Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Riemannian geometric modeling of underwater acoustic ray propagation—Basic theory

Guo Xiao-Jin Ma Shu-Qing Zhang Li-Lun Lan Qiang Huang Chuang-Xia

Citation:

Riemannian geometric modeling of underwater acoustic ray propagation—Basic theory

Guo Xiao-Jin, Ma Shu-Qing, Zhang Li-Lun, Lan Qiang, Huang Chuang-Xia
PDF
HTML
Get Citation
  • Underwater sound propagation models are generally established from the extrinsic perspective, that is, embedding acoustic channels in Euclidean space with a fixed coordinate system. Riemannian geometry is intrinsic for curved space, which can describe the essential properties of background manifolds. The underwater acoustic Gaussian beam is originally adopted from seismology. Till now it has been the most important method used in acoustic ray based modeling and applications. Owing to the advantages of Gaussian beam method over the traditional ray counterpart, it is the mainstream technology of ray propagation computational software such as the famous Bellhop. With the assumption of Euclidean space, it is hard to grasp the naturally curved characteristics of the Gaussian beam. In this work, we propose the Riemannian geometry theory of underwater acoustic ray propagation, and obtain the following results. 1) The Riemannian geometric intrinsic forms of the eikonal equation, paraxial ray equation and the Gaussian beam under radially symmetric acoustic propagation environments are established, which provide a Riemannian geometric interpretation of the Gaussian beam. In fact, the underwater acoustic eikonal equation is equivalent to the geodesic equation in Riemannian manifolds, and the intrinsic geometric spreading of the Gaussian beam corresponds to the lateral deviation of geodesic curve along the Jacobian field. 2) Some geometric and topological properties of acoustic ray about conjugate points and section curvature are acquired by the Jacobi field theory, indicating that the convergence of ray beam corresponds to the intersection of geodesics at the conjugate point with positive section curvature. 3) The specific modeling method under horizontal stratified and distance-related environment is presented by using the above theory. And we point out that the method proposed here is also applicable to other radially symmetric acoustic propagation environments. 4) Simulations and comparative analyses of three typical underwater acoustic propagation examples, confirm the feasibility of the Riemannian geometric model for underwater acoustic propagation, and show that the Riemannian geometric model has exact mathematical physics meaning over the Euclidean space method adopted by the Bellhop model. The basic theory given in this paper can be extended to the curved surface, three-dimensional and other complex propagation cases. And especially it lays a theoretical foundation for the further research of long-range acoustic propagation considering curvature of the earth.
      Corresponding author: Zhang Li-Lun, zhanglilun@nudt.edu.cn
    • Funds: Project supported by the National Defense Basic Scientific Research Program of China (Grant No. JCKY2020550C011) and the National Defense Science and Technology Key Laboratory Fund for Underwater Acoustic Countermeasure Technology (Grant No. 6412214200403).
    [1]

    Kravtsov Y A, Berczynski P 2007 Stud. Geophys. Geod. 51 1Google Scholar

    [2]

    Babich V M, Lazutkin V F 1968 Commun. Math. Phys. 2 9Google Scholar

    [3]

    Červený V, Popov M M, Pšenčík I 1982 Geophys. J. R. astr. Soc. 70 109Google Scholar

    [4]

    Porter M B, Bucker H P 1987 J. Acoust. Soc. Am. 82 1349Google Scholar

    [5]

    Červený V, 2001 Seismic Ray Theory (Cambridge: Cambridge University Press) p237

    [6]

    Červený V, Pšenčík I 2010 Geophys. J. Int. 180 798

    [7]

    Smith S T 2014 SIAM J. Appl. Math. 74 1637Google Scholar

    [8]

    Jensen F B, Kuperman W A, Porter M B 2011 Schmidt H Computational Ocean Acoustics ( NewYork: Springer-Verlag) p125

    [9]

    梁灿彬, 周彬 2006 微分几何入门与广义相对论 (北京: 科学出版社) 第190页

    Liang C B, Zhou B 2006 Introduction to Differential Geometry and General Relativity (Beijing: Science Press) p190 (in Chinese)

