Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Calculating macroscopic gas molar heat capacity of SO molecule based on rovibrational energy level

Wen Lin Fan Qun-Chao Jian Jun Fan Zhi-Xiang Li Hui-Dong Fu Jia Ma Jie Xie Feng

Citation:

Calculating macroscopic gas molar heat capacity of SO molecule based on rovibrational energy level

Wen Lin, Fan Qun-Chao, Jian Jun, Fan Zhi-Xiang, Li Hui-Dong, Fu Jia, Ma Jie, Xie Feng
PDF
HTML
Get Citation
  • Sulfur oxide (SO) is a kind of well-known diatomic molecule which becomes one of the major pollutants in the atmosphere. Control of the heat capacity of SO molecule is of great significance for elucidating its macroscopic evolution process. In the research of macroscopic systems composed of many particles as well as several matters, it is an important approach to obtain macroscopic thermodynamic quantities of the system by constructing a partition function from the microscopic information of molecule. For diatomic molecules in a certain electronic state, the partition function can directly be obtained by calculating the rovibrational energy of the system to acquire the macroscopic molar heat capacities.In this work, the contribution of rotational behavior to molar heat capacity is further considered. The potential energy function for the ground electronic state of SO is constructed by the variational algebraic method (VAM) and RKR (Rydberg-Klein-Rees) method, in which the former one can determine the complete vibrational energy levels of an electronic state of a molecule. The rovibrational energy level of the system is obtained by analytical solution, and then the molar heat capacity of SO macroscopic gas in the temperature range of 300–6000 K is calculated by quantum statistical ensemble theory The above calculation depends only on the experimental vibrational energy, experimental rotational spectral constant and the dissociation energy of SO molecule. Fortunately, through comparison between theoretical calculation results and experimental data, we find that the molar heat capacity of gaseous SO molecule can be well predicted by employing the full set of rovibrational energy to describe the internal vibration and rotation of SO molecule. The idea of calculating the molar heat capacity by using the full set of rovibrational energy makes up for the shortcomings of previous work where molar heat capacity is calculated by using the approximate model characterizing the molecular rotational behavior, and also provides a new research paradigm for solving macro thermodynamic quantities based on micro statistical processes .
      Corresponding author: Fan Qun-Chao, fanqunchao@mail.xhu.edu.cn ; Fan Zhi-Xiang, fanzhixiang235@126.com
    • Funds: Project supported by the Fund for the Program of Science and Technology of Sichuan Province of China (Grant No. 2021ZYD0050), the National Natural Science Foundation of China (Grant Nos. 61722507, 11904295), and the Open Research Fund Program of the Collaborative Innovation Center of Extreme Optics, China (Grant No. KF2020003).
    [1]

    McBride B J, Zehe M J, Gordon S 2002 NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species (Cleveland: National Aeronautics and Space Administration) p1

    [2]

    汪志诚 2013 热力学·统计物理 (第五版) (北京: 高等教育出版社) 第1页

    Wang Z C 2013 Thermodynamic·statistical physics (Vol. 5) (Beijing: Higher Education Press) p1 (in Chinese)

    [3]

    Gabriel V O, Luis A A H 2018 Int. J. Quantum Chem. 118 1Google Scholar

    [4]

    Irwin A W 1988 Astron. Astrophys. Suppl. Ser. 74 145

    [5]

    Fischer J, Gamache R R, Goldman A, Rothman L S, Perrin A 2003 J. Quant. Spectrosc. Radiat. Transfer 82 401Google Scholar

    [6]

    伍冬兰, 万慧军, 谢安东, 程新路, 杨向东 2009 58 7410Google Scholar

    Wu D L, Wan H J, Xie A D, Cheng X L, Yang X D 2009 Acta Phys. Sin. 58 7410Google Scholar

    [7]

    Jia C S, Zhang L H, Wang C W 2017 Chem. Phys. Lett. 667 211Google Scholar

    [8]

