang D S 2022 Phys. D 439 133398Google Scholar

    [27]

    El G A, Geogjaev V V, Gurevich A V, Krylov A L 1995 Phys. D 87 186Google Scholar

    [28]

    Congy T, El G A, Hoefer M A, Shearer M 2019 Stud. Appl. Math. 142 241Google Scholar

    [29]

    Dressler R F 1954 Assemblé Général de Rome 38 319

    [30]

    Dressler R F 1952 J. Res. Nat. Bur. Stand. 49 2356

    [31]

    Congy T, Ivanov S K, Kamchatnov A M, Pavloff N 2017 Chaos 27 083107Google Scholar

  • [1] Wang Jin-Ling, Zhang Kun, Lin Ji, Li Hui-Jun. Generation and modulation of shock waves in two-dimensional polariton condensates. Acta Physica Sinica, 2024, 73(11): 119601. doi: 10.7498/aps.73.20240229
    [2] Yang Wei-Ming, Duan Xiao-Xi, Zhang Chen, Li Yu-Long, Liu Hao, Guan Zan-Yang, Zhang Huan, Sun Liang, Dong Yun-Song, Yang Dong, Wang Zhe-Bin, Yang Jia-Min. Optimization and application of shock wave measurement technology for shock-timing experiments on small-scale capsules. Acta Physica Sinica, 2024, 73(12): 125203. doi: 10.7498/aps.73.20232000
    [3] Li Yong-Fei, Guo Rui-Ming, Zhao Hang-Fang. Sparse reconstruction of acoustic interference fringes in shallow water and internal wave environment. Acta Physica Sinica, 2023, 72(7): 074301. doi: 10.7498/aps.72.20221932
    [4] Liu Ping, Xu Heng-Rui, Yang Jian-Rong. The Boussinesq equation: Lax pair, Bäcklund transformation, symmetry group transformation and consistent Riccati expansion solvability. Acta Physica Sinica, 2020, 69(1): 010203. doi: 10.7498/aps.69.20191316
    [5] Zhang Tao, Hou Hong, Bao Ming. Imaging through coda wave interferometryvia sparse reconstruction. Acta Physica Sinica, 2019, 68(19): 199101. doi: 10.7498/aps.68.20190831
    [6] He Min-Qing, Dong Quan-Li, Sheng Zheng-Ming, Zhang Jie. Shock wave amplification by shock wave self-generated magnetic field driven by laser and the external magnetic field. Acta Physica Sinica, 2015, 64(10): 105202. doi: 10.7498/aps.64.105202
    [7] Lu Feng, Chen Lang, Feng Chang-Gen. Shock induced Nd2Fe14B magnetic transition based on molecular field theory analysis. Acta Physica Sinica, 2014, 63(16): 167501. doi: 10.7498/aps.63.167501
    [8] Wang Feng, Peng Xiao-Shi, Liu Shen-Ye, Jiang Xiao-Hua, Xu Tao, Ding Yong-Kun, Zhang Bao-Han. Shock experiment with sandwiched target in laser indirect-drive experiment. Acta Physica Sinica, 2011, 60(11): 115203. doi: 10.7498/aps.60.115203
    [9] Chen Kai-Guo, Zhu Wen-Jun, Ma Wen, Deng Xiao-Liang, He Hong-Liang, Jing Fu-Qian. Propagation of shockwave in nanocrystalline copper: Molecular dynamics simulation. Acta Physica Sinica, 2010, 59(2): 1225-1232. doi: 10.7498/aps.59.1225
    [10] He Min-Qing, Dong Quan-Li, Sheng Zheng-Ming, Weng Su-Ming, Chen Min, Wu Hui-Chun, Zhang Jie. Ion acceleration by shock wave induced by laser plasma interaction. Acta Physica Sinica, 2009, 58(1): 363-372. doi: 10.7498/aps.58.363
    [11] Zhao Shou-Gen. Effect of the position of accident on traffic waves. Acta Physica Sinica, 2009, 58(11): 7497-7501. doi: 10.7498/aps.58.7497
    [12] Yu Yu-Ying, Tan Hua, Hu Jian-Bo, Dai Cheng-Da, Chen Da-Nian, Wang Huan-Ran. Effective shear modulus in shock-compressed aluminum. Acta Physica Sinica, 2008, 57(4): 2352-2357. doi: 10.7498/aps.57.2352
    [13] Jiang Dong-Dong, Du Jin-Mei, Gu Yan, Feng Yu-Jun. Resistivity of PZT 95/5 ferroelectric ceramic under shock wave compression. Acta Physica Sinica, 2008, 57(1): 566-570. doi: 10.7498/aps.57.566
    [14] Zhang Yi, Zheng Zhi-Yuan, Li Yu-Tong, Liu Feng, Li Han-Ming, Lu Xin, Zhang Jie. Collision process of two shockwaves. Acta Physica Sinica, 2007, 56(10): 5931-5936. doi: 10.7498/aps.56.5931
    [15] Bian Bao-Min, Yang Ling, Zhang Ping, Ji Yun-Jing, Li Zhen-Hua, Ni Xiao-Wu. General self-simulating motion mode of spherical strong shock waves in ideal gas. Acta Physica Sinica, 2006, 55(8): 4181-4187. doi: 10.7498/aps.55.4181
    [16] Cui Xin-Lin, Zhu Wen-Jun, Deng Xiao-Liang, Li Ying-Jun, He Hong-Liang. Molecular dynamic simulation of shock-induced phase transformation in single crystal iron with nano-void inclusion. Acta Physica Sinica, 2006, 55(10): 5545-5550. doi: 10.7498/aps.55.5545
    [17] Gu Yong-Yu, Zhang Yong-Kang, Zhang Xing-Quan, Shi Jian-Guo. Theoretical study on the influence of the overlay on the pressure of laser shock wave in photomechanics. Acta Physica Sinica, 2006, 55(11): 5885-5891. doi: 10.7498/aps.55.5885
    [18] Li Qi-Liang, Zhu Hai-Dong, Tang Xiang-Hong, Li Cheng-Jia, Wang Xiao-Jun, Lin Li-Bin. Integrability aspects of solitons’ coupled equation in multi-wavelength system. Acta Physica Sinica, 2004, 53(6): 1623-1628. doi: 10.7498/aps.53.1623
    [19] Zhou Zhen-Jiang, Li Zhi-Bin. A Darboux transformation and new exact solutions for Broer-Kaup system. Acta Physica Sinica, 2003, 52(2): 262-266. doi: 10.7498/aps.52.262
    [20] GU YUAN, NI YUAN-LONG, WANG YONG-GANG, MAO CHU-SHENG, WU FENG-CHUN, WU JIANG, ZHU JIAN, WAN BING-GEN. EXPERIMENTAL OBSERVATION OF LASER DRIVEN HIGH PRESSURE SHOCK WAVES. Acta Physica Sinica, 1988, 37(10): 1690-1693. doi: 10.7498/aps.37.1690
Metrics
  • Abstract views:  4025
  • PDF Downloads:  158
  • Cited By: 0
Publishing process
  • Received Date:  11 February 2023
  • Accepted Date:  16 March 2023
  • Available Online:  21 March 2023
  • Published Online:  20 May 2023

/

返回文章
返回
Baidu
map