Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sound field reconstruction of structural source based on element radiation superposition method

Shi Sheng-Guo Gao Yuan Zhang Hao-Yang Yang Bo-Quan

Citation:

Sound field reconstruction of structural source based on element radiation superposition method

Shi Sheng-Guo, Gao Yuan, Zhang Hao-Yang, Yang Bo-Quan
PDF
HTML
Get Citation
  • In order to improve the sound field reconstruction accuracy of distributed structural source, a new near-field acoustic holography is established based on the element radiation superposition method (ERSM). In the proposed method, the surface of structural source is divided into several regular pistons. The sound field of structural source is considered as the superposition of sound field of pistons. Firstly, we compare the sound field calculated by ERSM with that by Rayleigh's integral. It is proved that ERSM is quite accurate in sound field prediction. Based on ERSM, a vibration acoustic transfer (VAT) function is derived. The VAT function has computable analytical expression and embodies the transfer relationship between the structural source surface and the radiated sound field. The VAT function can precisely characterize the acoustic propagation of continuous distributed coherent sources. Subsequently, we employ the VAT function to replace the Green's function, and apply the VAT function to sound field reconstruction. Different with the equivalent source method (ESM) which is widely used in sound field reconstruction, ERSM directly divides the piston-sources on the surface of structural source rather than constructing the equivalent point-sources on a plane behind the structural source. Furthermore, we introduce a weight matrix into ERSM and iteratively calculate the vibration velocity for a more accurate result, and we call the proposed method as iterative weighted ERSM (IWERSM). In this paper, the simulations and experiment of sound field reconstruction of a rectangular plate are performed. In the proposed method, the rectangular plate is divided into several rectangular pistons. The reconstruction results of ERSM and IWERSM are compared with that of ESM and iterative weighted ESM (IWESM) respectively. The reconstruction accuracies at different distances between the plate and array (test distances) are analyzed. The simulation results show the accuracy of ERSM and IWERSM are better than that of ESM and IWESM respectively. With the increase of test distance, the phenomenon is more obvious, and IWERSM even shows a good reconstruction accuracy while the test distance is more than half a wavelength. The experiment results also validate that ERSM and IWERSM have better reconstruction accuracy than ESM and IWESM respectively at the same test distance. In a word, the simulations and experiments demonstrate that the proposed method can improve the sound field reconstruction accuracy of regular structural source and expand the valid test distance of near-field acoustic holography.
      Corresponding author: Zhang Hao-Yang, zhanghaoyang@hrbeu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61701133)
    [1]

    聂永发, 朱海潮 2014 63 104303Google Scholar

    Nie Y F, Zhu H C 2014 Acta Phys. Sin. 63 104303Google Scholar

    [2]

    Bi C X, Chen X Z, Chen J, Zhou R 2005 Sci. China Ser. E: Technol. Sci. 48 338Google Scholar

    [3]

    李卫兵, 陈剑, 毕传兴, 陈心昭 2006 55 1264Google Scholar

    Li W B, Chen J, Bi C X, Chen X Z 2006 Acta Phys. Sin. 55 1264Google Scholar

    [4]

    张小正, 毕传兴, 徐亮, 陈心昭 2010 59 5564Google Scholar

    Zhang X Z, Bi C X, Xu L, Chen X Z 2010 Acta Phys. Sin. 59 5564Google Scholar

    [5]

    Pinho M E V 2004 ABCM Symposium Series in Mechatronics (Vol. 1) Sao Paulo, Brazil, November 10−14, 2004 p590

    [6]

    Valdivia N P, Williams E G 2006 J. Acoust. Soc. Am. 120 3694Google Scholar

    [7]

    Zhang Y B 2009 J. Acoust. Soc. Am. 126 1257Google Scholar

    [8]

    Oudompheng B, Pereira A, Picard C, Leclere Q, Nicolas B 2014 5 th Berlin Beamforming Conference Berlin, Germany, February 19−20, 2014 p12

    [9]

