搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同22集束聚焦方式下高功率激光靶面光强分布特性

孙晓艳 雷泽民 卢兴强 吕风年 张臻 范滇元

引用本文:
Citation:

不同22集束聚焦方式下高功率激光靶面光强分布特性

孙晓艳, 雷泽民, 卢兴强, 吕风年, 张臻, 范滇元

Light intensity distribution of high-power laser beams on target plane under different focus system of 22 beam array

Sun Xiao-Yan, Lei Ze-Min, Lu Xing-Qiang, Lü Feng-Nian, Zhang Zhen, Fan Dian-Yuan
PDF
导出引用
  • 大口径高功率激光装置为提高激光靶面的光强强度, 通常采用22集束聚焦的模式进行打靶. 大口径楔形透镜是组成22集束聚焦系统的核心元件, 可分为二维离轴楔形透镜、一维离轴楔形透镜和非离轴楔形透镜3类. 为了获得理想靶面光强分布, 基于这3 类楔形透镜, 对比研究相应22集束聚焦系统下的靶面光强分布特性. 研究结果表明: 相比离轴楔形透镜, 采用基于非离轴楔形透镜的22集束聚焦系统时, 容易在激光靶面获得更窄的主瓣宽度、更强的峰值强度、更高的能量集中度. 研究结果对高功率激光靶场聚焦系统的配置选择有重要参考价值.
    Large aperture high-power laser drivers usually focus the high power laser beams in 22 quads to the target chamber center in order to increase the light intensity on the target plane. The large aperture wedged focus lenses are the core components in the focus system of quadruplets of beams, and it is thought possible to use four two-dimensional off-axis wedged focus lenses as four sub-lenses to make up a larger aperture wedged focus lens in form to focus the four beams. Given that the large aperture two-dimensional off-axis wedged focus lenses are processed and used difficultly, the wedged focus lenses are divided into three categories: the two-dimensional off-axis wedged focus lenses, the one-dimensional off-axis wedged focus lenses, and the non-off-axis wedged focus lenses. On the basis of the three modes of the wedged focus lenses and the corresponding specific incidence angles of each sub-beam, the three focus schemes for the 22 beam array are put forward to comparatively research the light intensity distribution on the target plane. Research results show that from a perspective of the coherence among the four sub-beams, the phase factors of each sub-beam respectively introducing by the three focus systems with the two-dimensional off-axis, one-dimensional off-axis, and non-off-axis wedged focus lenses are asymmetric, asymmetric and symmetric inside each sub-beam, and symmetric, asymmetric and symmetric among the four sub-beams. Therefore, the wave front consistency of the four sub-beams decreases in the order of the focus systems with the non-off-axis, two-dimensional off-axis, and one-dimensional off-axis wedged focus lenses. The focus schemes with the non-off-axis wedged focus lenses for 22 beam array can get the narrowest main-lobe, the strongest peak-value intensity, the highest energy concentration ratio on the target plane, followed by the one-dimensional off-axis and two-dimensional off-axis wedged focus lenses. The off-axis mode of the wedged focus lenses not only increases the complexity in the course of processing and using, but also increases the main-lobe size, decreases the peak-value intensity and the energy concentration ratio, which obtains a weaker focusing characteristics than that of the non-off-axis mode of the wedged focus lenses. Research results can provide an important reference for the design of the focus system in the target area of high-power laser drivers.
      通信作者: 卢兴强, xingqianglu@siom.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 60707019)资助的课题.
      Corresponding author: Lu Xing-Qiang, xingqianglu@siom.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 60707019).
    [1]

    Hunt J T 1999 UCRL-ID-138120-98 [R] National Ignition Facility Performance Review, Lawrence Livermore National Laboratory, Livermore USA

    [2]

    Ebrardt J, Chaput J M 2008 J. Phys.: Conference Series 112 032005

    [3]

    Zheng W G, Zhang X M, Wei X F, Jing F, Sui Z, Zheng K X, Yuan X D, Jiang X D, Su J Q, Zhou H, Li M Z, Wang J J, Hu D X, He S B, Xiang Y, Peng Z T, Feng B, Guo L F, Li X Q, Zhu Q H, Yu H W, You Y, Fan D Y, Zhang W Y 2008 J. Phys.: Conference Series 11 2 032009

    [4]

    Wang M C, Zhu M Z, Chen G, Wu W K, Fu X N 2013 Laser Optoelectronics Progress 50 011403 (in Chinese) [王美聪, 朱明智, 陈刚, 吴文凯, 傅学农 2013 激光与光电子学进展 50 011403]

    [5]