    Maltsev M A, Kulikov A N, Morozov I V 2016 J. Phys. Conf. Ser. 774 012023Google Scholar

    [9]

    Maltsev M A, Morozov I V, Osina E L 2019 High Temp. 57 335Google Scholar

    [10]

    Ikot A N, Chukwuocha E O, Onyeaju M C, Onate C A, Ita B I, Udoh M E 2018 Pramana-J. Phys. 90 22Google Scholar

    [11]

    王小霞, 刘鑫, 张琼, 陈宏善 2017 66 103601Google Scholar

    Wang X X, Liu X, Zhang Q, Chen H S 2017 Acta Phys. Sin. 66 103601Google Scholar

    [12]

    Maltsev M A, Morozov I V, Osina E L 2019 High Temp. 57 42Google Scholar

    [13]

    Horchani R, Jelassi H 2020 Chem. Phys. 532 1Google Scholar

    [14]

    Zúñiga J, Bastida A, Requena A, Cerezo J 2021 J. Phys. Chem. A 125 9226Google Scholar

    [15]

    Sun W G, Hou S L, Feng H, Ren W Y 2002 J. Mol. Spectrosc. 215 93Google Scholar

    [16]

    Fu J, Fan Q C, Liu G Y, Li H D, Xu Y G, Fan Z X, Zhang Y 2017 Comput. Theor. Chem. 1115 136Google Scholar

    [17]

    McDowell R S 1988 J. Chem. Phys. 88 356Google Scholar

    [18]

    蹇君, 雷娇, 樊群超, 范志祥, 马杰, 付佳, 李会东, 徐勇根 2020 69 053301Google Scholar

    Jian J, Lei J, Fan Q C, Fan Z X, Ma J, Fu J, Li H D, Xu Y G 2020 Acta Phys. Sin. 69 053301Google Scholar

    [19]

    Rydberg R 1932 Z. Phys. 73 376Google Scholar

    [20]

    Klein V O 1932 Z. Phys. 76 226Google Scholar

    [21]

    Rees A L G 1947 Proc. Phys. Soc. 59 998Google Scholar

    [22]

    Pathria R K 1977 Statistical Mechanics (London: Pcrgamon Press) p100

    [23]

    Le Roy R J 2017 J. Quant. Spectrosc. Radiat. Transfer 186 167Google Scholar

    [24]

    Li C L, Li Y C, Ji Z H, Qiu X B, Lai Y Z, Wei J L, Zhao Y T, Deng L H, Chen Y Q, Liu J J 2018 Phys. Rev. A 97 062501Google Scholar

    [25]

    Laurendeau N M 2005 Statistical Thermodynamics: Fundamentals and Applications (England: Cambridge University Press) p1

    [26]

    Huang K 1965 Phys. Today 18 92

    [27]

    Babou Y, Rivière P, Perrin M Y, Soufiani A 2009 Int. J. Thermophys. 30 416Google Scholar

    [28]

    Jaffe R L 1987 AIAA 22nd Thermophysics Conference (New York: American Institute of Aeronautics and Astronautics) p1633

    [29]

    Capitelli M, Colonna G, Giordano D, Maraffa L, Casavola A, Minelli P, Pagano D, Pietanza L D, Taccogna F 2005 Tables of Internal Partition Functions and Thermodynamic Properties of High-Temperature Mars-Atmosphere Species from 50 K to 50000 K (Netherlands: European Space Agency Publications Division) p3

    [30]

    Huber K P, Herzberg G 1950 Molecular Spectra and Molecular Structure: Spectra of Diatomic Molecules (New York: Van Nostrand Reinhold Company) p9

    [31]

    朱华, 谢代前, 鄢国森 1999 高等学校化学学报 20 1910Google Scholar

    Zhu H, Xie D Q, Yan G S 1999 Chem. J. Chin. Univ. 20 1910Google Scholar

    [32]

    James B B, Edward R L, Philip D H, Carleton J H 1987 J. Mol. Spectrosc. 124 379Google Scholar

