Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Prediction of chaotic time series based on Nyström Cauchy kernel conjugate gradient algorithm

Qi Le-Tian Wang Shi-Yuan Shen Ming-Lin Huang Gang-Yi

Citation:

Prediction of chaotic time series based on Nyström Cauchy kernel conjugate gradient algorithm

Qi Le-Tian, Wang Shi-Yuan, Shen Ming-Lin, Huang Gang-Yi
PDF
HTML
Get Citation
  • Chaotic time series can well reflect the nonlinearity and non-stationarity of real environment changes. The traditional kernel adaptive filter (KAF) with second-order statistical characteristics suffers performance degeneration dramatically for predicting chaotic time series containing noises and outliers. In order to improve the robustness of adaptive filters in the presence of impulsive noise, a nonlinear similarity measure named Cauchy kernel loss (CKL) is proposed, and the global convexity of CKL is guaranteed by the half-quadratic (HQ) method. To improve the convergence rate of stochastic gradient descent and avoid a local optimum simultaneously, the conjugate gradient (CG) method is used to optimize CKL. Furthermore, to address the issue of kernel matrix network growth, the Nyström sparse strategy is adopted to approximate the kernel matrix and then the probability density rank-based quantization (PRQ) is used to improve the approximation accuracy. To this end, a novel Nyström Cauchy kernel conjugate gradient with PRQ (NCKCG-PRQ) algorithm is proposed for the prediction of chaotic time series in this paper. Simulations on prediction of synthetic and real-world chaotic time series validate the advantages of the proposed algorithm in terms of filtering accuracy, robustness, and computational storage complexity.
      Corresponding author: Wang Shi-Yuan, wsy@swu.edu.cn
    • Funds: Project supported by the National Nature Science Foundation of China (Grant No. 62071391), Natural Science Foundation of Chongqing (Grant No. cstc2020jcyj-msxmX0234), and Fundamental Research Funds for the Central Universities (Grant No. 2020jd001).
    [1]

    林毅, 刘文波, 沈骞 2018 67 230502Google Scholar

    Lin Y, Liu W B, Shen Q 2018 Acta Phys. Sin. 67 230502Google Scholar

    [2]

    王梦蛟, 吴中堂, 冯久超 2015 64 040503Google Scholar

    Wang M J, Wu Z T, Feng J C 2015 Acta Phys. Sin. 64 040503Google Scholar

    [3]

    唐舟进, 任峰, 彭涛, 王文博 2014 63 050505Google Scholar

    Tang Z J, Ren F, Peng T, Wang W B 2014 Acta Phys. Sin. 63 050505Google Scholar

    [4]

    梅英, 谭冠政, 刘振焘, 武鹤 2018 67 080502Google Scholar

    Mei Y, Tan G Z, Liu Z T, Wu H 2018 Acta Phys. Sin. 67 080502Google Scholar

    [5]

    王新迎, 韩敏, 王亚楠 2013 62 050504Google Scholar

    Wang X Y, Han M, Wang Y N 2013 Acta Phys. Sin. 62 050504Google Scholar

    [6]

    王世元, 史春芬, 钱国兵, 王万里 2018 67 018401Google Scholar

    Wang S Y, Shi C F, Qian G B, Wang W L 2018 Acta Phys. Sin. 67 018401Google Scholar

    [7]

    Peng L B, Li X F, Bi D J, Xie Y L 2018 Signal Process. Lett. 25 1335Google Scholar

    [8]

    赵永平, 张丽艳, 李德才, 王立峰, 蒋洪章 2013 62 120511Google Scholar

    Zhao Y P, Zhang L Y, Li D C, Wang L F, Jiang H Z 2013 Acta Phys. Sin. 62 120511Google Scholar

    [9]

    张家树, 党建亮, 李恒超 2007 56 67Google Scholar

    Zhang J S, Dang J L, Li H C 2007 Acta Phys. Sin. 56 67Google Scholar

    [10]