    Wegner P, Auerbach J, Biesiada T, Dixit S, Lawson J, Menapace J, Parham T, Swift D, Whitman P, Williams W 2004 SPIE 5341 180

    [6]

    Su R T, Zhou P, Wang X L, Ji X, Xu X J 2012 Acta Phys. Sin. 61 084206 (in Chinese) [粟荣涛, 周朴, 王小林, 冀翔, 许晓军 2012 61 084206]

    [7]

    Huang Z H, Wei X F, Li M Z, Wang J J, Lin H H, Xu D P, Deng Y, Zhang R 2012 Appl. Opt. 51 1546

    [8]

    Liu H K, Xue Y H, Li Z, He B, Zhou J, Ding Y Q, Jiao M L, Liu C, Qi Y F, Wei Y Q, Dong J X, Lou Q H 2012 Chin. Phys. Lett. 29 044204

    [9]

    Tan Y, Li X Y 2014 Acta Phys. Sin. 63 094202 (in Chinese) [谭毅, 李新阳 2014 63 094202]

    [10]

    Xiao R, Hou J, Jiang Z F 2008 Acta Phys. Sin. 57 853 (in Chinese) [肖瑞, 侯静, 姜宗福 2008 57 853]

    [11]

    L B D, Hong M 1999 Opt. Commun. 171 185

    [12]

    Li F Q, Han W, Wang F, Zhang X M, Wei X F, Feng B, Xiang Y, Jia H T, Li K Y Laser Optoelectronics Progress 50 060002 (in Chinese) [李富全, 韩伟, 王芳, 张小民, 魏晓峰, 冯斌, 向勇, 贾怀庭, 李恪宇 2013 激光与光电子学进展 50 060002]

    [13]

    Born M, Wolf E 1999 Principles of Optics (London: Cambridge University Press) pp412-430

  • [1]

    Hunt J T 1999 UCRL-ID-138120-98 [R] National Ignition Facility Performance Review, Lawrence Livermore National Laboratory, Livermore USA

    [2]

    Ebrardt J, Chaput J M 2008 J. Phys.: Conference Series 112 032005

    [3]

    Zheng W G, Zhang X M, Wei X F, Jing F, Sui Z, Zheng K X, Yuan X D, Jiang X D, Su J Q, Zhou H, Li M Z, Wang J J, Hu D X, He S B, Xiang Y, Peng Z T, Feng B, Guo L F, Li X Q, Zhu Q H, Yu H W, You Y, Fan D Y, Zhang W Y 2008 J. Phys.: Conference Series 11 2 032009

    [4]

    Wang M C, Zhu M Z, Chen G, Wu W K, Fu X N 2013 Laser Optoelectronics Progress 50 011403 (in Chinese) [王美聪, 朱明智, 陈刚, 吴文凯, 傅学农 2013 激光与光电子学进展 50 011403]

    [5]

    Wegner P, Auerbach J, Biesiada T, Dixit S, Lawson J, Menapace J, Parham T, Swift D, Whitman P, Williams W 2004 SPIE 5341 180

    [6]

    Su R T, Zhou P, Wang X L, Ji X, Xu X J 2012 Acta Phys. Sin. 61 084206 (in Chinese) [粟荣涛, 周朴, 王小林, 冀翔, 许晓军 2012 61 084206]

    [7]

    Huang Z H, Wei X F, Li M Z, Wang J J, Lin H H, Xu D P, Deng Y, Zhang R 2012 Appl. Opt. 51 1546

    [8]

    Liu H K, Xue Y H, Li Z, He B, Zhou J, Ding Y Q, Jiao M L, Liu C, Qi Y F, Wei Y Q, Dong J X, Lou Q H 2012 Chin. Phys. Lett. 29 044204

    [9]

    Tan Y, Li X Y 2014 Acta Phys. Sin. 63 094202 (in Chinese) [谭毅, 李新阳 2014 63 094202]

    [10]

    Xiao R, Hou J, Jiang Z F 2008 Acta Phys. Sin. 57 853 (in Chinese) [肖瑞, 侯静, 姜宗福 2008 57 853]

    [11]

    L B D, Hong M 1999 Opt. Commun. 171 185

    [12]

    Li F Q, Han W, Wang F, Zhang X M, Wei X F, Feng B, Xiang Y, Jia H T, Li K Y Laser Optoelectronics Progress 50 060002 (in Chinese) [李富全, 韩伟, 王芳, 张小民, 魏晓峰, 冯斌, 向勇, 贾怀庭, 李恪宇 2013 激光与光电子学进展 50 060002]

    [13]

    Born M, Wolf E 1999 Principles of Optics (London: Cambridge University Press) pp412-430