    [33]

    Gottlieb C A, Gottlieb E W, Litvak M M, Ball J A, Penfield H 1978 Astrophys. J. 219 77Google Scholar

    [34]

    Clyne M A A, Mcdermid I S 1979 J. Chem. Soc. , Faraday Trans. 2 75 905Google Scholar

    [35]

    Peterson K A, Woods R C 1990 J. Chem. Phys. 93 1876Google Scholar

    [36]

    Martin-Drumel M A, Hindle F, Mouret G, Cuisset A, Cernicharo J 2015 Astrophys. J. 799 115Google Scholar

    [37]

    Chase M W 1998 Journal of Physical and Chemical Reference DataMonograph (Vol. 9) (New York: National Institute of Standards and Technology Gaithersburg) p1726

  • 图 1  基于VAM和RKR方法构建的势能曲线与实验势能曲线的对比

    Figure 1.  Comparisons of the potential energy curves constructed based on the VAM and RKR method with those experimentally.

    图 2  不同摩尔热容误差的比较

    Figure 2.  Comparisons of the errors of different molar heat capacities.

    表 1  不同方法所得SO分子电子基态的振动光谱常数 (单位: cm–1)

    Table 1.  Vibrational spectral constants of SO in the ground electronic state obtained by different methods (in cm–1)

    $ {\omega _0} $$ {\omega _{\text{e}}} $$ {\omega _{\text{e}}}{x_{\text{e}}} $$ {\omega _{\text{e}}}{y_{\text{e}}} $$ {\omega _{\text{e}}}{z_{\text{e}}} $$ {\omega _{\text{e}}}{t_{\text{e}}} $
    实验[34]1148.196.12
    CASS-
    CF[35]
    1161.806.50
    CI-SD[35]1263.505.35
    MP4
    SDQ[35]
    1173.105.09
    VAM0.751147.715.99–1.55×10–27.59×10–4–1.30×10–5
    DownLoad: CSV

    表 2  不同摩尔热容与实验值的误差 (单位: J·mol–1·K–1)

    Table 2.  Errors between different molar heat capacities and observed experimentally (in J·mol–1·K–1)

