-
采用扫描测量方式得到的不相干声场需分解成完全相干的部分场后才能用于近场声全息重建. 现有的方法都是将声压作为参考进行部分场分解. 本文提出以声压梯度作为参考, 并建立一种基于声压梯度参考的部分场分解方法. 由于声压梯度比声压的衰减速度更快, 受到其他声源和环境噪声的影响比声压小, 所以以声压梯度为参考在分解完全相干的部分场过程中比以声压为参考更具有优势. 通过数值仿真和实验分析, 一方面验证了基于声压梯度参考的部分场分解方法的正确性和可行性; 同时通过与基于声压参考的部分场分解结果比较, 说明了基于声压梯度参考的部分场分解方法分解更稳健、结果更精确.The incoherent sound field obtained by scanning measurement cannot be used directly for nearfield acoustic holography to reconstruct the sound field. And therefore, the incoherent sound field needs to be decomposed into fully coherent partial fields. In previous methods, the pressure is used as reference to obtain the partial fields. In this paper, the pressure gradient is used as the reference for the partial field decomposition. Because the pressure gradient decays faster than the pressure, the interaction of the pressure gradient between the incoherent sources is weaker than that of the pressure, which may improve the effect of the partial field decomposition. A numerical simulation and an experiment are conducted to test the feasibility of the method. And it is shown that the partial field decomposition method based on pressure gradient reference is robust and the decomposed results are better than those based on pressure references.
-
Keywords:
- incoherent sound field /
- nearfield acoustic holography /
- pressure gradient /
- partial field decomposition
[1] Williams E G, Maynard J D, Skudrzyk E J 1980 J. Acoust. Soc. Am. 68 340
[2] Maynard J D, Williams E G, Lee Y 1985 J. Acoust. Soc. Am. 78 1395
[3] Bi C X, Zhang Y B, Xu L, Chen X Z 2010 Acta Phys. Sin. 59 1108 (in Chinese) [毕传兴, 张永斌, 徐亮, 陈心昭 2010 59 1108]
[4] Zhang H B, Jiang W K, Wan Q 2008 Acta Phys. Sin. 57 313 (in Chinese) [张海滨, 蒋伟康, 万泉 2008 57 313]
[5] Hald J 1989 B&K technical review 1 1
[6] Hallman D, Bolton J S 1992 Proc. Inter-noise 92 p1165
[7] Bendat J S, Piersol A G 2000 Random Data: Analysis and Measurement Procedures (3rd Ed.) (New York: Wiley) p218
[8] Tomlinson M A 1999 Applied Acoustics 57 243
[9] Nam K U, Kim Y H 2001 J. Acoust. Soc. Am. 109 1808
[10] Nam K U, Kim Y H 2004 J. Acoust. Soc. Am. 116 172
[11] Kwon H S, Kim Y J, Bolton J S 2003 J. Acoust. Soc. Am. 113 360
[12] Lee M, Bolton J S, Mongeau L 2003 J. Acoust. Soc. Am. 114 842
[13] Kim Y J, Bolton J S, Kwon H S 2004 J. Acoust. Soc. Am. 115 1641
[14] Lee M, Bolton J S 2006 J. Acoust. Soc. Am. 119 382
[15] Kang Y J, Hwang E S 2008 J. Sound. Vib. 314 867
-
[1] Williams E G, Maynard J D, Skudrzyk E J 1980 J. Acoust. Soc. Am. 68 340
[2] Maynard J D, Williams E G, Lee Y 1985 J. Acoust. Soc. Am. 78 1395
[3] Bi C X, Zhang Y B, Xu L, Chen X Z 2010 Acta Phys. Sin. 59 1108 (in Chinese) [毕传兴, 张永斌, 徐亮, 陈心昭 2010 59 1108]
[4] Zhang H B, Jiang W K, Wan Q 2008 Acta Phys. Sin. 57 313 (in Chinese) [张海滨, 蒋伟康, 万泉 2008 57 313]
[5] Hald J 1989 B&K technical review 1 1
[6] Hallman D, Bolton J S 1992 Proc. Inter-noise 92 p1165
[7] Bendat J S, Piersol A G 2000 Random Data: Analysis and Measurement Procedures (3rd Ed.) (New York: Wiley) p218
[8] Tomlinson M A 1999 Applied Acoustics 57 243
[9] Nam K U, Kim Y H 2001 J. Acoust. Soc. Am. 109 1808
[10] Nam K U, Kim Y H 2004 J. Acoust. Soc. Am. 116 172
[11] Kwon H S, Kim Y J, Bolton J S 2003 J. Acoust. Soc. Am. 113 360
[12] Lee M, Bolton J S, Mongeau L 2003 J. Acoust. Soc. Am. 114 842
[13] Kim Y J, Bolton J S, Kwon H S 2004 J. Acoust. Soc. Am. 115 1641
[14] Lee M, Bolton J S 2006 J. Acoust. Soc. Am. 119 382
[15] Kang Y J, Hwang E S 2008 J. Sound. Vib. 314 867
计量
- 文章访问数: 7444
- PDF下载量: 407
- 被引次数: 0