    [10]

    Gordon W 1923 Ann. Phys. 72 421

    [11]

    郭弘, 邓锡铭 1995 中国科学: A辑 25 7

    Guo H, Deng X M 1995 Sci. China (Series A) 25 7 (in Chinese)

    [12]

    邓锡铭, 郭弘, 曹清 1995 中国激光 22 523Google Scholar

    Deng X M, Guo H, Cao Q 1995 Chin. J. Lasers 22 523Google Scholar

    [13]

    杨孔庆, 罗明秋, 李幼铭 2018 石油物探 57 5Google Scholar

    Yang K Q, Luo M Q, Li Y M 2018 Geophys. Prospect. Petrol. 57 5Google Scholar

    [14]

    White R 1973 J. Acoust. Soc. Am. 53 1700Google Scholar

    [15]

    Meyer R, Schroeter G 1981 Acta Acust united Ac 47 105

    [16]

    Bergman D R 2005 Technical Report NRL/MR/7140-05-8835 Naval Research Laboratory

    [17]

    Bergman D R 2005 Waves Random Complex 15 417Google Scholar

    [18]

    Bergman D R 2006 Wave Motion 43 508Google Scholar

    [19]

    Bergman D R 2021 Int. J. Acoust. Vib. 26 2Google Scholar

    [20]

    Bergman D R 2015 Physics 120 5Google Scholar

    [21]

    陈维恒, 李兴校 2002 黎曼几何引论 (北京: 北京大学出版社) 第171页

    Chen W H, Li X X 2002 Introduction to Riemannian Geometry (Beijing: Peking University Press) p267 (in Chinese)

    [22]

    侯伯元, 侯伯宇 2004 物理学家用微分几何 (北京: 科学出版社) 第143页

    Hou B Y, Hou B Y 2004 Differential Geometry in Physics (Beijing: Science Press) p143 (in Chinese)

    [23]

    Do Carmo M P 1992 Riemannian Geometry (Boston: Birkhauser) p110

    [24]

    Cheeger J, D G Ebin 2008 Comparison Theorems in Riemannian Geometry (Providence, Rhode Island: American Mathematical Society) p35

    [25]

    Kobayashi S, Nomizu K 1963 Foundations of Differential Geometry (Vol. 2) (New York: John Wiley & Sons) p73

    [26]

    Eisner L, Pšenčík I 1996 Pageoph 148 227Google Scholar

    [27]

    Davis H, Fleming H, Hardy WAR, Miningham R, Rosenbaum S 1968 Technical Report the Hudson Laboratories Ray Tracing Program (Beijing: University of Science and Technology of China Press)

    [28]

    Foreman T 1988 Ph. D. Dissertation (Austin: The University of Texas at Austin)

  • 图 1  傍轴射线示意图, ${\boldsymbol{T}} = \dfrac{{{{\rm{d}}} {\boldsymbol{x}}}}{{{{\rm{d}}} s}}$是射线的切向量, N是射线的法向量

    Figure 1.  Paraxial ray tube, ${\boldsymbol{T}} = \dfrac{{{{\rm{d}}} {\boldsymbol{x}}}}{{{{\rm{d}}} s}}$ is the tangent vector, N is the normal vector.

    图 2  双曲余弦声速剖面的声线和焦散点, 参数为$ {c_1} = 1500 $m/s, $ {z_1} = 1.5 $ km, $ E = 5 $km, 声源深度为$ {z_0} = 1 $km, 初始掠射角$ {\theta }_{0}\in (-{10}^{\circ}, {12}^{\circ}) $, $t \in [0, 130]~ \text{s}$ (a)共轭点理论仿真结果; (b) Bellhop仿真结果

    Figure 2.  Rays and caustics for the hyperbolic cosine sound speed profile with parameters$ {c_1} = 1500 $m/s, $ {z_1} = 1.5 $km, $ E = 5 $km, $ {z_0} = 1 $km, $ {\theta }_{0}\in (-{10}^{\circ}, {12}^{\circ}) $, $t \in [0, 130]~\text{s}$: (a) Conjugate point theory simulation results; (b) Bellhop simulation results.