    T/K${ C_\upsilon ^{ {\text{expt} } } }^{\rm\; a}$${ \Delta C_{\upsilon {\text{, RKR} } }^{ {\text{cal} } } } ^{\rm\; b}$${ \Delta C_{\upsilon {\text{, VAM} } }^{ {\text{cal} } } }^{\rm\; c}$${ \Delta C_{\upsilon \_r{\text{, RKR} } }^{ {\text{cal} } } } ^{\rm\; d}$${ \Delta C_{ {\text{This work} } }^{ {\text{cal} } } }^{\rm\; e}$
    30030.197–0.025–0.0240.0710.006
    40031.560–0.041–0.0400.0920.009
    50032.826–0.057–0.0560.0800.011
    60033.838–0.073–0.0720.0540.011
    70034.612–0.088–0.0870.0270.011
    80035.206–0.108–0.108–0.0010.005
    90035.672–0.135–0.136–0.032–0.008
    100036.053–0.177–0.177–0.071–0.035
    110036.379–0.235–0.235–0.123–0.079
    120036.672–0.313–0.314–0.192–0.143
    130036.946–0.412–0.413–0.280–0.228
    140037.210–0.532–0.533–0.386–0.333
    150037.469–0.670–0.670–0.508–0.455
    160037.725–0.822–0.823–0.645–0.593
    170037.980–0.989–0.989–0.795–0.743
    180038.232–1.163–1.164–0.952–0.902
    190038.482–1.345–1.346–1.116–1.068
    200038.727–1.530–1.530–1.282–1.236
    210038.967–1.715–1.716–1.449–1.404
    220039.200–1.899–1.900–1.614–1.571
    230039.425–2.079–2.079–1.775–1.733
    240039.641–2.254–2.254–1.929–1.889
    250039.847–2.422–2.421–2.077–2.038
    260040.043–2.582–2.581–2.217–2.180
    270040.229–2.735–2.733–2.349–2.313
    280040.404–2.879–2.876–2.472–2.436
    290040.568–3.014–3.009–2.585–2.549
    300040.721–3.140–3.133–2.689–2.652
    310040.864–3.258–3.248–2.784–2.746
    320040.996–3.367–3.352–2.869–2.830
    330041.119–3.469–3.449–2.946–2.904
    340041.232–3.562–3.536–3.015–2.969
    350041.336–3.649–3.615–3.076–3.025
    360041.432–3.729–3.686–3.130–3.072
    370041.520–3.804–3.749–3.178–3.111
    380041.601–3.874–3.806–3.220–3.143
    390041.676–3.940–3.857–3.259–3.168
    400041.745–4.002–3.902–3.293–3.187
    410041.810–4.063–3.943–3.326–3.202
    420041.871–4.122–3.980–3.356–3.211
    430041.929–4.180–4.014–3.387–3.217
    440041.986–4.241–4.047–3.419–3.221
    450042.042–4.303–4.079–3.453–3.224
    460042.098–4.367–4.111–3.490–3.226
    470042.156–4.437–4.144–3.533–3.229
    480042.217–4.512–4.181–3.581–3.235
    490042.282–4.593–4.221–3.637–3.244
    500042.352–4.682–4.266–3.702–3.258
    510042.429–4.781–4.318–3.778–3.279
    520042.514–4.891–4.377–3.865–3.307
    530042.608–5.012–4.445–3.966–3.344
    540042.712–5.146–4.523–4.080–3.392
    550042.829–5.295–4.614–4.211–3.453
    560042.959–5.459–4.718–4.359–3.527
    570043.104–5.641–4.837–4.526–3.617
    580043.265–5.841–4.971–4.714–3.724
    590043.444–6.061–5.123–4.923–3.849
    600043.620–6.280–5.273–5.133–3.973
    $ \Delta {C_{{\text{aver}}}} $f2.8962.7212.3632.084
    注: a. 实验热容; b. 基于实验振动能级运用近似模型所得热容值与实验值的误差; c. 基于VAM完全振动能级运用近似模型所得热容值与实验值的误差; d. 基于实验振转能级所得热容值与实验值的误差; e. 基于完全振转能级所得热容值与实验值的误差; f. $\Delta {C_{ {\text{aver} } } } = \dfrac{ {\text{1} } }{w} \displaystyle\sum {\left| { {C_{\text{m} } } - {C_{ {\text{expt} } } } } \right|}$, w为参与计算的热容值个数.
    DownLoad: CSV
    Baidu
  • [1]

    McBride B J, Zehe M J, Gordon S 2002 NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species (Cleveland: National Aeronautics and Space Administration) p1

    [2]

    汪志诚 2013 热力学·统计物理 (第五版) (北京: 高等教育出版社) 第1页

    Wang Z C 2013 Thermodynamic·statistical physics (Vol. 5) (Beijing: Higher Education Press) p1 (in Chinese)

    [3]

    Gabriel V O, Luis A A H 2018 Int. J. Quantum Chem. 118 1Google Scholar

    [4]

    Irwin A W 1988 Astron. Astrophys. Suppl. Ser. 74 145

    [5]

    Fischer J, Gamache R R, Goldman A, Rothman L S, Perrin A 2003 J. Quant. Spectrosc. Radiat. Transfer 82 401Google Scholar

    [6]

    伍冬兰, 万慧军, 谢安东, 程新路, 杨向东 2009 58 7410Google Scholar

    Wu D L, Wan H J, Xie A D, Cheng X L, Yang X D 2009 Acta Phys. Sin. 58 7410Google Scholar

    [7]

    Jia C S, Zhang L H, Wang C W 2017 Chem. Phys. Lett. 667 211Google Scholar

    [8]

