搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双降压式全桥逆变器非线性现象的研究

刘洪臣 苏振霞

引用本文:
Citation:

双降压式全桥逆变器非线性现象的研究

刘洪臣, 苏振霞

Study on nonlinear phenomena in dual buck full-bridge inverter

Liu Hong-Chen, Su Zhen-Xia
PDF
导出引用
  • 双降压式全桥逆变器具有无桥臂直通、输入直流电压利用率高、效率高、续流二极管可优化选取等优点,因而在高压输出场合得到广泛的应用. 本文研究了双降压式全桥逆变器的分岔和混沌现象,建立了电流闭环比例控制下的二阶离散模型,得到了不同时间段内的频闪映射模型;通过折叠图和分岔图分析了不同比例系数k对于系统稳定性的影响,并搭建了Matlab/Simulink仿真模型,得到了电流闭环比例控制时电流iL 的时域波形和相图轨迹,并在频域下分析了分岔和混沌对系统频谱的影响. 同时,利用分岔图的方法分析了输入电压E、滤波电感L和开关周期T等外部参数变化时系统的非线性行为. 研究结果表明,正确选择双降压式全桥逆变器的电路参数对于其稳定运行具有重要意义.
    Dual buck full-bridge inverter has the following advantages: it has no shoot-through problem, but receives high-utilization of DC input voltage, high efficiency and optimum selection of the freewheeling diodes, hence it attracts more and more attention in high power applications. In this paper, the bifurcation and chaos in the dual buck full-bridge inverter is studied. The two-dimensional discrete iterated mapping model under proportional control is established and stroboscopic maps in different periods of time are obtained. Effects of the proportional coefficient k on system performance are analyzed by using bifurcation diagram and folded diagram. A simulation model of dual buck full-bridge inverter is established based on Matlab/Simulink and the time domain waveforms and phase-space portraits for different proportional coefficient k are obtained. Besides, the effects of the bifurcation and chaos on the spectrum of the system are analyzed. Finally, the nonlinear behavior in the inverter caused by the variation of other circuit parameters such as input voltage E, inductance L, and the switching period of carrier wave T is discussed through bifurcation diagrams. Results show that the correct choice of circuit parameters of dual buck full-bridge inverter is very important for its stable operation.
    • 基金项目: 国家自然科学基金(批准号:51107016)、国家重点基础研究发展计划项目(973计划)(批准号:2013CB035605)和黑龙江省博士后科研启动金(批准号:LHB-Q12086)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51107016), the National Key Basic Research Program of China (973 Program) (Grant No. 2013CB035605), and the Postdoctoral science-research developmental foundation of Heilongjiang province, China (Grant No. LHB-Q12086).
    [1]

    Zhang B 2005 Transactions of China Electrotechnical Society 20 1 (in Chinese) [张波 2005 电工技术学报 20 1]

    [2]

    Lu W G, Zhou L W, Luo Q M, Zhang X F 2009 Transactions of China Electrotechnical Society 24 133 (in Chinese) [卢伟国, 周雒维, 罗全明, 张晓峰 2009 电工技术学报 24 133]

    [3]

    Dai D, Tse C K, Ma X K 2005 IEEE Trans. Cir. Syst. I 52 1632

    [4]

    Zhang B, Li P, Qi Q 2002 Proceedings of the CSEE 22 81 (in Chinese) [张波, 李萍, 齐群2002 中国电机工程学报 22 81]

    [5]

    Zhou G H, Bao B C, Xu J P, Jin Y Y 2010 Chin. Phys. B 19 050509

    [6]

    Bao B C, Xu J P and Liu Z 2009 Chin. Phys. B 18 4742

    [7]

    Wang F Q, Zhang H, Ma X K 2012 Chin. Phys. B 21 020505

    [8]

    Zhao Y B, Luo X S, Fang J Q, Wang B H 2005 Acta Phys. Sin. 54 5022 (in Chinese) [赵益波, 罗晓曙, 方锦清, 汪秉宏 2005 54 5022]

    [9]

    Ma X K, Zhang H, Zhang X T 2008 Acta Phys. Sin. 57 6174 (in Chinese) [马西奎, 张浩, 张笑天 2008 57 6174]

    [10]

    Robert B, Robert C 2002 Int. J. Contr. 75 1356

    [11]

    Robert B, Feki M, Iu H H C 2006 Int. J. Bifurcation and Chaos 16 113

    [12]

    Iu H H C, Robert B 2003 IEEE Trans. Cir. Syst. I 50 1125

    [13]

    T.Kousaka, K.Sakamoto, Y.Ma 2006 National conference on nonlinear systems & dynamics 15 p1

    [14]

    Li M, Dai D, Ma X K 2008 Circuits Syst. Signal Processing 27 811

    [15]

    Wang X M, Zhang B, Qiu D Y 2009 Acta Phys. Sin. 58 2248 (in Chinese) [王学梅, 张波, 丘东元 2009 58 2248]

    [16]