    张洪宾, 孙小端, 贺玉龙 2014 63 040505Google Scholar

    Zhang H B, Sun X D, He Y L 2014 Acta Phys. Sin. 63 040505Google Scholar

    [11]

    唐舟进, 彭涛, 王文博 2014 63 130504Google Scholar

    Tang Z J, Peng T, Wang W B 2014 Acta Phys. Sin. 63 130504Google Scholar

    [12]

    火元莲, 王丹凤, 龙小强, 连培君, 齐永锋 2021 70 158401Google Scholar

    Huo Y L, Wang D F, Long X Q, Lian P J, Qi Y F 2021 Acta Phys. Sin. 70 158401Google Scholar

    [13]

    火元莲, 王丹凤, 龙小强, 连培君, 齐永锋 2021 70 028401Google Scholar

    Huo Y L, Wang D F, Long X Q, Lian P J, Qi Y F 2021 Acta Phys. Sin. 70 028401Google Scholar

    [14]

    Wu Z, Shi J, Xie Z, Ma W 2015 Signal Process. 117 11Google Scholar

    [15]

    Liu W F, Pokharel P P, Príncipe J C 2008 IEEE Trans. Signal Process. 56 543Google Scholar

    [16]

    Engel Y, Mannor S, Meir R 2004 IEEE Trans. Signal Process. 52 2275Google Scholar

    [17]

    Chen B D, Príncipe J C 2012 Signal Process. Lett. 19 491Google Scholar

    [18]

    Li C G, Shen P C, Liu Y, Zhang Z Y 2013 IEEE Trans. Signal Process. 61 4011Google Scholar

    [19]

    Chen B D, Xing L, Zhao H Q, Zheng N N, Príncipe J C 2016 IEEE Trans. Signal Process. 64 3376Google Scholar

    [20]

    Li X L, Lu Q M, Dong Y S, Tao D C 2019 Trans. Neural Netw. Learn. Syst. 30 2067Google Scholar

    [21]

    Shi W, Xiong K, Wang S Y 2019 IEEE Access. 7 120548Google Scholar

    [22]

    Lei Y W, Hu T, Li G Y, Tang K 2020 Trans. Neural Netw. Learn. Syst. 31 4394Google Scholar

    [23]

    Zhang M, Wang X J, Chen X M, Zhang A X 2018 IEEE Trans. Signal Process. 66 4377Google Scholar

    [24]

    Xiong K, Herbert H C, Wang S Y 2021 IEEE Trans. Cybern. 51 5497Google Scholar

    [25]

    Chen B D, Zhao S L, Zhu P P, Príncipe J C 2013 Trans. Neural Netw. Learn. Syst. 24 1484Google Scholar

    [26]

    Zhang T, Wang S Y, Huang X W, Jia L 2020 Signal Process. Lett. 27 361Google Scholar

    [27]

    Zhang T, He F L, Zheng Z, Wang S Y 2020 IEEE Trans. Circuits Syst. Express Briefs 67 2772Google Scholar

    [28]

    He F L, Xiong K, Wang S Y 2020 IEEE Access. 8 18716Google Scholar

    [29]

    Zhang T, Wang S Y 2020 Signal Process. Lett. 27 1535Google Scholar

    [30]

    Qi L T, Shen M L, Wang D L, Wang S Y 2021 Signal Process. Lett. 28 1011Google Scholar

    [31]

    Zhang H N, Yang B, Wang L, Wang S Y 2021 IEEE Trans. Signal Process. 69 1859Google Scholar

    [32]

    Xiong K, Wang S Y 2019 Signal Process. Lett. 26 740Google Scholar

    [33]

    Qin Z D, Chen B D, GU Y T, Zheng N N, Príncipe J C 2020 IEEE Trans. Neural Netw. Learn. Syst. 31 3100Google Scholar

    [34]

    Zheng Y F, Wang S Y, Feng J C, Tse C K 2016 Digit. Signal Process. 48 130Google Scholar

    [35]

    Weng B W, Barner K E 2005 IEEE Trans. Signal Process. 53 2588Google Scholar

    [36]

    Huang X W, Wang S Y, Xiong K 2019 Symmetry 11 1323Google Scholar

  • 图 1  示波器示意图

    Figure 1.  Schematic diagram of oscilloscope.