    Maltsev M A, Kulikov A N, Morozov I V 2016 J. Phys. Conf. Ser. 774 012023Google Scholar

    [9]

    Maltsev M A, Morozov I V, Osina E L 2019 High Temp. 57 335Google Scholar

    [10]

    Ikot A N, Chukwuocha E O, Onyeaju M C, Onate C A, Ita B I, Udoh M E 2018 Pramana-J. Phys. 90 22Google Scholar

    [11]

    王小霞, 刘鑫, 张琼, 陈宏善 2017 66 103601Google Scholar

    Wang X X, Liu X, Zhang Q, Chen H S 2017 Acta Phys. Sin. 66 103601Google Scholar

    [12]

    Maltsev M A, Morozov I V, Osina E L 2019 High Temp. 57 42Google Scholar

    [13]

    Horchani R, Jelassi H 2020 Chem. Phys. 532 1Google Scholar

    [14]

    Zúñiga J, Bastida A, Requena A, Cerezo J 2021 J. Phys. Chem. A 125 9226Google Scholar

    [15]

    Sun W G, Hou S L, Feng H, Ren W Y 2002 J. Mol. Spectrosc. 215 93Google Scholar

    [16]

    Fu J, Fan Q C, Liu G Y, Li H D, Xu Y G, Fan Z X, Zhang Y 2017 Comput. Theor. Chem. 1115 136Google Scholar

    [17]

    McDowell R S 1988 J. Chem. Phys. 88 356Google Scholar

    [18]

    蹇君, 雷娇, 樊群超, 范志祥, 马杰, 付佳, 李会东, 徐勇根 2020 69 053301Google Scholar

    Jian J, Lei J, Fan Q C, Fan Z X, Ma J, Fu J, Li H D, Xu Y G 2020 Acta Phys. Sin. 69 053301Google Scholar

    [19]

    Rydberg R 1932 Z. Phys. 73 376Google Scholar

    [20]

    Klein V O 1932 Z. Phys. 76 226Google Scholar

    [21]

    Rees A L G 1947 Proc. Phys. Soc. 59 998Google Scholar

    [22]

    Pathria R K 1977 Statistical Mechanics (London: Pcrgamon Press) p100

    [23]

    Le Roy R J 2017 J. Quant. Spectrosc. Radiat. Transfer 186 167Google Scholar

    [24]

    Li C L, Li Y C, Ji Z H, Qiu X B, Lai Y Z, Wei J L, Zhao Y T, Deng L H, Chen Y Q, Liu J J 2018 Phys. Rev. A 97 062501Google Scholar

    [25]

    Laurendeau N M 2005 Statistical Thermodynamics: Fundamentals and Applications (England: Cambridge University Press) p1

    [26]

    Huang K 1965 Phys. Today 18 92

    [27]

    Babou Y, Rivière P, Perrin M Y, Soufiani A 2009 Int. J. Thermophys. 30 416Google Scholar

    [28]

    Jaffe R L 1987 AIAA 22nd Thermophysics Conference (New York: American Institute of Aeronautics and Astronautics) p1633

    [29]

    Capitelli M, Colonna G, Giordano D, Maraffa L, Casavola A, Minelli P, Pagano D, Pietanza L D, Taccogna F 2005 Tables of Internal Partition Functions and Thermodynamic Properties of High-Temperature Mars-Atmosphere Species from 50 K to 50000 K (Netherlands: European Space Agency Publications Division) p3

    [30]

    Huber K P, Herzberg G 1950 Molecular Spectra and Molecular Structure: Spectra of Diatomic Molecules (New York: Van Nostrand Reinhold Company) p9

    [31]

    朱华, 谢代前, 鄢国森 1999 高等学校化学学报 20 1910Google Scholar

    Zhu H, Xie D Q, Yan G S 1999 Chem. J. Chin. Univ. 20 1910Google Scholar

    [32]