  • [1] 卜梦旭, 顾文庭, 李博艺, 朱秋晨, 江雪, 他得安, 刘欣. 基于声透镜的多频经颅聚焦.  , 2024, 73(23): . doi: 10.7498/aps.73.20241123
    [2] 徐平, 李雄超, 肖钰斐, 杨拓, 张旭琳, 黄海漩, 王梦禹, 袁霞, 徐海东. 长红外双波长共聚焦超透镜设计研究.  , 2023, 72(1): 014208. doi: 10.7498/aps.72.20221752
    [3] 陈康, 马志远, 张明明, 窦健泰, 胡友友. 部分相干幂指数相位涡旋光束的传输特性研究.  , 2022, 71(1): 014203. doi: 10.7498/aps.71.20211411
    [4] 陈康, 马志远, 张明明, 窦健泰, 胡友友. 部分相干幂指数相位涡旋光束的传输特性研究*.  , 2021, (): . doi: 10.7498/aps.70.20211411
    [5] 田梓聪, 郭遗敏, 胡晨岩, 王慧琴, 路翠翠. 宽带高效聚焦的片上集成纳米透镜.  , 2020, 69(24): 244201. doi: 10.7498/aps.69.20200948
    [6] 赵永蓬, 李连波, 崔怀愈, 姜杉, 刘涛, 张文红, 李伟. 毛细管放电69.8nm激光强度空间分布特性研究.  , 2016, 65(9): 095201. doi: 10.7498/aps.65.095201
    [7] 陈直, 许良, 陈荣昌, 杜国浩, 邓彪, 谢红兰, 肖体乔. Kinoform单透镜的硬X射线聚焦性能.  , 2015, 64(16): 164104. doi: 10.7498/aps.64.164104
    [8] 李杨, 朱竹青, 王晓雷, 贡丽萍, 冯少彤, 聂守平. 离轴椭圆矢量光场传输中的光斑演变.  , 2015, 64(2): 024204. doi: 10.7498/aps.64.024204
    [9] 陈雪琼, 陈子阳, 蒲继雄, 朱健强, 张国文. 平顶光束经表面有缺陷的厚非线性介质后的光强分布.  , 2013, 62(4): 044213. doi: 10.7498/aps.62.044213
    [10] 丁攀峰, 蒲继雄. 离轴拉盖尔-高斯涡旋光束传输中的光斑演变.  , 2012, 61(6): 064103. doi: 10.7498/aps.61.064103
    [11] 李敏, 张志友, 石莎, 杜惊雷. 亚波长金属聚焦透镜结构参数的优化与分析.  , 2010, 59(2): 958-963. doi: 10.7498/aps.59.958
    [12] 刘虹遥, 吕强, 罗海陆, 文双春. 各向异性超常材料平板透镜的聚焦特性分析.  , 2010, 59(1): 256-263. doi: 10.7498/aps.59.256
    [13] 邬鹏举, 李玉德, 林晓燕, 刘安东, 孙天希. x射线在毛细导管中传输的模拟计算.  , 2005, 54(10): 4478-4482. doi: 10.7498/aps.54.4478
    [14] 郭红莲, 程丙英, 张道中. 用聚苯乙烯小球模拟生物组织中的光强分布.  , 2003, 52(2): 324-327. doi: 10.7498/aps.52.324
    [15] 周庆, 朱星, 李宏福. 近场光学中光纤探针的光强分布.  , 2000, 49(2): 210-214. doi: 10.7498/aps.49.210
    [16] 佘卫龙, 何穗荣, 汪河洲, 杨佩青, 余振新, 莫党. 光折变晶体中二波耦合光强依赖现象和各向异性热透镜效应.  , 1995, 44(1): 87-91. doi: 10.7498/aps.44.87
    [17] 陈岩松, 李德华. 透镜光轴上的光场分布.  , 1995, 44(10): 1558-1562. doi: 10.7498/aps.44.1558
    [18] 陶世荃, 凌德洪. 使用全息透镜作色散和聚焦元件的摄谱仪器.  , 1984, 33(3): 285-293. doi: 10.7498/aps.33.285
    [19] 周立伟, 艾克聪, 潘顺臣. 关于电磁复合聚焦阴极透镜的象差理论.  , 1983, 32(3): 376-392. doi: 10.7498/aps.32.376
    [20] 刘德森. 聚焦透镜棒的色差分析.  , 1982, 31(2): 226-233. doi: 10.7498/aps.31.226
计量
  • 文章访问数:  6941
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-26
  • 修回日期:  2015-12-02
  • 刊出日期:  2016-03-05

/

返回文章
返回
Baidu
map