    图 3  线性声速剖面的声线求解结果, 参数为${c_0} = 1500$ m/s, $b = - 0.01$, 声源深度为${z_0} = 1$ km, 初始掠射角$ {\theta }_{0} \in (-{5}^{\circ }, -{2}^{\circ }) $, $t \in [0, 25]~ \text{s}$ (a)共轭点理论仿真结果; (b) Bellhop仿真结果

    Figure 3.  Rays for the linear sound speed profile with parameters$ {c_0} = 1500 $m/s, $ b = - 0.01 $, $ {z_0} = 1 $ km, $ {\theta }_{0}\in (-{5}^{\circ }, -{2}^{\circ }) $, $t \in [0, 25]~ \text{s}$: (a) Conjugate point theory simulation results; (b) Bellhop simulation results.

    图 4  声速剖面(38) 的声速等值线, 参数为${\text{DR = 150}}{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{km, }}\;{\text{DZ = 500}}{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{km, }}\;{\text{Ze = 1000}}{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{km, }}\;{\text{Re = 300}}{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{km}}$

    Figure 4.  Sound speed contours for the sound speed profile (38) with parameters ${\text{DR = 150}}~{\text{km, }} \;{\rm DZ =} $$ 500 {\text{km, }} \;{\text{Ze = 1000}}{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{km, }} \;{\text{Re = 300}}{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{km}}$.

    图 5  声速剖面(38)的截面曲率K和雅可比场Y1(t)仿真结果 (a) 截面曲率K仿真结果; (b) 雅可比场Y1(t)仿真结果

    Figure 5.  Section curvature K and Jacobi field Y1(t) for the sound speed profile (38): (a) Section curvature K simulation results; (b) Jacobi field Y1(t) simulation results.

    图 6  声速剖面(38)的声线和焦散点 (a)共轭点理论求解结果; (b) Bellhop射线求解结果

    Figure 6.  Rays and caustics for the sound speed profile (38): (a) Conjugate point theory simulation results; (b) Bellhop simulation results.

    Baidu
  • [1]

    Kravtsov Y A, Berczynski P 2007 Stud. Geophys. Geod. 51 1Google Scholar

    [2]

    Babich V M, Lazutkin V F 1968 Commun. Math. Phys. 2 9Google Scholar

    [3]

    Červený V, Popov M M, Pšenčík I 1982 Geophys. J. R. astr. Soc. 70 109Google Scholar

    [4]

    Porter M B, Bucker H P 1987 J. Acoust. Soc. Am. 82 1349Google Scholar

    [5]

    Červený V, 2001 Seismic Ray Theory (Cambridge: Cambridge University Press) p237

    [6]

    Červený V, Pšenčík I 2010 Geophys. J. Int. 180 798

    [7]

    Smith S T 2014 SIAM J. Appl. Math. 74 1637Google Scholar

    [8]

    Jensen F B, Kuperman W A, Porter M B 2011 Schmidt H Computational Ocean Acoustics ( NewYork: Springer-Verlag) p125

    [9]

    梁灿彬, 周彬 2006 微分几何入门与广义相对论 (北京: 科学出版社) 第190页

    Liang C B, Zhou B 2006 Introduction to Differential Geometry and General Relativity (Beijing: Science Press) p190 (in Chinese)

    [10]

    Gordon W 1923 Ann. Phys. 72 421

    [11]

    郭弘, 邓锡铭 1995 中国科学: A辑 25 7

    Guo H, Deng X M 1995 Sci. China (Series A) 25 7 (in Chinese)

    [12]

    邓锡铭, 郭弘, 曹清 1995 中国激光 22 523Google Scholar

    Deng X M, Guo H, Cao Q 1995 Chin. J. Lasers 22 523Google Scholar

    [13]

    杨孔庆, 罗明秋, 李幼铭 2018 石油物探 57 5Google Scholar

    Yang K Q, Luo M Q, Li Y M 2018 Geophys. Prospect. Petrol. 57 5Google Scholar

    [14]