    James B B, Edward R L, Philip D H, Carleton J H 1987 J. Mol. Spectrosc. 124 379Google Scholar

    [33]

    Gottlieb C A, Gottlieb E W, Litvak M M, Ball J A, Penfield H 1978 Astrophys. J. 219 77Google Scholar

    [34]

    Clyne M A A, Mcdermid I S 1979 J. Chem. Soc. , Faraday Trans. 2 75 905Google Scholar

    [35]

    Peterson K A, Woods R C 1990 J. Chem. Phys. 93 1876Google Scholar

    [36]

    Martin-Drumel M A, Hindle F, Mouret G, Cuisset A, Cernicharo J 2015 Astrophys. J. 799 115Google Scholar

    [37]

    Chase M W 1998 Journal of Physical and Chemical Reference DataMonograph (Vol. 9) (New York: National Institute of Standards and Technology Gaithersburg) p1726

  • [1] Gao Feng, Zhang Hong, Zhang Chang-Zhe, Zhao Wen-Li, Meng Qing-Tian. Accurate theoretical study of potential energy curves, spectroscopic parameters, vibrational energy levels and spin-orbit coupling interaction on SiH+(X1Σ+) ion. Acta Physica Sinica, 2021, 70(15): 153301. doi: 10.7498/aps.70.20210450
    [2] Jian Jun, Lei Jiao, Fan Qun-Chao, Fan Zhi-Xiang, Ma Jie, Fu Jia, Li Hui-Dong, Xu Yong-Gen. Theoretical study on thermodynamic properties of NO gas. Acta Physica Sinica, 2020, 69(5): 053301. doi: 10.7498/aps.69.20191723
    [3] Wang Qiao-Xia, Wang Yu-Min, Ma Ri, Yan Bing. All-electron calculation of ground state vibration-rotation energy levels of 7Li2(0, ±1) molecular systems. Acta Physica Sinica, 2019, 68(11): 113102. doi: 10.7498/aps.68.20190359
    [4] Wei Chang-Li, Liang Gui-Ying, Liu Xiao-Ting, Yan Pei-Yuan, Yan Bing. Calculations on rovibrational spectra of two lowest electronic states in sulfur monoxide molecule by explicitly correlated approach. Acta Physica Sinica, 2016, 65(16): 163101. doi: 10.7498/aps.65.163101
    [5] Xu Mei, Wang Xiao-Lu, Linghu Rong-Feng, Yang Xiang-Dong. Study on ro-vibrational excitation cross sections of Ne-HF. Acta Physica Sinica, 2013, 62(6): 063102. doi: 10.7498/aps.62.063102
    [6] Zhang Yi, Sun Wei-Guo, Fu Jia, Fan Qun-Chao, Feng Hao, Li Hui-Dong. Investigations of vibrational levels and dissociation energies of diatomic systems using a variational algebraic method. Acta Physica Sinica, 2012, 61(13): 133301. doi: 10.7498/aps.61.133301
    [7] Wang Rong-Kai, Yang Xiang-Dong, Shen Guang-Xian, Linghu Rong-Feng. Theoretical calculation of the vib-rotational interaction potential and the partial wave cross sections for He-H2(D2, T2) system. Acta Physica Sinica, 2011, 60(1): 013101. doi: 10.7498/aps.60.013101
    [8] Chen Hui-Min, Liu En-Long. Theoretical calculation of molar heat capacity at constant pressureof nanoparticle and nanocrystalline. Acta Physica Sinica, 2011, 60(6): 066501. doi: 10.7498/aps.60.066501
    [9] Wang Xiao-Lu, Xu Mei, Linghu Rong-Feng, Sun Ke-Bin, Yang Xiang-Dong. Theoretical study on the partial wave cross sections of vibrational and rotational excitation for the collisions of He isotope with H2. Acta Physica Sinica, 2010, 59(3): 1689-1694. doi: 10.7498/aps.59.1689