    图 2  蔡氏电路原理图

    Figure 2.  Schematic diagram of the Chua’s circuit.

    图 3  不同采样点个数$ m $对NCKCG-PRQ算法的稳态MSE值和平均运算时间的影响 (a) MG混沌时间序列; (b) 蔡氏混沌时间序列

    Figure 3.  Influence of different number of sampling points on steady-state MSE value and average operation time of NCKCG-PRQ algorithm: (a) MG chaotic time series; (b) chaotic time series based on Chua’s circuit.

    图 4  在脉冲噪声环境下不同算法的测试MSE学习曲线 (a) MG时间序列 ; (b)蔡氏混沌时间序列

    Figure 4.  Testing MSE learning curves of different algorithms in impulsive noise environment: (a) MG chaotic time series; (b) chaotic time series based on Chua’s circuit.

    图 5  NCKCG-PRQ算法对测试数据的最终预测结果 (a) MG混沌时间序列; (b) 蔡氏混沌时间序列

    Figure 5.  Final predicted results of NCKCG-PRQ algorithm for the test sets: (a) MG chaotic time series; (b) chaotic time series based on Chua’s circuit.

    表 1  NCKCG-PRQ算法

    Table 1.  NCKCG-PRQ algorithm.

      输入: 输入输出对$\left\{ { {{\boldsymbol{u}}_k}, {d_k} } \right\}, k{\text{ = } }1, 2, \cdot \cdot \cdot$
      初始化参数: $ {\boldsymbol{\hat u}}(i) $为PRQ采样后样本点; $ {\boldsymbol{\varLambda }} $和W分别为有关$ {\boldsymbol{\hat U}} $核矩阵的特征值降序排列的对角矩阵和对应特征向量构成列正交矩阵; ${ {\boldsymbol{K} }_c}(1) = [\kappa ({\boldsymbol{u} }(1), {\boldsymbol{\hat u} }(1)), \cdots , \kappa ({\boldsymbol{u} }(1), {\boldsymbol{\hat u} }(m))]$为初始核向量; 映射输入$ {{\boldsymbol{z}}_1} = {{\boldsymbol{\varLambda }}^{ - 1/2}}{{\boldsymbol{W}}^{\text{T}}}{{\boldsymbol{K}}_c}{(1)^{\text{T}}} $; 权重$ {\boldsymbol{\varOmega }}_1^z = 0 $; 加权函数$ {\zeta _1} = {\exp}( - {s_1})/\left\{ {{\delta ^2}\left[ {{\eta ^{ - 1}} + {s_1}{\exp}( - {s_1})} \right]} \right\} $; 期望$ {d_1}{\text{ = }}{({{\boldsymbol{\varOmega }}_1}^z)^{\text{T}}}{{\boldsymbol{z}}_1} $; 相关矩阵$ R_1^z = {\zeta _1}{{\boldsymbol{z}}_1}{\boldsymbol{z}}_1^{\rm T} $; 互相关向量${\boldsymbol{c}}_1^z={\zeta _1}{d_1}{{\bf{z}}_1}$; 冗余向量${\boldsymbol{r}}_1^z ={\boldsymbol{ c}}_1^z - {\boldsymbol{R}}_1^z{\boldsymbol{\varOmega } }_1^z$; 方向向量${\boldsymbol{p}}_1^z = {\boldsymbol{r}}_1^z$, 遗忘因子$ \lambda {\text{ = }}0.999 $
      循环$ \left( {k{\text{ = 2}}, 3, \cdot \cdot \cdot } \right) $:
      1.输入核向量${ {\boldsymbol{K} }_c}(i) = [\kappa ({\boldsymbol{u} }(i), {\boldsymbol{\hat u} }(1)), \cdots , \kappa ({\boldsymbol{u} }(i), {\boldsymbol{\hat u} }(m)]$;
      2.映射输入${\boldsymbol{z} }( \cdot ) = { {\boldsymbol{\varLambda } }^{ - 1/2} }{ {\boldsymbol{W} }^{\text{T} } }{[\kappa ( \cdot , {\boldsymbol{\hat u} }(1)), \cdots , \kappa ( \cdot , {\boldsymbol{\hat u} }(m))]^{\text{T} } }$;
      3.误差更新$ {e_{k + 1}} = {d_{k + 1}} - {\left( {{\boldsymbol{\varOmega }}_k^z} \right)^{\text{T}}}{{\boldsymbol{z}}_{k + 1}} $, 加权函数$ {\zeta _k} = {\exp}( - {s_k})/\left\{ {{\delta ^2}\left[ {{\eta ^{ - 1}} + {s_k}{\exp}( - {s_k})} \right]} \right\} $
      4.自相关矩阵更新${\boldsymbol{R}}_{k + 1}^z = \lambda {\boldsymbol{R}}_k^z + {\zeta _{k + 1} }{ {\boldsymbol{z} }_{k + 1} }{\boldsymbol{z} }_{k + 1}^{\rm T}$, 计算步长${\alpha _k} = \frac{ { { {\left( {{\boldsymbol{p}}_k^z} \right)}^{\text{T} } }{\boldsymbol{r}}_k^z} }{ { { {\left( {{\boldsymbol{p}}_k^z} \right)}^{\text{T} } }{\boldsymbol{R}}_{k + 1}^z{\boldsymbol{p}}_k^z} }$;
      5.权重更新${\boldsymbol{\varOmega } }_{k + 1}^z = {\boldsymbol{\varOmega } }_k^z + {\alpha _k}{\boldsymbol{p}}_k^z$, 残差向量更新${\boldsymbol{r}}_{k + 1}^z = \lambda {\boldsymbol{r}}_k^z - {\alpha _k}{\boldsymbol{R}}_{k + 1}^z{\boldsymbol{p}}_k^z + {\zeta _{k + 1} }{{\bf{z}}_{k + 1} }{{\boldsymbol{e}}_{k + 1} }$;
      6.计算步长 ${\beta _k} = \frac{ { { {\left( {{\boldsymbol{r}}_{k + 1}^z} \right)}^{\text{T} } }\left( {{\boldsymbol{r}}_{k + 1}^z - {\boldsymbol{r}}_k^z} \right)} }{ { { {\left( {{\boldsymbol{r}}_k^z} \right)}^{\text{T} } }{\boldsymbol{r}}_k^z} }$, 共轭方向更新${\boldsymbol{p}}_{k + 1}^z = {\boldsymbol{r}}_{k + 1}^z + {\beta _k}r_k^z$
      循环终止
    DownLoad: CSV

    表 2  不同算法在MG混沌时间序列中的仿真结果

    Table 2.  Simulation results of different algorithms in MG chaotic time series.

    实验模型算法字典数目运算时间/s稳态MSE/dB
    MG混沌时间序列CKCG200041.486–35.443
    RFFCCG602.095–32.006
    NKRGMC-PRQ602.383–33.068
    NKCG-KM603.745N/A
    NCKCG-PRQ601.584–34.446
    DownLoad: CSV

    表 3  不同算法在蔡氏电路混沌时间序列中的仿真结果

    Table 3.  Simulation results of different algorithms in chaotic time series based on Chua's circuit.