    Wang X M, Zhang B 2009 Transactions of China Electrotechnical Society 24 101 (in Chinese) [王学梅, 张波 2009 电工技术学报 24 101]

    [17]

    Lei B, Xiao G C, Wu X L, Qi Y R 2011 Acta Phys. Sin. 60 090501 (in Chinese) [雷博, 肖国春, 吴旋律, 齐元瑞 2011 60 090501]

    [18]

    Wu J K, Zhou L W, Lu W G 2012 Acta Phys. Sin. 61 210202 (in Chinese) [吴军科, 周雒维, 卢伟国 2012 61 210202]

    [19]

    Zhang B, Qu Y 2003 Proceedings of the CSEE 23 99 (in Chinese) [张波, 曲颖 2003 中国电机工程学报 23 99]

    [20]

    Zhang Y, Hong F, Chen X 2007 Power Supply Technologies and Applications 10 55 (in Chinese) [张喻, 洪峰, 陈新 2007 电源技术应用 10 55]

    [21]

    Zhang X J, Gong C Y 2009 Electric Drive 39 48 (in Chinese) [张先进, 龚春英 2009 电气传动 39 48]

    [22]

    Wang Z, Xiao L, Yao Z L, Yan Y G 2007 Transactions of China Electrotechnical Society 22 104 (in Chinese) [王赞, 肖岚, 姚志垒, 严仰光 2007 电工技术学报 22 104]

    [23]

    Wu T, Xiao L, Yao Z L 2009 Proceedings of the CSEE 29 22 (in Chinese) [吴婷, 肖岚, 姚志垒 2009 中国电机工程学报 29 22]

  • [1]

    Zhang B 2005 Transactions of China Electrotechnical Society 20 1 (in Chinese) [张波 2005 电工技术学报 20 1]

    [2]

    Lu W G, Zhou L W, Luo Q M, Zhang X F 2009 Transactions of China Electrotechnical Society 24 133 (in Chinese) [卢伟国, 周雒维, 罗全明, 张晓峰 2009 电工技术学报 24 133]

    [3]

    Dai D, Tse C K, Ma X K 2005 IEEE Trans. Cir. Syst. I 52 1632

    [4]

    Zhang B, Li P, Qi Q 2002 Proceedings of the CSEE 22 81 (in Chinese) [张波, 李萍, 齐群2002 中国电机工程学报 22 81]

    [5]

    Zhou G H, Bao B C, Xu J P, Jin Y Y 2010 Chin. Phys. B 19 050509

    [6]

    Bao B C, Xu J P and Liu Z 2009 Chin. Phys. B 18 4742

    [7]

    Wang F Q, Zhang H, Ma X K 2012 Chin. Phys. B 21 020505

    [8]

    Zhao Y B, Luo X S, Fang J Q, Wang B H 2005 Acta Phys. Sin. 54 5022 (in Chinese) [赵益波, 罗晓曙, 方锦清, 汪秉宏 2005 54 5022]

    [9]

    Ma X K, Zhang H, Zhang X T 2008 Acta Phys. Sin. 57 6174 (in Chinese) [马西奎, 张浩, 张笑天 2008 57 6174]

    [10]

    Robert B, Robert C 2002 Int. J. Contr. 75 1356

    [11]

    Robert B, Feki M, Iu H H C 2006 Int. J. Bifurcation and Chaos 16 113

    [12]

    Iu H H C, Robert B 2003 IEEE Trans. Cir. Syst. I 50 1125

    [13]

    T.Kousaka, K.Sakamoto, Y.Ma 2006 National conference on nonlinear systems & dynamics 15 p1

    [14]

    Li M, Dai D, Ma X K 2008 Circuits Syst. Signal Processing 27 811

    [15]

    Wang X M, Zhang B, Qiu D Y 2009 Acta Phys. Sin. 58 2248 (in Chinese) [王学梅, 张波, 丘东元 2009 58 2248]

    [16]

    Wang X M, Zhang B 2009 Transactions of China Electrotechnical Society 24 101 (in Chinese) [王学梅, 张波 2009 电工技术学报 24 101]

    [17]

    Lei B, Xiao G C, Wu X L, Qi Y R 2011 Acta Phys. Sin. 60 090501 (in Chinese) [雷博, 肖国春, 吴旋律, 齐元瑞 2011 60 090501]

    [18]

    Wu J K, Zhou L W, Lu W G 2012 Acta Phys. Sin. 61 210202 (in Chinese) [吴军科, 周雒维, 卢伟国 2012 61 210202]

    [19]

    Zhang B, Qu Y 2003 Proceedings of the CSEE 23 99 (in Chinese) [张波, 曲颖 2003 中国电机工程学报 23 99]

    [20]

    Zhang Y, Hong F, Chen X 2007 Power Supply Technologies and Applications 10 55 (in Chinese) [张喻, 洪峰, 陈新 2007 电源技术应用 10 55]

    [21]

    Zhang X J, Gong C Y 2009 Electric Drive 39 48 (in Chinese) [张先进, 龚春英 2009 电气传动 39 48]