    White R 1973 J. Acoust. Soc. Am. 53 1700Google Scholar

    [15]

    Meyer R, Schroeter G 1981 Acta Acust united Ac 47 105

    [16]

    Bergman D R 2005 Technical Report NRL/MR/7140-05-8835 Naval Research Laboratory

    [17]

    Bergman D R 2005 Waves Random Complex 15 417Google Scholar

    [18]

    Bergman D R 2006 Wave Motion 43 508Google Scholar

    [19]

    Bergman D R 2021 Int. J. Acoust. Vib. 26 2Google Scholar

    [20]

    Bergman D R 2015 Physics 120 5Google Scholar

    [21]

    陈维恒, 李兴校 2002 黎曼几何引论 (北京: 北京大学出版社) 第171页

    Chen W H, Li X X 2002 Introduction to Riemannian Geometry (Beijing: Peking University Press) p267 (in Chinese)

    [22]

    侯伯元, 侯伯宇 2004 物理学家用微分几何 (北京: 科学出版社) 第143页

    Hou B Y, Hou B Y 2004 Differential Geometry in Physics (Beijing: Science Press) p143 (in Chinese)

    [23]

    Do Carmo M P 1992 Riemannian Geometry (Boston: Birkhauser) p110

    [24]

    Cheeger J, D G Ebin 2008 Comparison Theorems in Riemannian Geometry (Providence, Rhode Island: American Mathematical Society) p35

    [25]

    Kobayashi S, Nomizu K 1963 Foundations of Differential Geometry (Vol. 2) (New York: John Wiley & Sons) p73

    [26]

    Eisner L, Pšenčík I 1996 Pageoph 148 227Google Scholar

    [27]

    Davis H, Fleming H, Hardy WAR, Miningham R, Rosenbaum S 1968 Technical Report the Hudson Laboratories Ray Tracing Program (Beijing: University of Science and Technology of China Press)

    [28]

    Foreman T 1988 Ph. D. Dissertation (Austin: The University of Texas at Austin)