    Xu L, Bi C X, Zhang X, Zheng C J 2014 INTERNOISE 2014-43rd International Congress on Noise Control Engineering: Improving the World Through Noise Control Melbourne, Australia, November 16−19, 2014 p458

    [10]

    蔡鹏飞 2015 硕士学位论文 (重庆: 重庆大学)

    Cai P F 2015 M. S. Thesis (Chongqing: Chongqing University) (in Chinese)

    [11]

    Ping G L, Chu Z G, Xu Z M, Shen L B 2017 Sci. Rep. 7 43458Google Scholar

    [12]

    Fernandez-Grande E, Xenaki A 2015 Proceedings of Internoise 2015-44th International Congress and Exposition on Noise Control Engineering San Francisco, United States, August 9−12, 2015 p10

    [13]

    Bi C X, Liu Y, Xu L, Zhang Y B 2017 J. Acoust. Soc. Am. 141 73Google Scholar

    [14]

    Hald J 2020 J. Acoust. Soc. Am. 147 2211Google Scholar

    [15]

    李加庆, 陈进, 杨超, 贾文强 2008 57 4258Google Scholar

    Li J Q, Chen J, Yang C, Jia W Q 2008 Acta Phys. Sin. 57 4258Google Scholar

    [16]

    商德江, 钱治文, 何元安, 肖妍 2018 67 084301Google Scholar

    Shang D J, Qian Z W, He Y A, Xiao Y 2018 Acta Phys. Sin. 67 084301Google Scholar

    [17]

    朱拥勇, 刘宝 2016 噪声与振动控制 36 11

    Zhu Y Y, Liu B 2016 Noise Vibra. Contrl. 36 11

    [18]

    任惠娟, 姚展, 薛小庆, 刘婷, 雷烨 2016 陕西科技大学学报 34 183Google Scholar

    Ren H J, Yao Z, Xue X Q, Liu T, Lei Y 2016 J. Shanxi Univ. Sci. Technol. 34 183Google Scholar

    [19]

    钱治文, 商德江, 孙启航, 何元安, 翟京生 2019 68 024301Google Scholar

    Qian Z W, Shang D J, Sun Q H, He Y A, Zhai J S 2019 Acta Phys. Sin. 68 024301Google Scholar

    [20]

    王斌, 汤渭霖, 范军 2008 声学学报 33 226Google Scholar

    Wang B, Tang W L, Fan J 2008 Acta Acust. 33 226Google Scholar

    [21]

    何祚镛, 赵玉芳 1981 声学理论基础 (北京: 国防工业出版社) 第237−241页

    He Z Y, Zhao Y F 1981 Theories of Acoustics (Beijing: National Defense Industry Press) pp237−241 (in Chinese)

    [22]

    Antoni J 2012 J. Acoust. Soc. Am. 131 2873Google Scholar

  • 图 1  平面障板及其表面活塞示意图

    Figure 1.  Plane baffle and corresponding pistons

    图 2  不同距离处的声场预报结果(100 Hz) (a) 解析法; (b) 单元辐射叠加法

    Figure 2.  Sound field prediction at 100 Hz: (a) Analytical value (theoretical); (b) ERSM

    图 3  不同距离处的声场预报结果(1000 Hz) (a) 解析法; (b) 单元辐射叠加法

    Figure 3.  Sound field prediction at 1000 Hz: (a) Analytical value (theoretical); (b) ERSM

    图 4  100 Hz预报声压切线对比图 (a) 0.005λ; (b) 1.2λ

    Figure 4.  Pressure profiles at 100 Hz: (a) 0.005λ; (b) 1.2λ

    图 5  1000 Hz预报声压切线对比图 (a) 0.005λ; (b) 1.2λ

    Figure 5.  Pressure profiles at 1000 Hz: (a) 0.005λ; (b) 1.2λ

    图 6  0.005λ预报距离处的声压误差曲线

    Figure 6.  Error-frequency curve of ERSM at 0.005λ

    图 7  声场重建示意图

    Figure 7.  Diagram of sound field reconstruction

    图 8  声场重建误差 (d = 0.5λ)