    实验模型算法字典数目运算时间/s稳态MSE/dB
    蔡氏混沌时间序列CKCG200042.618–35.840
    RFFCCG131.128–34.926
    NKRGMC-PRQ130.988–35.819
    NKCG-KM131.146N/A
    NCKCG-PRQ130.957–35.865
    DownLoad: CSV
    Baidu
  • [1]

    林毅, 刘文波, 沈骞 2018 67 230502Google Scholar

    Lin Y, Liu W B, Shen Q 2018 Acta Phys. Sin. 67 230502Google Scholar

    [2]

    王梦蛟, 吴中堂, 冯久超 2015 64 040503Google Scholar

    Wang M J, Wu Z T, Feng J C 2015 Acta Phys. Sin. 64 040503Google Scholar

    [3]

    唐舟进, 任峰, 彭涛, 王文博 2014 63 050505Google Scholar

    Tang Z J, Ren F, Peng T, Wang W B 2014 Acta Phys. Sin. 63 050505Google Scholar

    [4]

    梅英, 谭冠政, 刘振焘, 武鹤 2018 67 080502Google Scholar

    Mei Y, Tan G Z, Liu Z T, Wu H 2018 Acta Phys. Sin. 67 080502Google Scholar

    [5]

    王新迎, 韩敏, 王亚楠 2013 62 050504Google Scholar

    Wang X Y, Han M, Wang Y N 2013 Acta Phys. Sin. 62 050504Google Scholar

    [6]

    王世元, 史春芬, 钱国兵, 王万里 2018 67 018401Google Scholar

    Wang S Y, Shi C F, Qian G B, Wang W L 2018 Acta Phys. Sin. 67 018401Google Scholar

    [7]

    Peng L B, Li X F, Bi D J, Xie Y L 2018 Signal Process. Lett. 25 1335Google Scholar

    [8]

    赵永平, 张丽艳, 李德才, 王立峰, 蒋洪章 2013 62 120511Google Scholar

    Zhao Y P, Zhang L Y, Li D C, Wang L F, Jiang H Z 2013 Acta Phys. Sin. 62 120511Google Scholar

    [9]

    张家树, 党建亮, 李恒超 2007 56 67Google Scholar

    Zhang J S, Dang J L, Li H C 2007 Acta Phys. Sin. 56 67Google Scholar

    [10]

    张洪宾, 孙小端, 贺玉龙 2014 63 040505Google Scholar

    Zhang H B, Sun X D, He Y L 2014 Acta Phys. Sin. 63 040505Google Scholar

    [11]

    唐舟进, 彭涛, 王文博 2014 63 130504Google Scholar

    Tang Z J, Peng T, Wang W B 2014 Acta Phys. Sin. 63 130504Google Scholar

    [12]

    火元莲, 王丹凤, 龙小强, 连培君, 齐永锋 2021 70 158401Google Scholar

    Huo Y L, Wang D F, Long X Q, Lian P J, Qi Y F 2021 Acta Phys. Sin. 70 158401Google Scholar

    [13]

    火元莲, 王丹凤, 龙小强, 连培君, 齐永锋 2021 70 028401Google Scholar

    Huo Y L, Wang D F, Long X Q, Lian P J, Qi Y F 2021 Acta Phys. Sin. 70 028401Google Scholar

    [14]

    Wu Z, Shi J, Xie Z, Ma W 2015 Signal Process. 117 11Google Scholar

    [15]

    Liu W F, Pokharel P P, Príncipe J C 2008 IEEE Trans. Signal Process. 56 543Google Scholar

    [16]

    Engel Y, Mannor S, Meir R 2004 IEEE Trans. Signal Process. 52 2275Google Scholar

    [17]

    Chen B D, Príncipe J C 2012 Signal Process. Lett. 19 491Google Scholar

    [18]

    Li C G, Shen P C, Liu Y, Zhang Z Y 2013 IEEE Trans. Signal Process. 61 4011Google Scholar

    [19]

    Chen B D, Xing L, Zhao H Q, Zheng N N, Príncipe J C 2016 IEEE Trans. Signal Process. 64 3376Google Scholar

    [20]

    Li X L, Lu Q M, Dong Y S, Tao D C 2019 Trans. Neural Netw. Learn. Syst. 30 2067Google Scholar