  • [1] Chen Yu-Chen, Zhang Hai-Gang, Zhang Ming-Hui, Yang Shi-E. Gaussian beam tracing for three-dimensional sound propagation problems in subsonic moving medium. Acta Physica Sinica, 2023, 72(12): 124301. doi: 10.7498/aps.72.20221691
    [2] Ma Shu-Qing, Guo Xiao-Jin, Zhang Li-Lun, Lan Qiang, Huang Chuang-Xia. Riemannian geometric modeling of underwater acoustic ray propagation ·application——Riemannian geometric model of convergence zone in deep ocean remote sound propagation. Acta Physica Sinica, 2023, 72(4): 044301. doi: 10.7498/aps.72.20221495
    [3] Zhang Jin-Ling, Wan Wen-Gang, Zheng Zhan-Qi, Gan Xi, Zhu Xing-Yu. Research on X band extended cosecant squared beam synthesis of micro-strip antenna arrays using genetic algorithm. Acta Physica Sinica, 2015, 64(11): 110504. doi: 10.7498/aps.64.110504
    [4] Lu Lu, Ji Xiao-Ling, Deng Jin-Ping, Ma Yuan. Influence of non-Kolmogorov turbulence on the spreading of Gaussian array beams. Acta Physica Sinica, 2014, 63(1): 014207. doi: 10.7498/aps.63.014207
    [5] Bian Bao-Min, Lai Xiao-Ming, Yang Lin, Li Zhen-Hua, He An-Zhi. Free particle geodesic affine parameter time-space coordinate systems. Acta Physica Sinica, 2012, 61(17): 170401. doi: 10.7498/aps.61.170401
    [6] Li Ji-Jun, Han Guo-Xia, Du Yun-Gang, Han Yi-Ping. Theoretical study on the rotation of particles driven by Gaussian beam. Acta Physica Sinica, 2011, 60(2): 028702. doi: 10.7498/aps.60.028702
    [7] Ji Xiao-Ling. Influence of atmospheric turbulence on the spreading and directionality of radial Gaussian array beams. Acta Physica Sinica, 2010, 59(1): 692-698. doi: 10.7498/aps.59.692
    [8] Zhang Xian-Bin, Shi Wei. Study of imaging system based on the tunable terahertz wave source with quasi-Gaussian beam output. Acta Physica Sinica, 2008, 57(8): 4984-4990. doi: 10.7498/aps.57.4984
    [9] Li Hai-Ying, Wu Zhen-Sen. Electromagnetic scattering by multi-layered spheres in a 2-D Gaussian beam. Acta Physica Sinica, 2008, 57(2): 833-838. doi: 10.7498/aps.57.833
    [10] Wang Yun-Hua, Zhang Yan-Min, Guo Li-Xin. Investigation of the scattered field from a two-dimensional dielectric target above the planar surface with a Gaussian beam incidence. Acta Physica Sinica, 2008, 57(9): 5529-5536. doi: 10.7498/aps.57.5529
    [11] Wang Yun-Hua, Guo Li-Xin, Wu Zhen-Sen. Electromagnetic scattering of plane wave/Gaussian beam by parallel cylinders. Acta Physica Sinica, 2007, 56(1): 186-194. doi: 10.7498/aps.56.186
    [12] Ji Xiao-Ling, Huang Tai-Xing, Lü Bai-Da. Spreading of partially coherent cosh-Gaussian beams propagating through turbulent atmosphere. Acta Physica Sinica, 2006, 55(2): 978-982. doi: 10.7498/aps.55.978
    [13] Chen Guang. The spacetime structure and properties of dust particle. Acta Physica Sinica, 2006, 55(4): 1539-1542. doi: 10.7498/aps.55.1539
    [14] Han Yi-Ping, Du Yun-Gang, Zhang Hua-Yong. Radiation trapping forces acting on a two-layered spherical particle in a Gaussian beam. Acta Physica Sinica, 2006, 55(9): 4557-4562. doi: 10.7498/aps.55.4557
    [15] Bai Lu, Wu Zhen-Sen, Chen Hui, Guo Li-Xin. Scattering of fundamental Gaussian beam from on-axis cluster spheres. Acta Physica Sinica, 2005, 54(5): 2025-2029. doi: 10.7498/aps.54.2025
    [16] Wu Peng, Han Yi-Ping, Liu De-Fang. Computation of Gaussian beam scattering for larger particle. Acta Physica Sinica, 2005, 54(6): 2676-2679. doi: 10.7498/aps.54.2676
    [17] Tian Gui-Hua, Zhao Zheng. Acceleration of a kind of null geodesic. Acta Physica Sinica, 2004, 53(6): 1662-1664. doi: 10.7498/aps.53.1662
    [18] ZENG XIAO-DONG, LIANG CHANG-HONG, AN YU-YING. VECTOR THEORY OF OFF-AXIAL GAUSSIAN WAVE. Acta Physica Sinica, 1999, 48(7): 1254-1260. doi: 10.7498/aps.48.1254
    [19] SHEN WEN-DA, ZHU SHI-TONG. NULL GEODESICS AND THE STABILITY OF THE NONSING-ULAR SCHWARZSCHILD BLACK HOLE. Acta Physica Sinica, 1991, 40(12): 2032-2036. doi: 10.7498/aps.40.2032
    [20] BAI GUI-RU, LU HONG-JUN, XING XIAO-ZHENG. POLARIZATION EFFECT OF LIGHT IN DIAMETER MEAS UREMENT BY DIFFRACTION METHOD. Acta Physica Sinica, 1988, 37(6): 899-905. doi: 10.7498/aps.37.899
Metrics
  • Abstract views:  4129
  • PDF Downloads:  106
  • Cited By: 0
Publishing process
  • Received Date:  20 July 2022
  • Accepted Date:  06 December 2022
  • Available Online:  17 December 2022
  • Published Online:  20 February 2023

/

返回文章
返回
Baidu
map