    Figure 8.  Errors of sound field reconstruction (d = 0.5λ)

    图 9  重建声压误差随测试距离变化曲线 (a) 500 Hz; (b) 1000 Hz; (c) 1500 Hz

    Figure 9.  Curves of pressure error with different test distances: (a) 500 Hz; (b) 1000 Hz; (c) 1500 Hz

    图 10  500 Hz不同测试距离处的重建声压切线 (a) $ 0.1\lambda $; (b) $ 0.5\lambda $; (c) $ 1\lambda $

    Figure 10.  Pressure profiles with different test distances at 500 Hz: (a) $ 0.1\lambda $; (b) $ 0.5\lambda $; (c) $ 1\lambda $

    图 11  1000 Hz不同测试距离处的重建声压切线 (a) $ 0.1\lambda $; (b) $ 0.5\lambda $; (c) $ 1\lambda $

    Figure 11.  Pressure profiles with different test distances at 1000 Hz: (a) $ 0.1\lambda $; (b) $ 0.5\lambda $; (c) $ 1\lambda $

    图 12  1500 Hz不同测试距离处的重建声压切线 (a) $ 0.1\lambda $; (b) $ 0.5\lambda $; (c) $ 1\lambda $

    Figure 12.  Pressure profiles with different test distances at 1500 Hz: (a) $ 0.1\lambda $; (b) $ 0.5\lambda $; (c) $ 1\lambda $

    图 13  实验装置连接示意图

    Figure 13.  Diagram of measurement

    图 14  实验现场图 (a) 矩形钢板; (b) 传声器阵列

    Figure 14.  Experimental facilities: (a) Rectangular steel plate; (b) microphones array

    图 15  不同距离处的重建声压误差 (a) 100 Hz; (b) 200 Hz; (c) 400 Hz

    Figure 15.  Reconstruction error with different test distances: (a) 100 Hz; (b) 200 Hz; (c) 400 Hz

    图 16  不同测试距离的实验重建声压(100 Hz) (a) 理论值; (b) ESM (0.14 m); (c) ESM (0.29 m); (d) ESM (0.54 m); (e) ERSM(0.14 m); (f) ERSM (0.29 m); (g) ERSM (0.54 m); (h) IWESM (0.14 m); (i) IWESM (0.29 m); (j) IWESM (0.54 m); (k) IWERSM(0.14 m); (l) IWERSM (0.29 m); (m) IWERSM (0.54 m)

    Figure 16.  Experimental acoustic pressure reconstruction at 100 Hz: (a) Theoretical; (b) ESM (0.14 m); (c) ESM (0.29 m); (d) ESM(0.54 m); (e) ERSM (0.14 m); (f) ERSM (0.29 m); (g) ERSM (0.54 m); (h) IWESM (0.14 m); (i) IWESM (0.29 m); (j) IWESM(0.54 m); (k) IWERSM (0.14 m); (l) IWERSM (0.29 m); (m) IWERSM (0.54 m)

    图 18  不同测试距离的实验重建声压(400 Hz) (a) 理论值; (b) ESM (0.14 m); (c) ESM (0.29 m); (d) ESM (0.54 m); (e) ERSM(0.14 m); (f) ERSM (0.29 m); (g) ERSM (0.54 m); (h) IWESM (0.14 m); (i) IWESM (0.29 m); (j) IWESM (0.54 m); (k) IWERSM(0.14 m); (l) IWERSM (0.29 m); (m) IWERSM (0.54 m)

    Figure 18.  Experimental acoustic pressure reconstruction at 400 Hz: (a) Theoretical; (b) ESM (0.14 m); (c) ESM (0.29 m); (d) ESM(0.54 m); (e) ERSM (0.14 m); (f) ERSM (0.29 m); (g) ERSM (0.54 m); (h) IWESM (0.14 m); (i) IWESM (0.29 m); (j) IWESM(0.54 m); (k) IWERSM (0.14 m); (l) IWERSM (0.29 m); (m) IWERSM (0.54 m)