    [22]

    Wang Z, Xiao L, Yao Z L, Yan Y G 2007 Transactions of China Electrotechnical Society 22 104 (in Chinese) [王赞, 肖岚, 姚志垒, 严仰光 2007 电工技术学报 22 104]

    [23]

    Wu T, Xiao L, Yao Z L 2009 Proceedings of the CSEE 29 22 (in Chinese) [吴婷, 肖岚, 姚志垒 2009 中国电机工程学报 29 22]

  • [1] 赵武, 张鸿斌, 孙超凡, 黄丹, 范俊锴. 受垂直激励和水平约束的单摆系统亚谐共振分岔与混沌.  , 2021, 70(24): 240202. doi: 10.7498/aps.70.20210953
    [2] 王斌, 薛建议, 贺好艳, 朱德兰. 基于线性矩阵不等式的一类新羽翼倍增混沌分析与控制.  , 2014, 63(21): 210502. doi: 10.7498/aps.63.210502
    [3] 张方樱, 杨汝, 龙晓莉, 谢陈跃, 陈虹. V2控制Buck变换器分岔与混沌行为的机理及镇定.  , 2013, 62(21): 218404. doi: 10.7498/aps.62.218404
    [4] 丁虎, 严巧赟, 陈立群. 轴向加速运动黏弹性梁受迫振动中的混沌动力学.  , 2013, 62(20): 200502. doi: 10.7498/aps.62.200502
    [5] 孟宗, 付立元, 宋明厚. 一类非线性相对转动系统的组合谐波分岔行为研究.  , 2013, 62(5): 054501. doi: 10.7498/aps.62.054501
    [6] 刘洪臣, 李飞, 杨爽. 基于周期性扩频的单相H桥逆变器非线性现象的研究.  , 2013, 62(11): 110504. doi: 10.7498/aps.62.110504
    [7] 刘洪臣, 王云, 苏振霞. 单相三电平H桥逆变器分岔现象的研究.  , 2013, 62(24): 240506. doi: 10.7498/aps.62.240506
    [8] 胡文, 赵广浩, 张弓, 张景乔, 刘贤龙. 时标正弦动力学方程稳定性与分岔分析.  , 2012, 61(17): 170505. doi: 10.7498/aps.61.170505
    [9] 李海滨, 王博华, 张志强, 刘爽, 李延树. 一类非线性相对转动系统的组合共振分岔与混沌.  , 2012, 61(9): 094501. doi: 10.7498/aps.61.094501
    [10] 吴淑花, 孙毅, 郝建红, 许海波. 耦合发电机系统的分岔和双参数特性.  , 2011, 60(1): 010507. doi: 10.7498/aps.60.010507
    [11] 古华光, 朱洲, 贾冰. 一类新的混沌神经放电的动力学特征的实验和数学模型研究.  , 2011, 60(10): 100505. doi: 10.7498/aps.60.100505
    [12] 陈章耀, 毕勤胜. Jerk系统耦合的分岔和混沌行为.  , 2010, 59(11): 7669-7678. doi: 10.7498/aps.59.7669
    [13] 张晓芳, 陈章耀, 毕勤胜. 非线性电路通向混沌的演化过程.  , 2010, 59(5): 3057-3065. doi: 10.7498/aps.59.3057
    [14] 包伯成, 康祝圣, 许建平, 胡文. 含指数项广义平方映射的分岔和吸引子.  , 2009, 58(3): 1420-1431. doi: 10.7498/aps.58.1420
    [15] 于万波, 魏小鹏. 一个小波函数指数参数变化的分岔现象.  , 2006, 55(8): 3969-3973. doi: 10.7498/aps.55.3969
    [16] 张 维, 周淑华, 任 勇, 山秀明. Turbo译码算法的分岔与控制.  , 2006, 55(2): 622-627. doi: 10.7498/aps.55.622
    [17] 马西奎, 杨 梅, 邹建龙, 王玲桃. 一种时延范德波尔电磁系统中的复杂行为(Ⅰ)——分岔与混沌现象.  , 2006, 55(11): 5648-5656. doi: 10.7498/aps.55.5648
    [18] 李 明, 马西奎, 戴 栋, 张 浩. 基于符号序列描述的一类分段光滑系统中分岔现象与混沌分析.  , 2005, 54(3): 1084-1091. doi: 10.7498/aps.54.1084
    [19] 罗晓曙, 汪秉宏, 陈关荣, 全宏俊, 方锦清, 邹艳丽, 蒋品群. DC-DC buck变换器的分岔行为及混沌控制研究.  , 2003, 52(1): 12-17. doi: 10.7498/aps.52.12
    [20] 郝建红, 丁 武. 行波管放大器中辐射场的极限环振荡和混沌.  , 2003, 52(4): 906-910. doi: 10.7498/aps.52.906
计量
  • 文章访问数:  6989
  • PDF下载量:  661
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-16
  • 修回日期:  2013-10-11
  • 刊出日期:  2014-01-05

/

返回文章
返回
Baidu
map