    [21]

    Shi W, Xiong K, Wang S Y 2019 IEEE Access. 7 120548Google Scholar

    [22]

    Lei Y W, Hu T, Li G Y, Tang K 2020 Trans. Neural Netw. Learn. Syst. 31 4394Google Scholar

    [23]

    Zhang M, Wang X J, Chen X M, Zhang A X 2018 IEEE Trans. Signal Process. 66 4377Google Scholar

    [24]

    Xiong K, Herbert H C, Wang S Y 2021 IEEE Trans. Cybern. 51 5497Google Scholar

    [25]

    Chen B D, Zhao S L, Zhu P P, Príncipe J C 2013 Trans. Neural Netw. Learn. Syst. 24 1484Google Scholar

    [26]

    Zhang T, Wang S Y, Huang X W, Jia L 2020 Signal Process. Lett. 27 361Google Scholar

    [27]

    Zhang T, He F L, Zheng Z, Wang S Y 2020 IEEE Trans. Circuits Syst. Express Briefs 67 2772Google Scholar

    [28]

    He F L, Xiong K, Wang S Y 2020 IEEE Access. 8 18716Google Scholar

    [29]

    Zhang T, Wang S Y 2020 Signal Process. Lett. 27 1535Google Scholar

    [30]

    Qi L T, Shen M L, Wang D L, Wang S Y 2021 Signal Process. Lett. 28 1011Google Scholar

    [31]

    Zhang H N, Yang B, Wang L, Wang S Y 2021 IEEE Trans. Signal Process. 69 1859Google Scholar

    [32]

    Xiong K, Wang S Y 2019 Signal Process. Lett. 26 740Google Scholar

    [33]

    Qin Z D, Chen B D, GU Y T, Zheng N N, Príncipe J C 2020 IEEE Trans. Neural Netw. Learn. Syst. 31 3100Google Scholar

    [34]

    Zheng Y F, Wang S Y, Feng J C, Tse C K 2016 Digit. Signal Process. 48 130Google Scholar

    [35]

    Weng B W, Barner K E 2005 IEEE Trans. Signal Process. 53 2588Google Scholar

    [36]