    图 17  不同测试距离的实验重建声压(200 Hz) (a) 理论值; (b) ESM (0.14 m); (c) ESM (0.29 m); (d) ESM (0.54 m); (e) ERSM(0.14 m); (f) ERSM (0.29 m); (g) ERSM (0.54 m); (h) IWESM (0.14 m); (i) IWESM (0.29 m); (j) IWESM (0.54 m); (k) IWERSM(0.14 m); (l) IWERSM (0.29 m); (m) IWERSM (0.54 m)

    Figure 17.  Experimental acoustic pressure reconstruction at 200 Hz: (a) Theoretical; (b) ESM (0.14 m); (c) ESM (0.29 m); (d) ESM(0.54 m); (e) ERSM (0.14 m); (f) ERSM (0.29 m); (g) ERSM (0.54 m); (h) IWESM (0.14 m); (i) IWESM (0.29 m); (j) IWESM(0.54 m); (k) IWERSM (0.14 m); (l) IWERSM (0.29 m); (m) IWERSM (0.54 m)

    表 1  仿真参数

    Table 1.  Parameters of simulations

    仿真参数数值/单位仿真参数数值/单位
    矩形板长度1 m弹性模量$ 2.1\times10^{11}\;{\rm{N}}/{\rm{m}}^{2}$
    矩形板宽度0.8 m泊松比0.3
    矩形板厚度0.0036 m损耗因子0.002
    矩形板密度$ 7800\;{\rm{kg}}/{\rm{m}}^{3}$简谐力幅值1 N
    空气密度$ 1.29\;{\rm{kg}}/{\rm{m}}^{3}$激励点位置矩形板中心
    空气声速340 m/s参考声压$ 2\times10^{-5}\;{\rm{Pa}}$
    矩形活塞长0.025 m矩形活塞宽0.02 m
    DownLoad: CSV
    Baidu
  • [1]

    聂永发, 朱海潮 2014 63 104303Google Scholar

    Nie Y F, Zhu H C 2014 Acta Phys. Sin. 63 104303Google Scholar

    [2]

    Bi C X, Chen X Z, Chen J, Zhou R 2005 Sci. China Ser. E: Technol. Sci. 48 338Google Scholar

    [3]

    李卫兵, 陈剑, 毕传兴, 陈心昭 2006 55 1264Google Scholar

    Li W B, Chen J, Bi C X, Chen X Z 2006 Acta Phys. Sin. 55 1264Google Scholar

    [4]

    张小正, 毕传兴, 徐亮, 陈心昭 2010 59 5564Google Scholar

    Zhang X Z, Bi C X, Xu L, Chen X Z 2010 Acta Phys. Sin. 59 5564Google Scholar

    [5]

    Pinho M E V 2004 ABCM Symposium Series in Mechatronics (Vol. 1) Sao Paulo, Brazil, November 10−14, 2004 p590

    [6]

    Valdivia N P, Williams E G 2006 J. Acoust. Soc. Am. 120 3694Google Scholar

    [7]

    Zhang Y B 2009 J. Acoust. Soc. Am. 126 1257Google Scholar

    [8]

    Oudompheng B, Pereira A, Picard C, Leclere Q, Nicolas B 2014 5 th Berlin Beamforming Conference Berlin, Germany, February 19−20, 2014 p12

    [9]

    Xu L, Bi C X, Zhang X, Zheng C J 2014 INTERNOISE 2014-43rd International Congress on Noise Control Engineering: Improving the World Through Noise Control Melbourne, Australia, November 16−19, 2014 p458

    [10]

    蔡鹏飞 2015 硕士学位论文 (重庆: 重庆大学)

    Cai P F 2015 M. S. Thesis (Chongqing: Chongqing University) (in Chinese)

    [11]

    Ping G L, Chu Z G, Xu Z M, Shen L B 2017 Sci. Rep. 7 43458Google Scholar

    [12]

    Fernandez-Grande E, Xenaki A 2015 Proceedings of Internoise 2015-44th International Congress and Exposition on Noise Control Engineering San Francisco, United States, August 9−12, 2015 p10

    [13]