    [10] Mo Jia-Qi, Lin Wan-Tao. Variational iteration method for solving the equatorial sea-air oscillator model for global climate. Acta Physica Sinica, 2008, 57(11): 6689-6693. doi: 10.7498/aps.57.6689
    [11] Fan Qun-Chao, Sun Wei-Guo, Qu Shuang-Shuang. Accurate studies on rovibrational energies of the electronic state B1Σ of HF molecule using an algebraic approach. Acta Physica Sinica, 2008, 57(7): 4110-4118. doi: 10.7498/aps.57.4110
    [12] Yang Hong-Wei, Yuan Hong, Chen Ru-Shan, Yang Yang. SO-FDTD analysis of anisotropic magnetized plasma. Acta Physica Sinica, 2007, 56(3): 1443-1446. doi: 10.7498/aps.56.1443
    [13] Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lue, Yang Xiang-Dong, Liu Yu-Fang, Ma Heng. Absolute differential, elastic integral and moment transfer cross sections for electron scattering by SO2 at intermediate and high energies. Acta Physica Sinica, 2007, 56(8): 4435-4440. doi: 10.7498/aps.56.4435
    [14] Yu Ya-Xuan, Wang Qi, Zhao Xue-Qin, Zhi Hong-Yan, Zhang Hong-Qing. A direct algebraic method to obtain solitary solutions of nonlinear differential-difference equations. Acta Physica Sinica, 2005, 54(9): 3992-3994. doi: 10.7498/aps.54.3992
    [15] Liu Yu-Fang, Xu Hou-Ju, Wu Yan-Ning, Sun Jin- Feng, Cong Shu-Lin, Han Ke-Li. The structure and potential energy function of SO(B1). Acta Physica Sinica, 2004, 53(6): 1749-1752. doi: 10.7498/aps.53.1749
    [16] SHI YU-ZHU, LI LI-PING, LI YU-CHENG. AN ALTERATIVE METHOD OF ADIABATIC VARIATIONAL CALCULATION OF HYDROGEN ENERGY IN A STRONG MAGNETIC FIELD. Acta Physica Sinica, 1998, 47(8): 1241-1247. doi: 10.7498/aps.47.1241
    [17] REN TING-QI, WANG QI-XIN, ZHANG QING-GANG, ZHANG YI-CI. THEORETICAL CALCULATION OF VIBRATIONAL AND ROTATIONAL TRANSITION PROBABILITIES FOR THE ATOM-OSCILLATOR SCATTERING. Acta Physica Sinica, 1993, 42(10): 1580-1586. doi: 10.7498/aps.42.1580
    [18] CHE GUANG-CAN, CHEN LI-QUAN. THE PHASE DIAGRAMS OF THE PSEUDO-BINARY SYSTEMS Li2SO4-Li2B2O4 Li2SO4-(NH4)2SO4 AND IONIC CONDUCTION INVESTIGATION. Acta Physica Sinica, 1981, 30(9): 1219-1224. doi: 10.7498/aps.30.1219
    [19] CHEN JIN-CHUAN, GAO MEI-JUAN, WANG FAN. PHYSICAL METHOD OF GROUP REPRESENTATION THEORY (V)——THE IRREDUCIBLE BASES OF SU(3)?SO(3) AND SU(4)?SU(2)×SU(2). Acta Physica Sinica, 1978, 27(3): 237-246. doi: 10.7498/aps.27.237
    [20] LIU TUN-HUAN. VIBRATION-ROTATION INTERACTION OF EVEN-EVEN NUCLEI IN THE TRANSITION REGION. Acta Physica Sinica, 1965, 21(5): 952-960. doi: 10.7498/aps.21.952
Metrics
  • Abstract views:  3553
  • PDF Downloads:  41
  • Cited By: 0
Publishing process
  • Received Date:  08 December 2021
  • Accepted Date:  21 April 2022
  • Available Online:  13 August 2022
  • Published Online:  05 September 2022

/

返回文章
返回
Baidu
map