    Huang X W, Wang S Y, Xiong K 2019 Symmetry 11 1323Google Scholar

  • [1] Huang Ying, Gu Chang-Gui, Yang Hui-Jie. Junk-neuron-deletion strategy for hyperparameter optimization of neural networks. Acta Physica Sinica, 2022, 71(16): 160501. doi: 10.7498/aps.71.20220436
    [2] Wang Shi-Yuan, Shi Chun-Fen, Qian Guo-Bing, Wang Wan-Li. Prediction of chaotic time series based on the fractional-order maximum correntropy criterion algorithm. Acta Physica Sinica, 2018, 67(1): 018401. doi: 10.7498/aps.67.20171803
    [3] Tian Zhong-Da, Gao Xian-Wen, Shi Tong. Combination kernel function least squares support vector machine for chaotic time series prediction. Acta Physica Sinica, 2014, 63(16): 160508. doi: 10.7498/aps.63.160508
    [4] Tang Zhou-Jin, Peng Tao, Wang Wen-Bo. A local least square support vector machine prediction algorithm of small scale network traffic based on correlation analysis. Acta Physica Sinica, 2014, 63(13): 130504. doi: 10.7498/aps.63.130504
    [5] Tang Zhou-Jin, Ren Feng, Peng Tao, Wang Wen-Bo. A least square support vector machine prediction algorithm for chaotic time series based on the iterative error correction. Acta Physica Sinica, 2014, 63(5): 050505. doi: 10.7498/aps.63.050505
    [6] Wang Xin-Ying, Han Min, Wang Ya-Nan. Analysis of noisy chaotic time series prediction error. Acta Physica Sinica, 2013, 62(5): 050504. doi: 10.7498/aps.62.050504
    [7] Wang Xin-Ying, Han Min. Multivariate chaotic time series prediction based on extreme learning machine. Acta Physica Sinica, 2012, 61(8): 080507. doi: 10.7498/aps.61.080507
    [8] Song Tong, Li Han. Chaotic time series prediction based on wavelet echo state network. Acta Physica Sinica, 2012, 61(8): 080506. doi: 10.7498/aps.61.080506
    [9] Song Qing-Song, Feng Zu-Ren, Li Ren-Hou. Multiple clusters echo state network for chaotic time series prediction. Acta Physica Sinica, 2009, 58(7): 5057-5064. doi: 10.7498/aps.58.5057
    [10] Zhang Yong, Guan Wei. Predication of multivariable chaotic time series based on maximal Lyapunov exponent. Acta Physica Sinica, 2009, 58(2): 756-763. doi: 10.7498/aps.58.756
    [11] Yang Yong-Feng, Ren Xing-Min, Qin Wei-Yang, Wu Ya-Feng, Zhi Xi-Zhe. Prediction of chaotic time series based on EMD method. Acta Physica Sinica, 2008, 57(10): 6139-6144. doi: 10.7498/aps.57.6139
    [12] Zhang Jun-Feng, Hu Shou-Song. Chaotic time series prediction based on multi-kernel learning support vector regression. Acta Physica Sinica, 2008, 57(5): 2708-2713. doi: 10.7498/aps.57.2708
    [13] Han Min, Shi Zhi-Wei, Guo Wei. Reservoir neural state reconstruction and chaotic time series prediction. Acta Physica Sinica, 2007, 56(1): 43-50. doi: 10.7498/aps.56.43
    [14] Meng Qing-Fang, Zhang Qiang, Mu Wen-Ying. A novel multi-step adaptive prediction method for chaotic time series. Acta Physica Sinica, 2006, 55(4): 1666-1671. doi: 10.7498/aps.55.1666
    [15] Hu Yu-Xia, Gao Jin-Feng. A neuro-fuzzy method for predicting the chaotic time series. Acta Physica Sinica, 2005, 54(11): 5034-5038. doi: 10.7498/aps.54.5034
    [16] Gan Jian-Chao, Xiao Xian-Ci. Adaptive predict-filter of chaotic time series constructed Based on the neighbou rhood in the reconstructed phase space(Ⅰ)linear adaptive filter. Acta Physica Sinica, 2003, 52(5): 1096-1101. doi: 10.7498/aps.52.1096
    [17] Gan Jian-Chao, Xiao Xian-Ci. Adaptive predict-filter of chaotic time series constructed Based on the neighbou rhood in the reconstructed phase space(Ⅱ)nonlinear adaptive filter. Acta Physica Sinica, 2003, 52(5): 1102-1107. doi: 10.7498/aps.52.1102
    [18] Wei Biao-Lin, Luo Xiao-Shu, Wang Bing-Hong, Quan Hong-Jun, Guo Wei, Fu Jin-Jie. . Acta Physica Sinica, 2002, 51(10): 2205-2210. doi: 10.7498/aps.51.2205
    [19] Zhang Jiashu, Xiao Xianchi. . Acta Physica Sinica, 2000, 49(3): 403-408. doi: 10.7498/aps.49.403
    [20] ZHANG JIA-SHU, XIAO XIAN-CI. PREDICTION OF CHAOTIC TIME SERIES BY USING ADAPTIVE HIGHER-ORDER NONLINEAR FOUR IER INFRARED FILTER. Acta Physica Sinica, 2000, 49(7): 1221-1227. doi: 10.7498/aps.49.1221
Metrics
  • Abstract views:  4579
  • PDF Downloads:  63
  • Cited By: 0
Publishing process
  • Received Date:  08 December 2021
  • Accepted Date:  27 January 2022
  • Available Online:  02 February 2022
  • Published Online:  20 May 2022

/

返回文章
返回
Baidu
map