    Bi C X, Liu Y, Xu L, Zhang Y B 2017 J. Acoust. Soc. Am. 141 73Google Scholar

    [14]

    Hald J 2020 J. Acoust. Soc. Am. 147 2211Google Scholar

    [15]

    李加庆, 陈进, 杨超, 贾文强 2008 57 4258Google Scholar

    Li J Q, Chen J, Yang C, Jia W Q 2008 Acta Phys. Sin. 57 4258Google Scholar

    [16]

    商德江, 钱治文, 何元安, 肖妍 2018 67 084301Google Scholar

    Shang D J, Qian Z W, He Y A, Xiao Y 2018 Acta Phys. Sin. 67 084301Google Scholar

    [17]

    朱拥勇, 刘宝 2016 噪声与振动控制 36 11

    Zhu Y Y, Liu B 2016 Noise Vibra. Contrl. 36 11

    [18]

    任惠娟, 姚展, 薛小庆, 刘婷, 雷烨 2016 陕西科技大学学报 34 183Google Scholar

    Ren H J, Yao Z, Xue X Q, Liu T, Lei Y 2016 J. Shanxi Univ. Sci. Technol. 34 183Google Scholar

    [19]

    钱治文, 商德江, 孙启航, 何元安, 翟京生 2019 68 024301Google Scholar

    Qian Z W, Shang D J, Sun Q H, He Y A, Zhai J S 2019 Acta Phys. Sin. 68 024301Google Scholar

    [20]

    王斌, 汤渭霖, 范军 2008 声学学报 33 226Google Scholar

    Wang B, Tang W L, Fan J 2008 Acta Acust. 33 226Google Scholar

    [21]

    何祚镛, 赵玉芳 1981 声学理论基础 (北京: 国防工业出版社) 第237−241页

    He Z Y, Zhao Y F 1981 Theories of Acoustics (Beijing: National Defense Industry Press) pp237−241 (in Chinese)

    [22]

    Antoni J 2012 J. Acoust. Soc. Am. 131 2873Google Scholar

  • [1] Zhou Da-Ren, Lu Huan-Cai, Cheng Xiang-Le, McFarland D. Michael. Reconstruction of half-space boundary impedance and sound source direct radiation based on reflection coefficient estimation. Acta Physica Sinica, 2022, 71(12): 124301. doi: 10.7498/aps.71.20211924
    [2] Zhang Lan-Yue, Ding Dan-Dan, Yang De-Sen, Shi Sheng-Guo, Zhu Zhong-Rui. Noise source identification by using near field acoustic holograpy and focused beamforming based on spherical microphone array with random unifrom distribution of elements. Acta Physica Sinica, 2017, 66(1): 014303. doi: 10.7498/aps.66.014303
    [3] Duan Xiao-Min, Zhao Xin-Yu, Sun Hua-Fei. Multi-Gaussian beam model for ultrasonic surface waves with angle beam rectangular transducers. Acta Physica Sinica, 2014, 63(1): 014301. doi: 10.7498/aps.63.014301
    [4] Song Yu-Lai, Lu Huan-Cai, Jin Jiang-Ming. Sound wave separation method based on spatial signals resampling with single layer microphone array. Acta Physica Sinica, 2014, 63(19): 194305. doi: 10.7498/aps.63.194305
    [5] Nie Yong-Fa, Zhu Hai-Chao. Acoustic field reconstruction using source strength density acoustic radiation modes. Acta Physica Sinica, 2014, 63(10): 104303. doi: 10.7498/aps.63.104303
    [6] Bi Chuan-Xing, Hu Ding-Yu, Zhang Yong-Bin, Xu Liang. Sound field separation technique based on equivalent source method and double-layer particle velocity measurements. Acta Physica Sinica, 2013, 62(8): 084301. doi: 10.7498/aps.62.084301
    [7] Bi Chuan-Xing, Guo Ming-Jian, Zhang Yong-Bin, Xu Liang. An investigation of partial field decomposition using pressure gradient reference. Acta Physica Sinica, 2012, 61(15): 154301. doi: 10.7498/aps.61.154301
    [8] Xu Liang, Bi Chuan-Xing, Wang Hui, Xu Bin, Chen Xin-Zhao. Hologram pressure field weighted norm extrapolation method. Acta Physica Sinica, 2011, 60(11): 114304. doi: 10.7498/aps.60.114304
    [9] Chen Zhi-Min, Zhu Hai-Chao, Mao Rong-Fu. Research on localization of the source of cyclostationary sound field. Acta Physica Sinica, 2011, 60(10): 104304. doi: 10.7498/aps.60.104304
    [10] Bi Chuan-Xing, Yuan Yan, He Chun-Dong, Xu Liang. Patch nearfield acoustic holography based on the distributed source boundary point method. Acta Physica Sinica, 2010, 59(12): 8646-8654. doi: 10.7498/aps.59.8646
    [11] Bi Chuan-Xing, Zhang Yong-Bin, Xu Liang, Chen Xin-Zhao. An experimental investigation of planar nearfield acoustic holography using pressure and particle velocity measurements. Acta Physica Sinica, 2010, 59(2): 1108-1115. doi: 10.7498/aps.59.1108
    [12] Zhang Xiao-Zheng, Bi Chuan-Xing, Xu Liang, Chen Xin-Zhao. Resolution enhancement of nearfield acoustic holography by the wave superposition approach. Acta Physica Sinica, 2010, 59(8): 5564-5571. doi: 10.7498/aps.59.5564
    [13] Zhang Yong-Bin, Xu Liang, Bi Chuan-Xing, Chen Xin-Zhao. Sound field separation technique based on single surface measurement using pressure-velocity transducers. Acta Physica Sinica, 2009, 58(12): 8364-8371. doi: 10.7498/aps.58.8364
    [14] Zhang Hai-Bin, Jiang Wei-Kang, Wan Quan. Nearfield acoustic holography based on wave superposition algorithm for cyclostationary sound filed. Acta Physica Sinica, 2008, 57(1): 313-321. doi: 10.7498/aps.57.313
    [15] Xu Liang, Bi Chuan-Xing, Chen Jian, Chen Xin-Zhao. Algorithm and experimental investigation of patch nearfield acoustic holography based on wave superposition approach. Acta Physica Sinica, 2007, 56(5): 2776-2783. doi: 10.7498/aps.56.2776
    [16] Li Wei-Bing, Chen Jian, Bi Chuan-Xing, Chen Xin-Zhao. Investigation on holographic algorithm and experiment of combined wave superposition approach. Acta Physica Sinica, 2006, 55(3): 1264-1270. doi: 10.7498/aps.55.1264
    [17] Li Wei-Bing, Chen Jian, Yu Fei, Bi Chuan-Xing, Chen Xin-Zhao. The principle of statistically optimal planar near-field acoustical holography and the sound field separation technique. Acta Physica Sinica, 2005, 54(3): 1253-1260. doi: 10.7498/aps.54.1253
    [18] Yu Fei, Chen Jian, Li Wei-Bing, Chen Xin-Zhao. Sound field separation technique and its applications in near-field acoustic holography. Acta Physica Sinica, 2005, 54(2): 789-797. doi: 10.7498/aps.54.789
    [19] Bi Chuan-Xing, Chen Xin-Zhao, Chen Jian. Experimental study on the holographic reconstruction and prediction of semi free field. Acta Physica Sinica, 2004, 53(12): 4268-4276. doi: 10.7498/aps.53.4268
    [20] Yu Fei, Chen Xin-Zhao, Li Wei-Bing, Chen Jian. Investigation on holographic reconstruction of sound field using wave superposition approach. Acta Physica Sinica, 2004, 53(8): 2607-2613. doi: 10.7498/aps.53.2607
Metrics
  • Abstract views:  5326
  • PDF Downloads:  104
  • Cited By: 0
Publishing process
  • Received Date:  23 November 2020
  • Accepted Date:  15 February 2021
  • Available Online:  21 June 2021
  • Published Online:  05 July 2021

/

返回文章
返回
Baidu
map